1
|
Wang T, Weiss A, You L. A generic approach to infer community-level fitness of microbial genes. Proc Natl Acad Sci U S A 2024; 121:e2318380121. [PMID: 38635629 PMCID: PMC11047084 DOI: 10.1073/pnas.2318380121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/26/2024] [Indexed: 04/20/2024] Open
Abstract
The gene content in a metagenomic pool defines the function potential of a microbial community. Natural selection, operating on the level of genomes or genes, shapes the evolution of community functions by enriching some genes while depriving the others. Despite the importance of microbiomes in the environment and health, a general metric to evaluate the community-wide fitness of microbial genes remains lacking. In this work, we adapt the classic neutral model of species and use it to predict how the abundances of different genes will be shaped by selection, regardless of at which level the selection acts. We establish a simple metric that quantitatively infers the average survival capability of each gene in a microbiome. We then experimentally validate the predictions using synthetic communities of barcoded Escherichia coli strains undergoing neutral assembly and competition. We further show that this approach can be applied to publicly available metagenomic datasets to gain insights into the environment-function interplay of natural microbiomes.
Collapse
Affiliation(s)
- Teng Wang
- Department of Biomedical Engineering, Duke University, Durham, NC27705
| | - Andrea Weiss
- Department of Biomedical Engineering, Duke University, Durham, NC27705
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC27705
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC27710
- Center for Quantitative Biodesign, Duke University, Durham, NC27705
| |
Collapse
|
2
|
Norte AC, Boyer PH, Castillo-Ramirez S, Chvostáč M, Brahami MO, Rollins RE, Woudenberg T, Didyk YM, Derdakova M, Núncio MS, de Carvalho IL, Margos G, Fingerle V. The Population Structure of Borrelia lusitaniae Is Reflected by a Population Division of Its Ixodes Vector. Microorganisms 2021; 9:microorganisms9050933. [PMID: 33925391 PMCID: PMC8145215 DOI: 10.3390/microorganisms9050933] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 01/29/2023] Open
Abstract
Populations of vector-borne pathogens are shaped by the distribution and movement of vector and reservoir hosts. To study what impact host and vector association have on tick-borne pathogens, we investigated the population structure of Borrelia lusitaniae using multilocus sequence typing (MLST). Novel sequences were acquired from questing ticks collected in multiple North African and European locations and were supplemented by publicly available sequences at the Borrelia Pubmlst database (accessed on 11 February 2020). Population structure of B. lusitaniae was inferred using clustering and network analyses. Maximum likelihood phylogenies for two molecular tick markers (the mitochondrial 16S rRNA locus and a nuclear locus, Tick-receptor of outer surface protein A, trospA) were used to confirm the morphological species identification of collected ticks. Our results confirmed that B. lusitaniae does indeed form two distinguishable populations: one containing mostly European samples and the other mostly Portuguese and North African samples. Of interest, Portuguese samples clustered largely based on being from north (European) or south (North African) of the river Targus. As two different Ixodes species (i.e., I. ricinus and I. inopinatus) may vector Borrelia in these regions, reference samples were included for I. inopinatus but did not form monophyletic clades in either tree, suggesting some misidentification. Even so, the trospA phylogeny showed a monophyletic clade containing tick samples from Northern Africa and Portugal south of the river Tagus suggesting a population division in Ixodes on this locus. The pattern mirrored the clustering of B. lusitaniae samples, suggesting a potential co-evolution between tick and Borrelia populations that deserve further investigation.
Collapse
Affiliation(s)
- Ana Cláudia Norte
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal;
- Centre for Vector and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Águas de Moura, 2965-575 Setúbal, Portugal; (M.S.N.); (I.L.d.C.)
| | - Pierre H. Boyer
- CHRU Strasbourg, UR7290 Lyme Borreliosis Group, ITI InnoVec, Fédération de Médecine Translationnelle de Strasbourg, Institut de Bactériologie, University of Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France;
| | - Santiago Castillo-Ramirez
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, CP 62210, Mexico;
| | - Michal Chvostáč
- Institute of Zoology, Slovak Academy of Sciences, 84506 Bratislava, Slovakia; (M.C.); (Y.M.D.); (M.D.)
| | - Mohand O. Brahami
- Laboratory of Ecology and Biology of Terrestrial Ecosystems, Faculty Biological and Agronomic Sciences, University Mouloud Mammeri, 15000 Tizi-Ouzou, Algeria;
| | - Robert E. Rollins
- Division of Evolutionary Biology, LMU Munich, Faculty of Biology, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany;
| | - Tom Woudenberg
- National Reference Center for Borrelia, Bavarian Health and Food Safety Authority, 85764 Oberschleissheim, Germany; (T.W.); (V.F.)
| | - Yuliya M. Didyk
- Institute of Zoology, Slovak Academy of Sciences, 84506 Bratislava, Slovakia; (M.C.); (Y.M.D.); (M.D.)
