1
|
Zhang L, Li YL, Hu JH, Liu ZY. Overexpression of enzymes in glycolysis and energy metabolic pathways to enhance coenzyme Q10 production in Rhodobacter sphaeroides VK-2-3. Front Microbiol 2022; 13:931470. [PMID: 36033867 PMCID: PMC9412181 DOI: 10.3389/fmicb.2022.931470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/26/2022] [Indexed: 12/02/2022] Open
Abstract
We subjected the components of the glycolysis and energy metabolism pathways of Rhodobacter sphaeroides (R. sphaeroides) to metabolic engineering to improve the titer and yield of coenzyme Q10 (CoQ10). Phosphofructokinase (PFK), cyclic adenylate-dependent protein kinase (PKAC), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and adenosine triphosphate hydrolase (KdpC) were overexpressed in R. sphaeroides VK-2-3 (VK-2-3). The strains were labeled R. sphaeroides PFK (RS.PFK), RS.PKAC, RS.PFK–PKAC, RS.KdpC, RS.GAPDH, and RS.KdpC–GAPDH. Results showed that the CoQ10 titers of RS.PFK, RS.PKAC, and RS.PFK–PKAC were 300.96 ± 0.87, 405.94 ± 4.77, and 379.94 ± 0.42 mg/l, respectively. The CoQ10 titers of RS.PFK and VK-2-3 were not significantly different; however, those for RS.PKAC and RS.PFK–PKAC were 13 and 6% higher than that of VK-2-3, respectively. Further, the titers of RS.KdpC, RS.GAPDH, and RS.KdpC–GAPDH were 360.17 ± 0.39, 409.79 ± 0.76, and 359.87 ± 1.14 mg/l, respectively. The titers of RS.KdpC and RS.KdpC–GAPDH were not significantly different from that for VK-2-3, whereas that for RS.GAPDH was 14% higher than that of VK-2-3. Finally, when the cultures of RS.GAPDH and VK-2-3 were scaled up in 5-L fermenters, the CoQ10 titers and RS.GAPDH yields increased by 44.3 and 37.8%, respectively, compared with VK-2-3.To the best of our knowledge, the glycolysis pathway of R. sphaeroides was studied for the first time in this study. We genetically modified the components of the energy metabolism pathway to obtain the strain with high yield of CoQ10 mutant RS.GAPDH. The findings of this study can serve as a basis for future studies involving metabolic engineering of CoQ10-producing strains.
Collapse
Affiliation(s)
- Long Zhang
- Inner Mongolia Energy Conservation and Emission Reduction Engineering Technology Research Center for Fermentation Industry, Hohhot, Inner Mongolia, China
- Engineering Research Center of Inner Mongolia for Green Manufacturing in Bio-fermentation Industry, Hohhot, Inner Mongolia, China
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia, China
| | - Yong-li Li
- Inner Mongolia Energy Conservation and Emission Reduction Engineering Technology Research Center for Fermentation Industry, Hohhot, Inner Mongolia, China
- Engineering Research Center of Inner Mongolia for Green Manufacturing in Bio-fermentation Industry, Hohhot, Inner Mongolia, China
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia, China
| | - Jian-hua Hu
- Inner Mongolia Energy Conservation and Emission Reduction Engineering Technology Research Center for Fermentation Industry, Hohhot, Inner Mongolia, China
- Engineering Research Center of Inner Mongolia for Green Manufacturing in Bio-fermentation Industry, Hohhot, Inner Mongolia, China
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia, China
| | - Zhan-ying Liu
- Inner Mongolia Energy Conservation and Emission Reduction Engineering Technology Research Center for Fermentation Industry, Hohhot, Inner Mongolia, China
- Engineering Research Center of Inner Mongolia for Green Manufacturing in Bio-fermentation Industry, Hohhot, Inner Mongolia, China
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia, China
- *Correspondence: Zhan-ying Liu,
| |
Collapse
|
2
|
Zhu Y, Pan M, Wang C, Ye L, Xia C, Yu H. Enhanced CoQ10 production by genome modification of Rhodobacter sphaeroides via Tn7 transposition. FEMS Microbiol Lett 2022; 369:6537402. [PMID: 35218188 DOI: 10.1093/femsle/fnab160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/31/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
As a native CoQ10 producer, Rhodobacter sphaeroides has been extensively engineered to enhance CoQ10 production. However, the genetic manipulations using plasmids suffer from risk of plasmid loss during propagation process, biomass impairment due to cellular burden and bio-safety concerns. In this paper, genomic manipulations via Tn7 transposition was conducted to boost the CoQ10 biosynthesis in R. sphaeroides. The titer production and content of CoQ10 were improved by 18.44% and 18.87% respectively compared to the wild type, when an additional copy of dxs and dxr were integrated into the genome. Further overexpression of idi and ispD by genomic integration created strain RSPCDDII with CoQ10 production and content of 81.23 mg/L and 5.93 mg/g, which were 54.28% and 55.97% higher than those of the wild type. The gene segments were successfully inserted into the attTn7 site of the R. sphaeroides genome. Meanwhile, the biomass was not affected. Compared to overexpression of genes on plasmids, this strategy could enhance protein expression to a proper level without affecting cell growth, and in a more stable manner.
