1
|
Arich S, Haba Y, Assaid N, Fritz ML, McBride CS, Weill M, Taki H, Sarih M, Labbé P. No association between habitat, autogeny and genetics in Moroccan Culex pipiens populations. Parasit Vectors 2022; 15:405. [PMID: 36329500 PMCID: PMC9635193 DOI: 10.1186/s13071-022-05469-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/29/2022] [Indexed: 11/06/2022] Open
Abstract
Background Mosquitoes of the Culex pipiens complex are found across the globe and are the focus of many research studies. Among the temperate species C. pipiens sensu stricto (s.s.), two forms are usually described: molestus and pipiens. These two forms are indistinguishable in terms of morphology but show behavioral and physiological differences that may have consequences for their associated epidemiology. The two forms are well defined in the northern part of the species distribution, where autogeny is strictly associated with the molestus form. However, whether the two remain distinct and show the characteristic differences in behavior is less clear in North Africa, at the southern edge of their range. Methods The association between autogeny, as determined by ovarian dissection, and molecular forms, based on the CQ11 microsatellite marker, was studied in six Moroccan populations of C. pipiens. Results An overall low prevalence of autogeny was found at three of the Moroccan regions studied, although it reached 17.5% in the Agadir population. The prevalence of form-specific CQ11 alleles was quite similar across all populations, with the molestus allele being rarer (approx. 15%), except in the Agadir population where it reached 43.3%. We found significant deficits in heterozygotes at the diagnostic CQ11 locus in three populations, but the three other populations showed no significant departure from panmixia, which is in line with the results of a retrospective analysis of the published data. More importantly, we found no association between the autogeny status and CQ11 genotypes, despite the many females analyzed. Conclusions There was limited evidence for two discrete forms in Morocco, where individuals carrying pipiens and molestus alleles breed and mate in the same sites and are equally likely to be capable of autogeny. These observations are discussed in the epidemiological context of Morocco, where C. pipiens is the main vector of several arboviruses. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05469-3.
Collapse
Affiliation(s)
- Soukaina Arich
- Institut Des Sciences de L'Évolution de Montpellier, UMR 5554, CNRS-UM-IRD-EPHE, Université de Montpellier, Montpellier, Cedex 5, France.,Laboratory of Biology and Health, Faculty of Sciences Ben M'Sik, URAC34, Hassan II University of Casablanca, Casablanca, Morocco.,Laboratoire Des Maladies Vectorielles (LMV), Institut Pasteur du Maroc, Casablanca, Morocco
| | - Yuki Haba
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Najlaa Assaid
- Laboratoire Des Maladies Vectorielles (LMV), Institut Pasteur du Maroc, Casablanca, Morocco
| | - Megan L Fritz
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Carolyn S McBride
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.,Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Mylène Weill
- Institut Des Sciences de L'Évolution de Montpellier, UMR 5554, CNRS-UM-IRD-EPHE, Université de Montpellier, Montpellier, Cedex 5, France
| | - Hassan Taki
- Laboratory of Biology and Health, Faculty of Sciences Ben M'Sik, URAC34, Hassan II University of Casablanca, Casablanca, Morocco
| | - M'hammed Sarih
- Laboratoire Des Maladies Vectorielles (LMV), Institut Pasteur du Maroc, Casablanca, Morocco
| | - Pierrick Labbé
- Institut Des Sciences de L'Évolution de Montpellier, UMR 5554, CNRS-UM-IRD-EPHE, Université de Montpellier, Montpellier, Cedex 5, France. .,Institut Universitaire de France, 1 rue Descartes, 75231 Cedex 05, Paris, France.
