1
|
Steele SC, Fu RR, Volk MW, North TL, Brenner AR, Muxworthy AR, Collins GS, Davison TM. Paleomagnetic evidence for a long-lived, potentially reversing martian dynamo at ~3.9 Ga. SCIENCE ADVANCES 2023; 9:eade9071. [PMID: 37224261 PMCID: PMC10957104 DOI: 10.1126/sciadv.ade9071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/19/2023] [Indexed: 05/26/2023]
Abstract
The 4.1-billion-year-old meteorite Allan Hills 84001 (ALH 84001) may preserve a magnetic record of the extinct martian dynamo. However, previous paleomagnetic studies have reported heterogeneous, nonunidirectional magnetization in the meteorite at submillimeter scales, calling into question whether it records a dynamo field. We use the quantum diamond microscope to analyze igneous Fe-sulfides in ALH 84001 that may carry remanence as old as 4.1 billion years (Ga). We find that individual, 100-μm-scale ferromagnetic mineral assemblages are strongly magnetized in two nearly antipodal directions. This suggests that the meteorite recorded strong fields following impact heating at 4.1 to 3.95 Ga, after which at least one further impact heterogeneously remagnetized the meteorite in a nearly antipodal local field. These observations are most simply explained by a reversing martian dynamo that was active until 3.9 Ga, thereby implying a late cessation for the martian dynamo and potentially documenting reversing behavior in a nonterrestrial planetary dynamo.
Collapse
Affiliation(s)
- Sarah C. Steele
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Roger R. Fu
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Michael W. R. Volk
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Earth Sciences, Utrecht University, Utrecht 3584 CS, Netherlands
| | - Thomas L. North
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | - Alec R. Brenner
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Adrian R. Muxworthy
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | - Gareth S. Collins
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | - Thomas M. Davison
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
2
|
Black BA, Manga M, Ojha L, Longpré M, Karunatillake S, Hlinka L. The History of Water in Martian Magmas From Thorium Maps. GEOPHYSICAL RESEARCH LETTERS 2022; 49:e2022GL098061. [PMID: 35859852 PMCID: PMC9285613 DOI: 10.1029/2022gl098061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Water inventories in Martian magmas are poorly constrained. Meteorite-based estimates range widely, from 102 to >104 ppm H2O, and are likely variably influenced by degassing. Orbital measurements of H primarily reflect water cycled and stored in the regolith. Like water, Th behaves incompatibly during mantle melting, but unlike water Th is not prone to degassing and is relatively immobile during aqueous alteration at low temperature. We employ Th as a proxy for original, mantle-derived H2O in Martian magmas. We use regional maps of Th from Mars Odyssey to assess variations in magmatic water across major volcanic provinces and through time. We infer that Hesperian and Amazonian magmas had ∼100-3,000 ppm H2O, in the lower range of previous estimates. The implied cumulative outgassing since the Hesperian, equivalent to a global H2O layer ∼1-40 m deep, agrees with Mars' present-day surface and near-surface water inventory and estimates of sequestration and loss rates.