Collapse
Affiliation(s)
- Yongqiang Zhu
- Institute of Materials Engineering, Suqian University, Suqian 223800, PR China.,Group of Bioengineering, ZheJiang NHU Company Limited, Shaoxing 312521, PR China.,Institute of Bioengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Mengyao Pan
- Group of Bioengineering, ZheJiang NHU Company Limited, Shaoxing 312521, PR China
| | - Chenfei Wang
- Group of Bioengineering, ZheJiang NHU Company Limited, Shaoxing 312521, PR China
| | - Lidan Ye
- Institute of Bioengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Chunmiao Xia
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Hongwei Yu
- Institute of Bioengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|
3
|
Enhanced production and characterization of coenzyme Q10 from Rhodobacter sphaeroides using a potential fermentation strategy. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.104201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Oxygen Uptake Rate Controlling Strategy Balanced with Oxygen Supply for Improving Coenzyme Q10 Production by Rhodobacter sphaeroides. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0461-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
5
|
Martínez I, Zelada P, Guevara F, Andler R, Urtuvia V, Pacheco-Leyva I, Díaz-Barrera A. Coenzyme Q production by metabolic engineered Escherichia coli strains in defined medium. Bioprocess Biosyst Eng 2019; 42:1143-1149. [DOI: 10.1007/s00449-019-02111-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/18/2019] [Indexed: 11/30/2022]
|
6
|
Introducing a thermotolerant Gluconobacter japonicus strain, potentially useful for coenzyme Q10 production. Folia Microbiol (Praha) 2019; 64:471-479. [DOI: 10.1007/s12223-018-0666-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/20/2018] [Indexed: 11/30/2022]
|
7
|
Tamayo-Ramos JA, Rumbo C, Caso F, Rinaldi A, Garroni S, Notargiacomo A, Romero-Santacreu L, Cuesta-López S. Analysis of Polycaprolactone Microfibers as Biofilm Carriers for Biotechnologically Relevant Bacteria. ACS APPLIED MATERIALS & INTERFACES 2018; 10:32773-32781. [PMID: 30168313 DOI: 10.1021/acsami.8b07245] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Polymeric electrospun fibers are becoming popular in microbial biotechnology because of their exceptional physicochemical characteristics, biodegradability, surface-to-volume ratio, and compatibility with biological systems, which give them a great potential as microbial supports to be used in production processes or environmental applications. In this work, we analyzed and compared the ability of Escherichia coli, Pseudomonas putida, Brevundimonas diminuta, and Sphingobium fuliginis to develop biofilms on different types of polycaprolactone (PCL) microfibers. These bacterial species are relevant in the production of biobased chemicals, enzymes, and proteins for therapeutic use and bioremediation. The obtained results demonstrated that all selected species were able to attach efficiently to the PCL microfibers. Also, the ability of pure cultures of S. fuliginis (former Flavobacterium sp. ATCC 27551, a very relevant strain in the bioremediation of organophosphorus compounds) to form dense biofilms was observed for the first time, opening the possibility of new applications for this microorganism. This material showed to have a high microbial loading capacity, regardless of the mesh density and fiber diameter. A comparative analysis between PCL and polylactic acid (PLA) electrospun microfibers indicated that both surfaces have a similar bacterial loading capacity, but the former material showed higher resistance to microbial degradation than PLA.