| |
Collapse
|
2
|
Juvenile hormone analog enhances Zika virus infection in Aedes aegypti. Sci Rep 2021; 11:21062. [PMID: 34702871 PMCID: PMC8548497 DOI: 10.1038/s41598-021-00432-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/12/2021] [Indexed: 12/17/2022] Open
Abstract
In recent years, there has been a rise in the emergence of arboviruses of public health importance, including Zika, chikungunya, dengue, and yellow fever viruses. Insecticide-based mosquito control has been the primary method for mitigating transmission of arboviruses. The consequences for the application of insecticides include both lethal and sublethal effects, and associated development of insecticide resistance. However, little is known about the influence on arboviral transmission. Mosquitoes with phenotypes that exhibit insecticide resistance or experience sublethal effects may be associated with altered susceptibility to arbovirus infection and transmission. Juvenile hormone analogs (JHAs) are insecticides that prevent pupa to adult molting of mosquitoes by mimicking the action of their natural juvenile hormone. Here, we examined whether the JHA pyriproxyfen interacts with ambient temperature (20 °C and 30 °C) during juvenile stages to influence life-history traits, population growth (λ'), and Zika virus (ZIKV) infection in Aedes aegypti. Development time of females was lengthened at 20 °C and in the presence of JHA. Prevention of pupa to adult molting by JHA was differentially higher at elevated temperature than low temperature. Size of females was larger at 20 °C and smaller at 30 °C. Infection, disseminated infection, and transmission of ZIKV in females were enhanced by JHA at both 20 °C and 30 °C relative to the controls. These results demonstrate that mosquito life-history and vector competence parameters are strongly influenced by interactive effects of JHA and temperature. The JHA-induced enhancement of ZIKV infection in females should be a consideration when implementing JHA in vector control strategies.
Collapse
|
3
|
The Impact of Insecticide Pre-Exposure on Longevity, Feeding Succession, and Egg Batch Size of Wild Anopheles gambiae s.l. J Trop Med 2020; 2020:8017187. [PMID: 33061994 PMCID: PMC7539113 DOI: 10.1155/2020/8017187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/11/2020] [Accepted: 09/19/2020] [Indexed: 11/18/2022] Open
Abstract
Background Insecticide resistance among the vector population is the main threat to existing control tools available. The current vector control management options rely on applications of recommended public health insecticides, mainly pyrethroids through long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS). Regular monitoring of insecticide resistance does not provide information on important factors that affect parasite transmission. Such factors include vector longevity, vector competence, feeding success, and fecundity. This study investigated the impacts of insecticide resistance on longevity, feeding behaviour, and egg batch size of Anopheles gambiae s.l. Method The larval sampling was conducted in rice fields using a standard dipper (350 ml) and reared to adults in field insectary. A WHO susceptibility test was conducted using standard treated permethrin (0.75%) and deltamethrin (0.05%) papers. The susceptible Kisumu strain was used for reference. Feeding succession and egg batch size were monitored for all survivors and control. Results The results revealed that mortality rates declined by 52.5 and 59.5% for permethrin and deltamethrin, respectively. The mortality rate for the Kisumu susceptible strain was 100%. The survival rates of wild An. gambiae s.l. was between 24 and 27 days. However, the Kisumu susceptible strain blood meal feeding was significantly higher than resistant colony (t = 2.789, df = 21, P=0.011). Additionally, the susceptible An. gambiae s.s. laid more eggs than the resistant An.gambiae s.l. colony (Χ2 = 1366, df = 1, P ≤ 0.05). Conclusion It can, therefore, be concluded that the wild An. gambiae s.l. had increased longevity, blood feeding, and small egg batch size compared to Kisumu susceptible colonies.
Collapse
|
4
|
Nkahe DL, Kopya E, Djiappi-Tchamen B, Toussile W, Sonhafouo-Chiana N, Kekeunou S, Mimpfoundi R, Awono-Ambene P, Wondji CS, Antonio-Nkondjio C. Fitness cost of insecticide resistance on the life-traits of a Anopheles coluzzii population from the city of Yaoundé, Cameroon. Wellcome Open Res 2020; 5:171. [PMID: 33029560 PMCID: PMC7525343 DOI: 10.12688/wellcomeopenres.16039.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Pyrethroid resistance is rapidly expanding in An. gambiae s.l. populations across Sub-Saharan Africa. Yet there is still not enough information on the fitness cost of insecticide resistance . In the present study, the fitness cost of insecticide resistance on Anopheles coluzzii population from the city of Yaoundé was investigated. Methods: A resistant An. coluzzii colony was established from field collected mosquitoes resistant to both DDT and pyrethroid and selected for 12 generations with deltamethrin 0.05%. The Ngousso laboratory susceptible strain was used as control. A total of 100 females of each strain were blood fed and allowed for individual eggs laying, and then different life traits parameters such as fecundity, fertility, larval development time, emergence rate and longevity were measured. The TaqMan assay was used to screen for the presence of the L1014F and L1014S kdr mutations. Results: Field collected mosquitoes from the F0 generation had a mortality rate of 2.05% for DDT, 34.16% for permethrin and 50.23% for deltamethrin. The mortality rate of the F12 generation was 30.48% for deltamethrin, 1.25% for permethrin and 0% for DDT. The number of eggs laid per female was lower in the resistant colony compared to the susceptible (p <0.0001). Insecticide resistant larvae were found with a significantly long larval development time (10.61±0.33 days) compare to susceptible (7.57±0.35 days). The number of emerging females was significantly high in the susceptible group compared to the resistant . The adults lifespan was also significantly high for susceptible (21.73±1.19 days) compared to resistant (14.63±0.68 days). Only the L1014F- kdr allele was detected in resistant population.. Conclusion: The study suggests that pyrethroid resistance is likely associated with a high fitness cost on An.coluzzii populations. The addition of new tools targeting specifically larval stages could improve malaria vectors control and insecticide resistance management.