Collapse
Affiliation(s)
- Benjamin A. Black
- Department of Earth and Planetary SciencesRutgers UniversityPiscatawayNJUSA
| | - Michael Manga
- Department of Earth and Planetary SciencesUniversity of California, BerkeleyBerkeleyCAUSA
| | - Lujendra Ojha
- Department of Earth and Planetary SciencesRutgers UniversityPiscatawayNJUSA
| | - Marc‐Antoine Longpré
- School of Earth and Environmental SciencesQueens College, City University of New YorkQueensNYUSA
- Earth and Environmental SciencesThe Graduate Center, City University of New YorkNew YorkNYUSA
| | | | - Lisa Hlinka
- School of Earth and Environmental SciencesQueens College, City University of New YorkQueensNYUSA
- Earth and Environmental SciencesThe Graduate Center, City University of New YorkNew YorkNYUSA
| |
Collapse
|
3
|
von Hegner I. Evolutionary Processes Transpiring in the Stages of Lithopanspermia. Acta Biotheor 2021; 69:783-798. [PMID: 33839964 DOI: 10.1007/s10441-021-09411-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/30/2021] [Indexed: 11/28/2022]
Abstract
Lithopanspermia is a theory proposing a natural exchange of organisms between solar system bodies as a result of asteroidal or cometary impactors. Research has examined not only the physics of the stages themselves but also the survival probabilities for life in each stage. However, although life is the primary factor of interest in lithopanspermia, this life is mainly treated as a passive cargo. Life, however, does not merely passively receive an onslaught of stress from surroundings; instead, it reacts. Thus, planetary ejection, interplanetary transport, and planetary entry are only the first three factors in the equation. The other factors are the quality, quantity, and evolutionary strategy of the transported organisms. Thus, a reduction in organism quantity in stage 1 might increase organism quality towards a second stress challenge in stage 3. Thus, robustness towards a stressor might in fact be higher in the bacterial population surviving after transport in stage 3 than at the beginning in stage 1. Therefore, the stages of lithopanspermia can themselves facilitate evolutionary processes that enhance the ability of the collected organisms to survive stresses such as pressure and heat shock. Thus, the multiple abiotic pressures that the population encounters through the three stages can potentially lead to very robust bacteria with survival capacities considerably higher than might otherwise be expected. This analysis details an outcome that is possible but probably rare. However, in addition to lithopanspermia, spacecraft mediated panspermia may also exist. The analogous stages in a spacecraft would result in a greater likelihood of increasing the stress tolerance of hitchhiking organisms. Furthermore, missions seeking life elsewhere will frequently be sent to places where the possibility of life as we know it is assumed to exist. Thus, we not only can transport terrestrial organisms to places where they are potentially more likely to survive but also may increase their invasive potential along the way. This analysis highlights further requirements that planetary protection protocols must implement and also provides a framework for analyses of ecological scenarios regarding the transmission of life, natural or artificial, between worlds in a solar system.
Collapse
Affiliation(s)
- Ian von Hegner
- Aarhus University, Ny Munkegade 116, DK-8000, Aarhus, Denmark.
| |
Collapse
|
4
|
A New Constraint on the Physicochemical Condition of Mars Surface during the Amazonian Epoch Based on Chemical Speciation for Secondary Minerals in Martian Nakhlites. MINERALS 2021. [DOI: 10.3390/min11050514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Iddingsite in Martian nakhlites contains various secondary minerals that reflect water–rock interaction on Mars. However, the formation processes of secondary Fe minerals in iddingsite are unclear because they include carbonates precipitated under reductive and alkaline conditions and sulfates that are generally precipitated under oxidative and acidic conditions. Mineral types cannot coexist under equilibrium. Herein, we characterize the carbonate phase of meteorite Yamato 000593 as siderite and Mn-bearing siderite via field-emission electron probe microanalyzer (FE-EPMA). Then, we examined the distribution and speciation of trace Cr and S within the carbonates through synchrotron micro-focused X-ray fluorescence-X-ray absorption fine structure and scanning transmission X-ray microscopy (μ-XRF-XAFS/STXM) analysis to estimate the transition history of Eh-pH conditions during siderite formation to explain the coexistence of carbonate and sulfate phases in the nakhlite vein. Specifically, the distribution and speciation of S in the mesostasis and carbonate phases and the heterogeneous distribution of Mn-FeCO3 incorporating Cr(III) in the carbonate constrain the Eh-pH condition. The conditions and transition of the fluid chemistry determined herein based on speciation of various elements provide a new constraint on the physicochemical condition of the water that altered the nakhlite body during the Amazonian epoch.
Collapse
|
5
|
Viennet JC, Bernard S, Le Guillou C, Sautter V, Grégoire B, Jambon A, Pont S, Beyssac O, Zanda B, Hewins R, Remusat L. Martian Magmatic Clay Minerals Forming Vesicles: Perfect Niches for Emerging Life? ASTROBIOLOGY 2021; 21:605-612. [PMID: 33684326 DOI: 10.1089/ast.2020.2345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mars was habitable in its early history, but the consensus is that it is quite inhospitable today, in particular because its modern climate cannot support stable liquid water at the surface. Here, we report the presence of magmatic Fe/Mg clay minerals within the mesostasis of the martian meteorite NWA 5790, an unaltered 1.3 Ga nakhlite archetypal of the martian crust. These magmatic clay minerals exhibit a vesicular texture that forms a network of microcavities or pockets, which could serve as microreactors and allow molecular crowding, a necessary step for the emergence of life. Because their formation does not depend on climate, such niches for emerging life may have been generated on Mars at many periods throughout its history, regardless of the stability or availability of liquid water at the surface.