Collapse
Affiliation(s)
- Juan Antonio Tamayo-Ramos
- International Research Centre in Critical Raw Materials-ICCRAM , University of Burgos , Plaza Misael Banuelos s/n , 09001 Burgos , Spain
| | - Carlos Rumbo
- International Research Centre in Critical Raw Materials-ICCRAM , University of Burgos , Plaza Misael Banuelos s/n , 09001 Burgos , Spain
- Departamento de Química, Facultad de Ciencias , University of Burgos , Plaza Misael Bañuelos s/n , 09001 Burgos , Spain
| | - Federica Caso
- Nanofaber srl. , Via Anguillarese 301 , 00123 Rome , Italy
| | - Antonio Rinaldi
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) , Casaccia Research Centre , Via Anguillarese 301 , 00123 Rome , Italy
| | - Sebastiano Garroni
- International Research Centre in Critical Raw Materials-ICCRAM , University of Burgos , Plaza Misael Banuelos s/n , 09001 Burgos , Spain
| | - Andrea Notargiacomo
- Institute for Photonics and Nanotechnology , CNR , Via Cineto Romano 42 , 00156 Rome , Italy
| | - Lorena Romero-Santacreu
- International Research Centre in Critical Raw Materials-ICCRAM , University of Burgos , Plaza Misael Banuelos s/n , 09001 Burgos , Spain
- Advanced Materials, Nuclear Technology and Applied Bio/Nanotechnology, Consolidated Research Unit UIC-154 , University of Burgos , Hospital del Rey s/n , Burgos , 09001 , Castilla y León, Spain
| | - Santiago Cuesta-López
- International Research Centre in Critical Raw Materials-ICCRAM , University of Burgos , Plaza Misael Banuelos s/n , 09001 Burgos , Spain
- Advanced Materials, Nuclear Technology and Applied Bio/Nanotechnology, Consolidated Research Unit UIC-154 , University of Burgos , Hospital del Rey s/n , Burgos , 09001 , Castilla y León, Spain
| |
Collapse
|
8
|
Strategies for manipulation of oxygen utilization by the electron transfer chain in microbes for metabolic engineering purposes. J Ind Microbiol Biotechnol 2016; 44:647-658. [PMID: 27800562 DOI: 10.1007/s10295-016-1851-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/06/2016] [Indexed: 12/14/2022]
Abstract
Microaerobic growth is of importance in ecological niches, pathogenic infections and industrial production of chemicals. The use of low levels of oxygen enables the cell to gain energy and grow more robustly in the presence of a carbon source that can be oxidized and provide electrons to the respiratory chain in the membrane. A considerable amount of information is available on the genes and proteins involved in respiratory growth and the regulation of genes involved in aerobic and anaerobic metabolism. The dependence of regulation on sensing systems that respond to reduced quinones (e.g. ArcB) or oxygen levels that affect labile redox components of transcription regulators (Fnr) are key in understanding the regulation. Manipulation of the amount of respiration can be difficult to control in dense cultures or inadequately mixed reactors leading to inhomogeneous cultures that may have lower than optimal performance. Efforts to control respiration through genetic means have been reported and address mutations affecting components of the electron transport chain. In a recent report completion for intermediates of the ubiquinone biosynthetic pathway was used to dial the level of respiration vs lactate formation in an aerobically grown E. coli culture.