Collapse
Affiliation(s)
- Diane Leslie Nkahe
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Department of Animal Biology, University of Yaoundé 1, Yaoundé, Cameroon
| | - Edmond Kopya
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Department of Animal Biology, University of Yaoundé 1, Yaoundé, Cameroon
| | - Borel Djiappi-Tchamen
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Department of Animal Biology, University of Dschang, Dschang, Cameroon
| | | | - Nadege Sonhafouo-Chiana
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Faculty of Sciences, University of Buea, Buea, Cameroon
| | - Sevilor Kekeunou
- Department of Animal Biology, University of Yaoundé 1, Yaoundé, Cameroon
| | - Remy Mimpfoundi
- Department of Animal Biology, University of Yaoundé 1, Yaoundé, Cameroon
| | | | | | - Christophe Antonio-Nkondjio
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
5
|
Nkahe DL, Kopya E, Djiappi-Tchamen B, Toussile W, Sonhafouo-Chiana N, Kekeunou S, Mimpfoundi R, Awono-Ambene P, Wondji CS, Antonio-Nkondjio C. Fitness cost of insecticide resistance on the life-traits of a Anopheles coluzzii population from the city of Yaoundé, Cameroon. Wellcome Open Res 2020; 5:171. [PMID: 33029560 PMCID: PMC7525343 DOI: 10.12688/wellcomeopenres.16039.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2020] [Indexed: 08/03/2024] Open
Abstract
Background: Pyrethroid resistance is rapidly expanding in An. gambiae s.l. populations across Sub-Saharan Africa. Yet there is still not enough information on the fitness cost of insecticide resistance . In the present study, the fitness cost of insecticide resistance on Anopheles coluzzii population from the city of Yaoundé was investigated. Methods: A resistant An. coluzzii colony was established from field collected mosquitoes resistant to both DDT and pyrethroid and selected for 12 generations with deltamethrin 0.05%. The Ngousso laboratory susceptible strain was used as control. A total of 100 females of each strain were blood fed and allowed for individual eggs laying, and then different life traits parameters such as fecundity, fertility, larval development time, emergence rate and longevity were measured. The TaqMan assay was used to screen for the presence of the L1014F and L1014S kdr mutations. Results: Field collected mosquitoes from the F0 generation had a mortality rate of 2.05% for DDT, 34.16% for permethrin and 50.23% for deltamethrin. The mortality rate of the F12 generation was 30.48% for deltamethrin, 1.25% for permethrin and 0% for DDT. The number of eggs laid per female was lower in the resistant colony compared to the susceptible (p <0.0001). Insecticide resistant larvae were found with a significantly long larval development time (10.61±0.33 days) compare to susceptible (7.57±0.35 days). The number of emerging females was significantly high in the susceptible group compared to the resistant . The adults lifespan was also significantly high for susceptible (21.73±1.19 days) compared to resistant (14.63±0.68 days). Only the L1014F- kdr allele was detected in resistant population.. Conclusion: The study suggests that pyrethroid resistance is likely associated with a high fitness cost on An.coluzzii populations. The addition of new tools targeting specifically larval stages could improve malaria vectors control and insecticide resistance management.