- Department of Acarology, I. I. Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, B. Khmelnytskogo 15, 01030 Kyiv, Ukraine
| | - Marketa Derdakova
- Institute of Zoology, Slovak Academy of Sciences, 84506 Bratislava, Slovakia; (M.C.); (Y.M.D.); (M.D.)
| | - Maria Sofia Núncio
- Centre for Vector and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Águas de Moura, 2965-575 Setúbal, Portugal; (M.S.N.); (I.L.d.C.)
- Environmental Health Institute, Medicine Faculty, University of Lisbon, 1649-026 Lisbon, Portugal
| | - Isabel Lopes de Carvalho
- Centre for Vector and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Águas de Moura, 2965-575 Setúbal, Portugal; (M.S.N.); (I.L.d.C.)
- Environmental Health Institute, Medicine Faculty, University of Lisbon, 1649-026 Lisbon, Portugal
| | - Gabriele Margos
- National Reference Center for Borrelia, Bavarian Health and Food Safety Authority, 85764 Oberschleissheim, Germany; (T.W.); (V.F.)
- Correspondence: or ; Tel.: +49-9131-6808-5883
| | - Volker Fingerle
- National Reference Center for Borrelia, Bavarian Health and Food Safety Authority, 85764 Oberschleissheim, Germany; (T.W.); (V.F.)
| |
Collapse
|
3
|
Stott CM, Bobay LM. Impact of homologous recombination on core genome phylogenies. BMC Genomics 2020; 21:829. [PMID: 33238876 PMCID: PMC7691112 DOI: 10.1186/s12864-020-07262-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/19/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Core genome phylogenies are widely used to build the evolutionary history of individual prokaryote species. By using hundreds or thousands of shared genes, these approaches are the gold standard to reconstruct the relationships of large sets of strains. However, there is growing evidence that bacterial strains exchange DNA through homologous recombination at rates that vary widely across prokaryote species, indicating that core genome phylogenies might not be able to reconstruct true phylogenies when recombination rate is high. Few attempts have been made to evaluate the robustness of core genome phylogenies to recombination, but some analyses suggest that reconstructed trees are not always accurate. RESULTS In this study, we tested the robustness of core genome phylogenies to various levels of recombination rates. By analyzing simulated and empirical data, we observed that core genome phylogenies are relatively robust to recombination rates; nevertheless, our results suggest that many reconstructed trees are not completely accurate even when bootstrap supports are high. We found that some core genome phylogenies are highly robust to recombination whereas others are strongly impacted by it, and we identified that the robustness of core genome phylogenies to recombination is highly linked to the levels of selective pressures acting on a species. Stronger selective pressures lead to less accurate tree reconstructions, presumably because selective pressures more strongly bias the routes of DNA transfers, thereby causing phylogenetic artifacts. CONCLUSIONS Overall, these results have important implications for the application of core genome phylogenies in prokaryotes.
Collapse
Affiliation(s)
- Caroline M Stott
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, PO Box 26170, Greensboro, NC, 27402, USA
| | - Louis-Marie Bobay
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, PO Box 26170, Greensboro, NC, 27402, USA.
| |
Collapse
|
4
|
Chevrette MG, Currie CR. Emerging evolutionary paradigms in antibiotic discovery. J Ind Microbiol Biotechnol 2018; 46:257-271. [PMID: 30269177 DOI: 10.1007/s10295-018-2085-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022]
Abstract
Antibiotics revolutionized medicine and remain its cornerstone. Despite their global importance and the continuous threat of resistant pathogens, few antibiotics have been discovered in recent years. Natural products, especially the secondary metabolites of Actinobacteria, have been the traditional discovery source of antibiotics. In nature, the chemistry of antibiotic natural products is shaped by the unique evolution and ecology of their producing organisms, yet these influences remain largely unknown. Here, we highlight the ecology of antibiotics employed by microbes in defensive symbioses and review the evolutionary processes underlying the chemical diversity and activity of microbe-derived antibiotics, including the dynamics of vertical and lateral transmission of biosynthetic pathways and the evolution of efficacy, targeting specificity, and toxicity. We argue that a deeper understanding of the ecology and evolution of microbial interactions and the metabolites that mediate them will allow for an alternative, rational approach to discover new antibiotics.