Collapse
|
9
|
Talluri MVNK, Kalariya PD, Dharavath S, Shaikh N, Garg P, Ramisetti NR, Ragampeta S. Automated statistical experimental design approach for rapid separation of coenzyme Q10 and identification of its biotechnological process related impurities using UHPLC and UHPLC-APCI-MS. J Sep Sci 2016; 39:3528-35. [PMID: 27488256 DOI: 10.1002/jssc.201501405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 06/30/2016] [Accepted: 07/15/2016] [Indexed: 01/07/2023]
Abstract
A novel ultra high performance liquid chromatography method development strategy was ameliorated by applying quality by design approach. The developed systematic approach was divided into five steps (i) Analytical Target Profile, (ii) Critical Quality Attributes, (iii) Risk Assessments of Critical parameters using design of experiments (screening and optimization phases), (iv) Generation of design space, and (v) Process Capability Analysis (Cp) for robustness study using Monte Carlo simulation. The complete quality-by-design-based method development was made automated and expedited by employing sub-2 μm particles column with an ultra high performance liquid chromatography system. Successful chromatographic separation of the Coenzyme Q10 from its biotechnological process related impurities was achieved on a Waters Acquity phenyl hexyl (100 mm × 2.1 mm, 1.7 μm) column with gradient elution of 10 mM ammonium acetate buffer (pH 4.0) and a mixture of acetonitrile/2-propanol (1:1) as the mobile phase. Through this study, fast and organized method development workflow was developed and robustness of the method was also demonstrated. The method was validated for specificity, linearity, accuracy, precision, and robustness in compliance to the International Conference on Harmonization, Q2 (R1) guidelines. The impurities were identified by atmospheric pressure chemical ionization-mass spectrometry technique. Further, the in silico toxicity of impurities was analyzed using TOPKAT and DEREK software.
Collapse
Affiliation(s)
- Murali V N Kumar Talluri
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, IDPL, R&D Campus, Balanagar, Hyderabad, India.
| | - Pradipbhai D Kalariya
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, IDPL, R&D Campus, Balanagar, Hyderabad, India
| | - Shireesha Dharavath
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, IDPL, R&D Campus, Balanagar, Hyderabad, India
| | - Naeem Shaikh
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S (Mohali) Nagar, Punjab, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S (Mohali) Nagar, Punjab, India
| | | | - Srinivas Ragampeta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, IDPL, R&D Campus, Balanagar, Hyderabad, India.,Mass and Analytical Division, Indian Institute of Chemical Technology, Tarnaka, Hyderabad
| |
Collapse
|
10
|
Ravcheev DA, Thiele I. Genomic Analysis of the Human Gut Microbiome Suggests Novel Enzymes Involved in Quinone Biosynthesis. Front Microbiol 2016; 7:128. [PMID: 26904004 PMCID: PMC4746308 DOI: 10.3389/fmicb.2016.00128] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/25/2016] [Indexed: 02/06/2023] Open
Abstract
Ubiquinone and menaquinone are membrane lipid-soluble carriers of electrons that are essential for cellular respiration. Eukaryotic cells can synthesize ubiquinone but not menaquinone, whereas prokaryotes can synthesize both quinones. So far, most of the human gut microbiome (HGM) studies have been based on metagenomic analysis. Here, we applied an analysis of individual HGM genomes to the identification of ubiquinone and menaquinone biosynthetic pathways. In our opinion, the shift from metagenomics to analysis of individual genomes is a pivotal milestone in investigation of bacterial communities, including the HGM. The key results of this study are as follows. (i) The distribution of the canonical pathways in the HGM genomes was consistent with previous reports and with the distribution of the quinone-dependent reductases for electron acceptors. (ii) The comparative genomics analysis identified four alternative forms of the previously known enzymes for quinone biosynthesis. (iii) Genes for the previously unknown part of the futalosine pathway were identified, and the corresponding biochemical reactions were proposed. We discuss the remaining gaps in the menaquinone and ubiquinone pathways in some of the microbes, which indicate the existence of further alternate genes or routes. Together, these findings provide further insight into the biosynthesis of quinones in bacteria and the physiology of the HGM.