Collapse
Affiliation(s)
- Diane Leslie Nkahe
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Department of Animal Biology, University of Yaoundé 1, Yaoundé, Cameroon
| | - Edmond Kopya
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Department of Animal Biology, University of Yaoundé 1, Yaoundé, Cameroon
| | - Borel Djiappi-Tchamen
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Department of Animal Biology, University of Dschang, Dschang, Cameroon
| | | | - Nadege Sonhafouo-Chiana
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Faculty of Sciences, University of Buea, Buea, Cameroon
| | - Sevilor Kekeunou
- Department of Animal Biology, University of Yaoundé 1, Yaoundé, Cameroon
| | - Remy Mimpfoundi
- Department of Animal Biology, University of Yaoundé 1, Yaoundé, Cameroon
| | | | | | - Christophe Antonio-Nkondjio
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
6
|
Tchouakui M, Chiang MC, Ndo C, Kuicheu CK, Amvongo-Adjia N, Wondji MJ, Tchoupo M, Kusimo MO, Riveron JM, Wondji CS. A marker of glutathione S-transferase-mediated resistance to insecticides is associated with higher Plasmodium infection in the African malaria vector Anopheles funestus. Sci Rep 2019; 9:5772. [PMID: 30962458 PMCID: PMC6453935 DOI: 10.1038/s41598-019-42015-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 03/13/2019] [Indexed: 01/02/2023] Open
Abstract
Metabolic resistance to insecticides is threatening malaria control in Africa. However, the extent to which it impacts malaria transmission remains unclear. Here, we investigated the association between a marker of glutathione S-transferase mediated metabolic resistance and Plasmodium infection in field population of Anopheles funestus s.s. in comparison to the A296S-RDL target site mutation. The 119F-GSTe2 resistant allele was present in southern (Obout) (56%) and central (Mibellon) (25%) regions of Cameroon whereas the 296S-RDL resistant allele was detected at 98.5% and 15% respectively. The whole mosquito Plasmodium and sporozoite infection rates were 57% and 14.8% respectively in Obout (n = 508) and 19.7% and 5% in Mibellon (n = 360). No association was found between L119F-GSTe2 genotypes and whole mosquito infection status. However, when analyzing oocyst and sporozoite infection rates separately, the resistant homozygote 119F/F genotype was significantly more associated with Plasmodium infection in Obout than both heterozygote (OR = 2.5; P = 0.012) and homozygote susceptible (L/L119) genotypes (OR = 2.10; P = 0.013). In contrast, homozygote RDL susceptible mosquitoes (A/A296) were associated more frequently with Plasmodium infection than other genotypes (OR = 4; P = 0.03). No additive interaction was found between L119F and A296S. Sequencing of the GSTe2 gene showed no association between the polymorphism of this gene and Plasmodium infection. Glutathione S-transferase metabolic resistance is potentially increasing the vectorial capacity of resistant An. funestus mosquitoes. This could result in a possible exacerbation of malaria transmission in areas of high GSTe2-based metabolic resistance to insecticides.
Collapse
Affiliation(s)
- Magellan Tchouakui
- Research Unit LSTM/OCEAC, P.O. BOX 288, Yaoundé, Cameroon. .,Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon. .,Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon.
| | - Mu-Chun Chiang
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, L35QA, Liverpool, UK
| | - Cyrille Ndo
- Research Unit LSTM/OCEAC, P.O. BOX 288, Yaoundé, Cameroon.,Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.,University of Douala, P.O. Box 2701, Douala, Cameroon
| | - Carine K Kuicheu
- Research Unit LSTM/OCEAC, P.O. BOX 288, Yaoundé, Cameroon.,Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.,Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Nathalie Amvongo-Adjia
- Research Unit LSTM/OCEAC, P.O. BOX 288, Yaoundé, Cameroon.,Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon.,Centre for Medical Research, Institute of Medical Research and Medicinal Plants Studies (IMPM), P.O. Box 13033, Yaoundé, Cameroon
| | - Murielle J Wondji
- Research Unit LSTM/OCEAC, P.O. BOX 288, Yaoundé, Cameroon.,Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.,Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, L35QA, Liverpool, UK
| | - Micareme Tchoupo
- Research Unit LSTM/OCEAC, P.O. BOX 288, Yaoundé, Cameroon.,Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon
| | - Michael O Kusimo
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon
| | - Jacob M Riveron
- Research Unit LSTM/OCEAC, P.O. BOX 288, Yaoundé, Cameroon.,Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.,Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, L35QA, Liverpool, UK
| | - Charles S Wondji
- Research Unit LSTM/OCEAC, P.O. BOX 288, Yaoundé, Cameroon. .,Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon. .,Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, L35QA, Liverpool, UK.