Collapse
Affiliation(s)
- Marc G Chevrette
- Department of Genetics, University of Wisconsin-Madison, Madison, WI, USA.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
5
|
What Microbial Population Genomics Has Taught Us About Speciation. POPULATION GENOMICS: MICROORGANISMS 2018. [DOI: 10.1007/13836_2018_10] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
A Reverse Ecology Framework for Bacteria and Archaea. POPULATION GENOMICS: MICROORGANISMS 2018. [DOI: 10.1007/13836_2018_46] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Mortimer TD, Annis DS, O’Neill MB, Bohr LL, Smith TM, Poinar HN, Mosher DF, Pepperell CS. Adaptation in a Fibronectin Binding Autolysin of Staphylococcus saprophyticus. mSphere 2017; 2:e00511-17. [PMID: 29202045 PMCID: PMC5705806 DOI: 10.1128/msphere.00511-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022] Open
Abstract
Human-pathogenic bacteria are found in a variety of niches, including free-living, zoonotic, and microbiome environments. Identifying bacterial adaptations that enable invasive disease is an important means of gaining insight into the molecular basis of pathogenesis and understanding pathogen emergence. Staphylococcus saprophyticus, a leading cause of urinary tract infections, can be found in the environment, food, animals, and the human microbiome. We identified a selective sweep in the gene encoding the Aas adhesin, a key virulence factor that binds host fibronectin. We hypothesize that the mutation under selection (aas_2206A>C) facilitates colonization of the urinary tract, an environment where bacteria are subject to strong shearing forces. The mutation appears to have enabled emergence and expansion of a human-pathogenic lineage of S. saprophyticus. These results demonstrate the power of evolutionary genomic approaches in discovering the genetic basis of virulence and emphasize the pleiotropy and adaptability of bacteria occupying diverse niches. IMPORTANCEStaphylococcus saprophyticus is an important cause of urinary tract infections (UTI) in women; such UTI are common, can be severe, and are associated with significant impacts to public health. In addition to being a cause of human UTI, S. saprophyticus can be found in the environment, in food, and associated with animals. After discovering that UTI strains of S. saprophyticus are for the most part closely related to each other, we sought to determine whether these strains are specially adapted to cause disease in humans. We found evidence suggesting that a mutation in the gene aas is advantageous in the context of human infection. We hypothesize that the mutation allows S. saprophyticus to survive better in the human urinary tract. These results show how bacteria found in the environment can evolve to cause disease.
Collapse
Affiliation(s)
- Tatum D. Mortimer
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Douglas S. Annis
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Mary B. O’Neill
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Lindsey L. Bohr
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Tracy M. Smith
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Medicine, Division of Infectious Diseases, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Hendrik N. Poinar
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, Ontario, Canada
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Deane F. Mosher
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Caitlin S. Pepperell
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Medicine, Division of Infectious Diseases, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
8
|
The underlying process of early ecological and genetic differentiation in a facultative mutualistic Sinorhizobium meliloti population. Sci Rep 2017; 7:675. [PMID: 28386109 PMCID: PMC5429615 DOI: 10.1038/s41598-017-00730-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/10/2017] [Indexed: 11/21/2022] Open
Abstract
The question of how genotypic and ecological units arise and spread in natural microbial populations remains controversial in the field of evolutionary biology. Here, we investigated the early stages of ecological and genetic differentiation in a highly clonal sympatric Sinorhizobium meliloti population. Whole-genome sequencing revealed that a large DNA region of the symbiotic plasmid pSymB was replaced in some isolates with a similar synteny block carrying densely clustered SNPs and displaying gene acquisition and loss. Two different versions of this genomic island of differentiation (GID) generated by multiple genetic exchanges over time appear to have arisen recently, through recombination in a particular clade within this population. In addition, these isolates display resistance to phages from the same geographic region, probably due to the modification of surface components by the acquired genes. Our results suggest that an underlying process of early ecological and genetic differentiation in S. meliloti is primarily triggered by acquisition of genes that confer resistance to soil phages within particular large genomic DNA regions prone to recombination.
