1
|
Di Santo R, Niccolini B, Romanò S, Vaccaro M, Di Giacinto F, De Spirito M, Ciasca G. Advancements in Mid-Infrared spectroscopy of extracellular vesicles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123346. [PMID: 37774583 DOI: 10.1016/j.saa.2023.123346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/07/2023] [Accepted: 09/02/2023] [Indexed: 10/01/2023]
Abstract
Extracellular vesicles (EVs) are lipid vesicles secreted by all cells into the extracellular space and act as nanosized biological messengers among cells. They carry a specific molecular cargo, composed of lipids, proteins, nucleic acids, and carbohydrates, which reflects the state of their parent cells. Due to their remarkable structural and compositional heterogeneity, characterizing EVs, particularly from a biochemical perspective, presents complex challenges. In this context, mid-infrared (IR) spectroscopy is emerging as a valuable tool, providing researchers with a comprehensive and label-free spectral fingerprint of EVs in terms of their specific molecular content. This review aims to provide an up-to-date critical overview of the major advancements in mid-IR spectroscopy of extracellular vesicles, encompassing both fundamental and applied research achievements. We also systematically emphasize the new possibilities offered by the integration of emerging cutting-edge IR technologies, such as tip-enhanced and surface-enhanced spectroscopy approaches, along with the growing use of machine learning for data analysis and spectral interpretation. Additionally, to assist researchers in navigating this intricate subject, our manuscript includes a wide and detailed collection of the spectral peaks that have been assigned to EV molecular constituents up to now in the literature.
Collapse
Affiliation(s)
- Riccardo Di Santo
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy.
| | - Benedetta Niccolini
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Sabrina Romanò
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Vaccaro
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Flavio Di Giacinto
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Gabriele Ciasca
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| |
Collapse
|
2
|
Fousková M, Vališ J, Synytsya A, Habartová L, Petrtýl J, Petruželka L, Setnička V. In vivo Raman spectroscopy in the diagnostics of colon cancer. Analyst 2023; 148:2518-2526. [PMID: 37157993 DOI: 10.1039/d3an00103b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Early detection and accurate diagnosis of colorectal carcinoma are crucial for successful treatment, yet current methods can be invasive and even inaccurate in some cases. In this work, we present a novel approach for in vivo tissue diagnostics of colorectal carcinoma using Raman spectroscopy. This almost non-invasive technique allows for fast and accurate detection of colorectal carcinoma and its precursors, adenomatous polyps, enabling timely intervention and improved patient outcomes. Using several methods of supervised machine learning, we were able to achieve over 91% accuracy in distinguishing colorectal lesions from healthy epithelial tissue and more than 90% classification accuracy for premalignant adenomatous polyps. Moreover, our models enabled the discrimination of cancerous and precancerous lesions with a mean accuracy of almost 92%. Such results demonstrate the potential of in vivo Raman spectroscopy to become a valuable tool in the fight against colon cancer.
Collapse
Affiliation(s)
- Markéta Fousková
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic.
| | - Jan Vališ
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic.
| | - Alla Synytsya
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic.
| | - Lucie Habartová
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic.
| | - Jaromír Petrtýl
- 4th Department of Internal Medicine, General University Hospital in Prague and 1st Faculty of Medicine, Charles University in Prague, U Nemocnice 2, 128 08, Prague 2, Czech Republic
| | - Luboš Petruželka
- Department of Oncology, General University Hospital in Prague and 1st Faculty of Medicine, Charles University in Prague, U Nemocnice 2, 128 08, Prague 2, Czech Republic
| | - Vladimír Setnička
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic.
| |
Collapse
|
3
|
Patil N, Howe O, Cahill P, Byrne HJ. Monitoring and modelling the dynamics of the cellular glycolysis pathway: A review and future perspectives. Mol Metab 2022; 66:101635. [PMID: 36379354 PMCID: PMC9703637 DOI: 10.1016/j.molmet.2022.101635] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The dynamics of the cellular glycolysis pathway underpin cellular function and dysfunction, and therefore ultimately health, disease, diagnostic and therapeutic strategies. Evolving our understanding of this fundamental process and its dynamics remains critical. SCOPE OF REVIEW This paper reviews the medical relevance of glycolytic pathway in depth and explores the current state of the art for monitoring and modelling the dynamics of the process. The future perspectives of label free, vibrational microspectroscopic techniques to overcome the limitations of the current approaches are considered. MAJOR CONCLUSIONS Vibrational microspectroscopic techniques can potentially operate in the niche area of limitations of other omics technologies for non-destructive, real-time, in vivo label-free monitoring of glycolysis dynamics at a cellular and subcellular level.
Collapse
Affiliation(s)
- Nitin Patil
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, Ireland; School of Physics and Optometric & Clinical Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, Ireland.
| | - Orla Howe
- School of Biological and Health Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, Ireland
| | - Paul Cahill
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, Ireland
| |
Collapse
|
4
|
Cameron JM, Rinaldi C, Rutherford SH, Sala A, G Theakstone A, Baker MJ. Clinical Spectroscopy: Lost in Translation? APPLIED SPECTROSCOPY 2022; 76:393-415. [PMID: 34041957 DOI: 10.1177/00037028211021846] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This Focal Point Review paper discusses the developments of biomedical Raman and infrared spectroscopy, and the recent strive towards these technologies being regarded as reliable clinical tools. The promise of vibrational spectroscopy in the field of biomedical science, alongside the development of computational methods for spectral analysis, has driven a plethora of proof-of-concept studies which convey the potential of various spectroscopic approaches. Here we report a brief review of the literature published over the past few decades, with a focus on the current technical, clinical, and economic barriers to translation, namely the limitations of many of the early studies, and the lack of understanding of clinical pathways, health technology assessments, regulatory approval, clinical feasibility, and funding applications. The field of biomedical vibrational spectroscopy must acknowledge and overcome these hurdles in order to achieve clinical efficacy. Current prospects have been overviewed with comment on the advised future direction of spectroscopic technologies, with the aspiration that many of these innovative approaches can ultimately reach the frontier of medical diagnostics and many clinical applications.