| |
Collapse
|
7
|
Johnson BJ, Fonseca DM. Insecticide resistance alleles in wetland and residential populations of the West Nile virus vector Culex pipiens in New Jersey. PEST MANAGEMENT SCIENCE 2016; 72:481-488. [PMID: 25809655 DOI: 10.1002/ps.4011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/19/2015] [Accepted: 03/23/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND In spite of the extensive use of insecticides to control Culex pipiens in the aftermath of West Nile virus, knowledge of the spatial distribution and frequency of insecticide resistance in this species is poorly understood in the United States. This paper reports on the occurrence of upregulated esterases that detoxify organophosphates (OPs) and mutations conferring resistance to pyrethroid insecticides in natural and developed areas of New Jersey. RESULTS We report the first observations of the OP resistance alleles Ester(B1) and Ester(2) and the classical knockdown resistance (kdr) mutation L1014F in New Jersey Cx. pipiens. Upregulated Ester(B1) peaked at 23% (mean ± SE = 12 ± 2.3%) and Ester(2) at 14% (8 ± 1.8%), and both were widely distributed. L1014F, which confers strong resistance to pyrethroids when homozygous, was also widely distributed and ranged in frequency from 2 to 19% (5.1% heterozygous individuals and 1.4% homozygous). CONCLUSION We have demonstrated that OP resistance is common and broadly distributed in New Jersey Cx. pipiens, and that homozygous individuals resistant to pyrethroids are present. Further, we have detected double mutants at Ester and kdr, a condition that may annul the purging effects of insecticide rotations. Our results therefore indicate the need for continued monitoring of insecticide resistance in order to achieve effective mosquito control.
Collapse
Affiliation(s)
- Brian J Johnson
- Graduate Program in Ecology and Evolution, Rutgers University, New Brunswick, New Jersey, USA
- Center for Vector Biology, Department of Entomology, Rutgers University, New Brunswick, New Jersey, USA
| | - Dina M Fonseca
- Graduate Program in Ecology and Evolution, Rutgers University, New Brunswick, New Jersey, USA
- Center for Vector Biology, Department of Entomology, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
8
|
Duquesne S, Liess M. Indirect Effects of Pesticides on Mosquito Larvae Via Alterations of Community Structure. Isr J Ecol Evol 2010. [DOI: 10.1560/ijee.56.3-4.433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We describe how pesticides used for mosquito control alter communities in mosquito breeding sites, and how these alterations affect larval populations of mosquitoes. Lethal and sublethal toxic effects modify biological interactions through density- and trait-mediated changes. Density-mediated effects due to pesticide treatment can lead to indirect positive effects on the target species. For example, recolonization of pests can be amplified due to disturbances of antagonistic species. Trait-mediated effects can result in lethal effects of originally sublethal exposure when the pesticide is combined with additional stress. Such lethal effects can result from changes of behavior or sensitivity. Also the immune capacity and resistance of individuals to parasitic infection could be decreased. Furthermore, pesticide treatment can act independently of toxic effects. For example, habitat and oviposition site selection can be influenced. These examples highlight the diversity of processes to be considered when determining the overall consequences of pesticide treatment. We show that a better understanding of these processes is needed to predict effects of pesticides on population dynamics. Such knowledge would have direct benefits in designing mosquito control strategies.