Collapse
Affiliation(s)
- Dmitry A Ravcheev
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg Esch-sur-Alzette, Luxembourg
| | - Ines Thiele
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg Esch-sur-Alzette, Luxembourg
| |
Collapse
|
11
|
Martínez I, Méndez C, Berríos J, Altamirano C, Díaz-Barrera A. Batch production of coenzyme Q10 by recombinant Escherichia coli containing the decaprenyl diphosphate synthase gene from Sphingomonas baekryungensis. J Ind Microbiol Biotechnol 2015; 42:1283-9. [PMID: 26186907 DOI: 10.1007/s10295-015-1652-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 06/27/2015] [Indexed: 12/18/2022]
Abstract
Coenzyme Q10 (CoQ10) is an important antioxidant used in medicine, dietary supplements, and cosmetic applications. In the present work, the production of CoQ10 using a recombinant Escherichia coli strain containing the decaprenyl diphosphate synthase from Sphingomonas baekryungensis was investigated, wherein the effects of culture medium, temperature, and agitation rate on the production process were assessed. It was found that Luria-Bertani (LB) medium was superior to M9 with glucose medium. Higher temperature (37 °C) and higher agitation rate (900 rpm) improved the specific CoQ10 content significantly in LB medium; on the contrary, the use of M9 medium with glucose showed similar values. Specifically, in LB medium, an increase from 300 to 900 rpm in the agitation rate resulted in increases of 55 and 197 % in the specific CoQ10 content and COQ10 productivity, respectively. Therefore, the results obtained in the present work are a valuable contribution for the optimization of CoQ10 production processes using recombinant E. coli strains.
Collapse
Affiliation(s)
- Irene Martínez
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, Chile,
| | | | | | | | | |
Collapse
|
12
|
Ranadive P, Mehta A, Chavan Y, Marx A, George S. Morphological and Molecular Differentiation of Sporidiobolus johnsonii ATCC 20490 and Its Coenzyme Q10 Overproducing Mutant Strain UF16. Indian J Microbiol 2014; 54:343-57. [PMID: 24891743 DOI: 10.1007/s12088-014-0466-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 04/03/2014] [Indexed: 11/24/2022] Open
Abstract
Coenzyme Q10 (CoQ10) is an industrially important molecule having nutraceutical and cosmeceutical applications. CoQ10 is mainly produced by microbial fermentation and the process demands the use of strains with high productivity and yields of CoQ10. During strain improvement program consisting of sequential induced mutagenesis, rational selection and screening process, a mutant strain UF16 was generated from Sporidiobolus johnsonii ATCC 20490 with 2.3-fold improvements in CoQ10 content. EMS and UV rays were used as mutagenic agents for generating UF16 and it was rationally selected based on atorvastatin resistance as well as survival at free radicals exposure. We investigated the genotypic and phenotypic changes in UF16 in order to differentiate it from wild type strain. Morphologically it was distinct due to reduced pigmentation of colony, reduced cell size and significant reduction in mycelial growth forms with abundance of yeast forms. At molecular level, UF16 was differentiated based on PCR fingerprinting method of RAPD as well as large and small-subunit rRNA gene sequences. Rapid molecular technique of RAPD analysis using six primers showed 34 % polymorphic fragments with mean genetic distance of 0.235. The partial sequences of rRNA-gene revealed few mutation sites on nucleotide base pairs. However, the mutations detected on rRNA gene of UF16 were less than 1 % of total base pairs and its sequence showed 99 % homology with the wild type strain. These mutations in UF16 could not be linked to phenotypic or genotypic changes on CoQ10 biosynthetic pathway that resulted in improved yield. Hence, investigating the mutations responsible for deregulation of CoQ10 pathway is essential to understand the cause of overproduction in UF16. Phylogenetic analysis based on RAPD bands and rRNA gene sequences coupled with morphological variations, exhibited the novelty of mutant UF16 having potential for improved CoQ10 production.
Collapse
Affiliation(s)
- Prafull Ranadive
- Fermentation Technology Lab, Natural Products Department, Piramal Enterprises Limited, Nirlon Complex, Off Western Express Highway, Goregaon (East), Mumbai, 400063 India
| | - Alka Mehta
- School of Bio Science and Technology, VIT University, Vellore, 632014 Tamil Nadu India
| | - Yashwant Chavan
- geneOmbio Technologies Private Limited, Baner, Pune, 411045 Maharashtra India
| | - Anbukayalvizhi Marx
- Fermentation Technology Lab, Natural Products Department, Piramal Enterprises Limited, Nirlon Complex, Off Western Express Highway, Goregaon (East), Mumbai, 400063 India
| | - Saji George
- Fermentation Technology Lab, Natural Products Department, Piramal Enterprises Limited, Nirlon Complex, Off Western Express Highway, Goregaon (East), Mumbai, 400063 India
| |
Collapse
|