Collapse
Affiliation(s)
| | - Christopher Rinaldi
- WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, Glasgow, UK
| | - Samantha H Rutherford
- WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, Glasgow, UK
| | - Alexandra Sala
- WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, Glasgow, UK
| | - Ashton G Theakstone
- WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, Glasgow, UK
| | | |
Collapse
|
5
|
Richards O, Jenkins C, Griffiths H, Paczkowska E, Dunstan PR, Jones S, Morgan M, Thomas T, Bowden J, Nakimuli A, Nair M, Thornton CA. Vibrational Spectroscopy: A Valuable Screening and Diagnostic Tool for Obstetric Disorders? Front Glob Womens Health 2021; 1:610582. [PMID: 34816172 PMCID: PMC8593960 DOI: 10.3389/fgwh.2020.610582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022] Open
Abstract
Preeclampsia (PE) is a common obstetric disorder typically affecting 2–8% of all pregnancies and can lead to several adverse obstetric outcomes for both mother and fetus with the greatest burden of severe outcomes in low middle-income countries (LMICs), therefore, screening for PE is vital. Globally, screening is based on maternal characteristics and medical history which are nonspecific for the disorder. In 2004, the World Health Organization acknowledged that no clinically useful test was able to predict the onset of PE, which prompted a universal search for alternative means of screening. Over the past decade or so, emphasis has been placed on the use of maternal characteristics in conjunction with biomarkers of disease combined into predictive algorithms, however these are yet to transition into the clinic and are cost prohibitive in LMICs. As a result, the screening paradigm for PE remains unchanged. It is evident that novel approaches are needed. Vibrational spectroscopy, specifically Raman spectroscopy and Fourier-transform infrared spectroscopy (FTIR), could provide better alternatives suited for implementation in low resource settings as no specialized reagents are required for conventional approaches and there is a drive to portable platforms usable in both urban and rual community settings. These techniques are based on light scattering and absorption, respectively, allowing detailed molecular analysis of samples to produce a unique molecular fingerprint of diseased states. The specificity of vibrational spectroscopy might well make it suited for application in other obstetric disorders such as gestational diabetes mellitus and obstetric cholestasis. In this review, we summarize current approaches sought as alternatives to current screening methodologies and introduce how vibrational spectroscopy could offer superior screening and diagnostic paradigms in obstetric care. Additionally, we propose a real benefit of such tools in LMICs where limited resources battle the higher prevalence of obstetric disorders.
Collapse
Affiliation(s)
- Oliver Richards
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Cerys Jenkins
- Department of Physics, College of Science, Swansea University, Swansea, United Kingdom
| | - Helena Griffiths
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Edyta Paczkowska
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Peter R Dunstan
- Department of Physics, College of Science, Swansea University, Swansea, United Kingdom
| | - Sharon Jones
- Maternity and Child Health, Singleton Hospital, Swansea Bay University Health Board, Swansea, United Kingdom
| | - Margery Morgan
- Maternity and Child Health, Singleton Hospital, Swansea Bay University Health Board, Swansea, United Kingdom
| | - Tanya Thomas
- Maternity and Child Health, Singleton Hospital, Swansea Bay University Health Board, Swansea, United Kingdom
| | - Jayne Bowden
- Maternity and Child Health, Singleton Hospital, Swansea Bay University Health Board, Swansea, United Kingdom
| | - Annettee Nakimuli
- Department of Obstetrics and Gynaecology, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Manju Nair
- Maternity and Child Health, Singleton Hospital, Swansea Bay University Health Board, Swansea, United Kingdom
| | - Catherine A Thornton
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, United Kingdom
| |
Collapse
|
6
|
On the use of vibrational spectroscopy and scanning electron microscopy to study phenolic extractability of cooperage byproducts in wine. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Farhane Z, Bonnier F, Byrne HJ. Monitoring doxorubicin cellular uptake and trafficking using in vitro Raman microspectroscopy: short and long time exposure effects on lung cancer cell lines. Anal Bioanal Chem 2016; 409:1333-1346. [DOI: 10.1007/s00216-016-0065-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/18/2016] [Accepted: 10/26/2016] [Indexed: 01/01/2023]
|
8
|
Keating ME, Nawaz H, Bonnier F, Byrne HJ. Multivariate statistical methodologies applied in biomedical Raman spectroscopy: assessing the validity of partial least squares regression using simulated model datasets. Analyst 2015; 140:2482-92. [DOI: 10.1039/c4an02167c] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the drive towards biomedical applications of Raman spectroscopy, it is critically important to validate the data analysis tools.
Collapse
Affiliation(s)
- Mark E. Keating
- FOCAS Research Institute
- Dublin Institute of Technology
- Dublin 8
- Ireland
- School of Physics
| | - Haq Nawaz
- Department of Chemistry
- University of Agriculture
- Faisalabad
- Pakistan
| | - Franck Bonnier
- FOCAS Research Institute
- Dublin Institute of Technology
- Dublin 8
- Ireland
- Université François-Rabelais de Tours
| | - Hugh J. Byrne
- FOCAS Research Institute
- Dublin Institute of Technology
- Dublin 8
- Ireland
| |
Collapse
|