Collapse
|
9
|
Abstract
Concepts and definitions of species have been debated by generations of biologists and remain controversial. Microbes pose a particular challenge because of their genetic diversity, asexual reproduction, and often promiscuous horizontal gene transfer (HGT). However, microbes also present an opportunity to study and understand speciation because of their rapid evolution, both in nature and in the lab, and small, easily sequenced genomes. Here, we review how microbial population genomics has enabled us to catch speciation "in the act" and how the results have challenged and enriched our concepts of species, with implications for all domains of life. We describe how recombination (including HGT and introgression) has shaped the genomes of nascent microbial, animal, and plant species and argue for a prominent role of natural selection in initiating and maintaining speciation. We ask how universal is the process of speciation across the tree of life, and what lessons can be drawn from microbes? Comparative genomics showing the extent of HGT in natural populations certainly jeopardizes the relevance of vertical descent (i.e., the species tree) in speciation. Nevertheless, we conclude that species do indeed exist as clusters of genetic and ecological similarity and that speciation is driven primarily by natural selection, regardless of the balance between horizontal and vertical descent.
Collapse
Affiliation(s)
- B. Jesse Shapiro
- Département de sciences biologiques, Université de Montréal, Montréal, Quebec, Canada
| | - Jean-Baptiste Leducq
- Département de sciences biologiques, Université de Montréal, Montréal, Quebec, Canada
| | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
10
|
Migration and horizontal gene transfer divide microbial genomes into multiple niches. Nat Commun 2015; 6:8924. [PMID: 26592443 PMCID: PMC4673824 DOI: 10.1038/ncomms9924] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/16/2015] [Indexed: 02/01/2023] Open
Abstract
Horizontal gene transfer is central to microbial evolution, because it enables genetic regions to spread horizontally through diverse communities. However, how gene transfer exerts such a strong effect is not understood. Here we develop an eco-evolutionary model and show how genetic transfer, even when rare, can transform the evolution and ecology of microbes. We recapitulate existing models, which suggest that asexual reproduction will overpower horizontal transfer and greatly limit its effects. We then show that allowing immigration completely changes these predictions. With migration, the rates and impacts of horizontal transfer are greatly increased, and transfer is most frequent for loci under positive natural selection. Our analysis explains how ecologically important loci can sweep through competing strains and species. In this way, microbial genomes can evolve to become ecologically diverse where different genomic regions encode for partially overlapping, but distinct, ecologies. Under these conditions ecological species do not exist, because genes, not species, inhabit niches. Horizontal gene transfer is central to microbial evolution. Here, the authors develop an eco-evolutionary model and show that migration can greatly promote horizontal gene transfer, which explains how ecologically-important loci can sweep through the species in a microbial community.
Collapse
|
11
|
Joseph SJ, Marti H, Didelot X, Castillo-Ramirez S, Read TD, Dean D. Chlamydiaceae Genomics Reveals Interspecies Admixture and the Recent Evolution of Chlamydia abortus Infecting Lower Mammalian Species and Humans. Genome Biol Evol 2015; 7:3070-84. [PMID: 26507799 PMCID: PMC4994753 DOI: 10.1093/gbe/evv201] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chlamydiaceae are obligate intracellular bacteria that cause a diversity of severe infections among humans and livestock on a global scale. Identification of new species since 1989 and emergence of zoonotic infections, including abortion in women, underscore the need for genome sequencing of multiple strains of each species to advance our knowledge of evolutionary dynamics across Chlamydiaceae. Here, we genome sequenced isolates from avian, lower mammalian and human hosts. Based on core gene phylogeny, five isolates previously classified as Chlamydia abortus were identified as members of Chlamydia psittaci and Chlamydia pecorum. Chlamydia abortus is the most recently emerged species and is a highly monomorphic group that lacks the conserved virulence-associated plasmid. Low-level recombination and evidence for adaptation to the placenta echo evolutionary processes seen in recently emerged, highly virulent niche-restricted pathogens, such as Bacillus anthracis. In contrast, gene flow occurred within C. psittaci and other Chlamydiaceae species. The C. psittaci strain RTH, isolated from a red-tailed hawk (Buteo jamaicensis), is an outlying strain with admixture of C. abortus, C. psittaci, and its own population markers. An average nucleotide identity of less than 94% compared with other Chlamydiaceae species suggests that RTH belongs to a new species intermediary between C. psittaci and C. abortus. Hawks, as scavengers and predators, have extensive opportunities to acquire multiple species in their intestinal tract. This could facilitate transformation and homologous recombination with the potential for new species emergence. Our findings indicate that incubator hosts such as birds-of-prey likely promote Chlamydiaceae evolution resulting in novel pathogenic lineages.