Collapse
Affiliation(s)
- Sabine Duquesne
- Department of Conservation Biology and Department of System Ecotoxicology, UFZ, Helmholtz Centre for Environmental Research
| | - Matthias Liess
- Department of System Ecotoxicology, UFZ, Helmholtz Centre for Environmental Research
| |
Collapse
|
9
|
Ben Cheikh R, Berticat C, Berthomieu A, Pasteur N, Ben Cheikh H, Weill M. Genes conferring resistance to organophosphorus insecticides in Culex pipiens (Diptera: Culicidae) from Tunisia. JOURNAL OF MEDICAL ENTOMOLOGY 2009; 46:523-530. [PMID: 19496423 DOI: 10.1603/033.046.0317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In Tunisia, the mosquito Culex pipiens shows various organophosphate resistance alleles at Ester and ace-1 loci. The characterization and the distribution pattern of these alleles were studied among 20 populations sampled from north to center of Tunisia. At the Ester locus, Ester4, Ester5, and Ester(B12) were present. A new esterase characterized by the same electrophoretic migration as esterase A1 was identified: A13, encoded by Ester(A13) allele. At the ace-1 locus, the presence of the ace-1(R), ace-1(D), and F290V mutated alleles was also detected. A large heterogeneity in allelic frequencies at Ester and ace-1 loci was observed among samples, with a high significant genotypic differentiation considering both loci (F, = 0.077, P < 10(-5)), depicting variations of insecticide treatment intensity between areas. A comparison between populations collected in 1996 and 2005 showed an absence of significant resistance evolution. However, the high frequencies of resistance alleles in 2005 populations suggested that the selection pressures are still important in Tunisia. Strategies for resistance management are discussed in the context of the current knowledge of the Tunisian situation.
Collapse
Affiliation(s)
- Raja Ben Cheikh
- Université Montpellier 2, Place Eugéne Bataillon, 34095 Montpellier cedex 05, France
| | | | | | | | | | | |
Collapse
|
10
|
Labbé P, Berticat C, Berthomieu A, Unal S, Bernard C, Weill M, Lenormand T. Forty years of erratic insecticide resistance evolution in the mosquito Culex pipiens. PLoS Genet 2008; 3:e205. [PMID: 18020711 PMCID: PMC2077897 DOI: 10.1371/journal.pgen.0030205] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 10/03/2007] [Indexed: 11/26/2022] Open
Abstract
One view of adaptation is that it proceeds by the slow and steady accumulation of beneficial mutations with small effects. It is difficult to test this model, since in most cases the genetic basis of adaptation can only be studied a posteriori with traits that have evolved for a long period of time through an unknown sequence of steps. In this paper, we show how ace-1, a gene involved in resistance to organophosphorous insecticide in the mosquito Culex pipiens, has evolved during 40 years of an insecticide control program. Initially, a major resistance allele with strong deleterious side effects spread through the population. Later, a duplication combining a susceptible and a resistance ace-1 allele began to spread but did not replace the original resistance allele, as it is sublethal when homozygous. Last, a second duplication, (also sublethal when homozygous) began to spread because heterozygotes for the two duplications do not exhibit deleterious pleiotropic effects. Double overdominance now maintains these four alleles across treated and nontreated areas. Thus, ace-1 evolution does not proceed via the steady accumulation of beneficial mutations. Instead, resistance evolution has been an erratic combination of mutation, positive selection, and the rearrangement of existing variation leading to complex genetic architecture. Adaptation is not always a straightforward process, and often results from natural selection tinkering with available variation. We present in this study just such a tortuous natural selection pathway, which allows the mosquito Culex pipiens to resist organophosphorous insecticides. In the Montpellier area, following the use of insecticide to control mosquito populations, a high-resistance allele of the insecticide target enzyme appeared. But this allele also displayed strong deleterious side effects. Recently, several duplicated haplotypes began to spread in natural population that put in tandem a susceptible and a resistant allele. We show that the duplicated haplotypes actually display reduced side effects compared to the resistant allele when in the heterozygous state, but also new and strong costs in the homozygote. This pattern leads to an unexpected equilibrium between four different alleles across treated and nontreated areas. The story of resistance in C. pipiens is indeed far from a slow progression toward a “perfect” adaptation. Rather, selection for resistance to insecticide is a long process of trial and error leading to an uncommon genetic architecture.
Collapse
Affiliation(s)
- Pierrick Labbé
- Equipe Génétique de l'Adaptation, Institut des Sciences de l'Evolution, CNRS Université Montpellier 2, Montpellier, France.
| | | | | | | | | | | | | |
Collapse
|