Collapse
Affiliation(s)
- Sandeep J Joseph
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine
| | - Hanna Marti
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, California
| | - Xavier Didelot
- Department of Infectious Disease Epidemiology, Imperial College, London, United Kingdom
| | - Santiago Castillo-Ramirez
- Programa de Genomica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Timothy D Read
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine Department of Human Genetics, Emory University School of Medicine
| | - Deborah Dean
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, California Department of Medicine, University of California, San Francisco Joint Graduate Program in Bioengineering, University of California, San Francisco, and University of California, Berkeley
| |
Collapse
|
12
|
Khayi S, Blin P, Pédron J, Chong TM, Chan KG, Moumni M, Hélias V, Van Gijsegem F, Faure D. Population genomics reveals additive and replacing horizontal gene transfers in the emerging pathogen Dickeya solani. BMC Genomics 2015; 16:788. [PMID: 26467299 PMCID: PMC4607151 DOI: 10.1186/s12864-015-1997-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/03/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Dickeya solani is an emerging pathogen that causes soft rot and blackleg diseases in several crops including Solanum tuberosum, but little is known about its genomic diversity and evolution. RESULTS We combined Illumina and PacBio technologies to complete the genome sequence of D. solani strain 3337 that was used as a reference to compare with 19 other genomes (including that of the type strain IPO2222(T)) which were generated by Illumina technology. This population genomic analysis highlighted an unexpected variability among D. solani isolates since it led to the characterization of two distinct sub-groups within the D. solani species. This approach also revealed different types of variations such as scattered SNP/InDel variations as well as replacing and additive horizontal gene transfers (HGT). Infra-species (between the two D. solani sub-groups) and inter-species (between D. solani and D. dianthicola) replacing HGTs were observed. Finally, this work pointed that genetic and functional variation in the motility trait could contribute to aggressiveness variability in D. solani. CONCLUSIONS This work revealed that D. solani genomic variability may be caused by SNPs/InDels as well as replacing and additive HGT events, including plasmid acquisition; hence the D. solani genomes are more dynamic than that were previously proposed. This work alerts on precautions in molecular diagnosis of this emerging pathogen.
Collapse
Affiliation(s)
- Slimane Khayi
- Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Univ. Paris-Sud, Université Paris-Saclay, Saclay Plant Sciences, Avenue de la Terrasse, 91198, Gif-sur-Yvette cedex, France.
- Université Moulay Ismaïl, Faculté des Sciences, Département de Biologie, Meknès, Morocco.
| | - Pauline Blin
- Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Univ. Paris-Sud, Université Paris-Saclay, Saclay Plant Sciences, Avenue de la Terrasse, 91198, Gif-sur-Yvette cedex, France.
| | - Jacques Pédron
- UPMC Univ Paris 06, UMR 7618, IEES Paris (Institute of Ecology and Environmental Sciences), 7 Quai Saint bernard, 75005, Paris, France.
| | - Teik-Min Chong
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Mohieddine Moumni
- Université Moulay Ismaïl, Faculté des Sciences, Département de Biologie, Meknès, Morocco.
| | - Valérie Hélias
- Fédération Nationale des Producteurs de Plants de Pomme de Terre-Recherche développement Promotion du Plant de Pomme de Terre (FN3PT-RD3PT), 75008, Paris, France.
- UMR 1349 IGEPP INRA - Agrocampus Ouest Rennes, 35653, LeRheu, France.
| | - Frédérique Van Gijsegem
- INRA, UMR 1392, IEES Paris (Institute of Ecology and Environmental Sciences), 7 Quai Saint Bernard, 75005, Paris, France.
| | - Denis Faure
- Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Univ. Paris-Sud, Université Paris-Saclay, Saclay Plant Sciences, Avenue de la Terrasse, 91198, Gif-sur-Yvette cedex, France.
| |
Collapse
|
13
|
Abstract
What are species? How do they arise? These questions are not easy to answer and have been particularly controversial in microbiology. Yet, for those microbiologists studying environmental questions or dealing with clinical issues, the ability to name and recognize species, widely considered the fundamental units of ecology, can be practically useful. On a more fundamental level, the speciation problem, the focus here, is more mechanistic and conceptual. What is the origin of microbial species, and what evolutionary and ecological mechanisms keep them separate once they begin to diverge? To what extent are these mechanisms universal across diverse types of microbes, and more broadly across the entire the tree of life? Here, we propose that microbial speciation must be viewed in light of gene flow, which defines units of genetic similarity, and of natural selection, which defines units of phenotype and ecological function. We discuss to what extent ecological and genetic units overlap to form cohesive populations in the wild, based on recent evolutionary modeling and population genomics studies. These studies suggest a continuous "speciation spectrum," which microbial populations traverse in different ways depending on their balance of gene flow and natural selection.
Collapse
Affiliation(s)
- B Jesse Shapiro
- Département de Sciences Biologiques, Université de Montréal, Montréal QC H3C 3J7, Canada
| | - Martin F Polz
- Parsons Laboratory for Environmental Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
14
|
Chaguza C, Cornick JE, Everett DB. Mechanisms and impact of genetic recombination in the evolution of Streptococcus pneumoniae. Comput Struct Biotechnol J 2015; 13:241-7. [PMID: 25904996 PMCID: PMC4404416 DOI: 10.1016/j.csbj.2015.03.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/27/2015] [Accepted: 03/31/2015] [Indexed: 02/04/2023] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is a highly recombinogenic bacterium responsible for a high burden of human disease globally. Genetic recombination, a process in which exogenous DNA is acquired and incorporated into its genome, is a key evolutionary mechanism employed by the pneumococcus to rapidly adapt to selective pressures. The rate at which the pneumococcus acquires genetic variation through recombination is much higher than the rate at which the organism acquires variation through spontaneous mutations. This higher rate of variation allows the pneumococcus to circumvent the host innate and adaptive immune responses, escape clinical interventions, including antibiotic therapy and vaccine introduction. The rapid influx of whole genome sequence (WGS) data and the advent of novel analysis methods and powerful computational tools for population genetics and evolution studies has transformed our understanding of how genetic recombination drives pneumococcal adaptation and evolution. Here we discuss how genetic recombination has impacted upon the evolution of the pneumococcus.
Collapse
Affiliation(s)
- Chrispin Chaguza
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, L69 7BE Liverpool, UK
| | - Jennifer E Cornick
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, L69 7BE Liverpool, UK
| | - Dean B Everett
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, L69 7BE Liverpool, UK
| |
Collapse
|
15
|
Shapiro BJ, Polz MF. Ordering microbial diversity into ecologically and genetically cohesive units. Trends Microbiol 2014; 22:235-47. [PMID: 24630527 DOI: 10.1016/j.tim.2014.02.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/08/2014] [Accepted: 02/14/2014] [Indexed: 11/16/2022]
Abstract
We propose that microbial diversity must be viewed in light of gene flow and selection, which define units of genetic similarity, and of phenotype and ecological function, respectively. We discuss to what extent ecological and genetic units overlap to form cohesive populations in the wild, based on recent evolutionary modeling and on evidence from some of the first microbial populations studied with genomics. These show that if recombination is frequent and selection moderate, ecologically adaptive mutations or genes can spread within populations independently of their original genomic background (gene-specific sweeps). Alternatively, if the effect of recombination is smaller than selection, genome-wide selective sweeps should occur. In both cases, however, distinct units of overlapping ecological and genotypic similarity will form if microgeographic separation, likely involving ecological tradeoffs, induces barriers to gene flow. These predictions are supported by (meta)genomic data, which suggest that a 'reverse ecology' approach, in which genomic and gene flow information is used to make predictions about the nature of ecological units, is a powerful approach to ordering microbial diversity.
Collapse
Affiliation(s)
- B Jesse Shapiro
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| | - Martin F Polz
- Parsons Laboratory for Environmental Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|