Collapse
Affiliation(s)
- Jean-Christophe Viennet
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, CNRS, Paris, France
| | - Sylvain Bernard
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, CNRS, Paris, France
| | - Corentin Le Guillou
- Université Lille, CNRS, INRA, ENSCL, UMR 8207 - UMET - Unité Matériaux et Transformations, Lille, France
| | - Violaine Sautter
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, CNRS, Paris, France
| | - Brian Grégoire
- Centre National de la Recherche Scientifique (CNRS), Université de Poitiers, UMR 7285 IC2MP-Hydrasa, Poitiers, France
| | - Albert Jambon
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, CNRS, Paris, France
| | - Sylvain Pont
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, CNRS, Paris, France
| | - Olivier Beyssac
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, CNRS, Paris, France
| | - Brigitte Zanda
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, CNRS, Paris, France
| | - Roger Hewins
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, CNRS, Paris, France
| | - Laurent Remusat
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, CNRS, Paris, France
| |
Collapse
|
6
|
Fujiya W, Furukawa Y, Sugahara H, Koike M, Bajo KI, Chabot NL, Miura YN, Moynier F, Russell SS, Tachibana S, Takano Y, Usui T, Zolensky ME. Analytical protocols for Phobos regolith samples returned by the Martian Moons eXploration (MMX) mission. EARTH, PLANETS, AND SPACE : EPS 2021; 73:120. [PMID: 34776735 PMCID: PMC8550573 DOI: 10.1186/s40623-021-01438-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/10/2021] [Indexed: 05/12/2023]
Abstract
Japan Aerospace Exploration Agency (JAXA) will launch a spacecraft in 2024 for a sample return mission from Phobos (Martian Moons eXploration: MMX). Touchdown operations are planned to be performed twice at different landing sites on the Phobos surface to collect > 10 g of the Phobos surface materials with coring and pneumatic sampling systems on board. The Sample Analysis Working Team (SAWT) of MMX is now designing analytical protocols of the returned Phobos samples to shed light on the origin of the Martian moons as well as the evolution of the Mars-moon system. Observations of petrology and mineralogy, and measurements of bulk chemical compositions and stable isotopic ratios of, e.g., O, Cr, Ti, and Zn can provide crucial information about the origin of Phobos. If Phobos is a captured asteroid composed of primitive chondritic materials, as inferred from its reflectance spectra, geochemical data including the nature of organic matter as well as bulk H and N isotopic compositions characterize the volatile materials in the samples and constrain the type of the captured asteroid. Cosmogenic and solar wind components, most pronounced in noble gas isotopic compositions, can reveal surface processes on Phobos. Long- and short-lived radionuclide chronometry such as 53Mn-53Cr and 87Rb-87Sr systematics can date pivotal events like impacts, thermal metamorphism, and aqueous alteration on Phobos. It should be noted that the Phobos regolith is expected to contain a small amount of materials delivered from Mars, which may be physically and chemically different from any Martian meteorites in our collection and thus are particularly precious. The analysis plan will be designed to detect such Martian materials, if any, from the returned samples dominated by the endogenous Phobos materials in curation procedures at JAXA before they are processed for further analyses.
Collapse
Affiliation(s)
- Wataru Fujiya
- Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 Japan
| | - Yoshihiro Furukawa
- Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai, 980-8578 Japan
| | - Haruna Sugahara
- Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 252-5210 Japan
| | - Mizuho Koike
- Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8526 Japan
| | - Ken-ichi Bajo
- Department of Earth and Planetary Sciences, Hokkaido University, N10W8 Kita-ku, Sapporo, 060-0810 Japan
| | - Nancy L. Chabot
- Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA
| | - Yayoi N. Miura
- Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032 Japan
| | - Frederic Moynier
- Institut de Physique du Globe de Paris, CNRS, University of Paris, Paris, France
| | - Sara S. Russell
- Department of Earth Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Shogo Tachibana
- Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 252-5210 Japan
- UTOPS, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Yoshinori Takano
- Biogeochemistry Research Center, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima, Yokosuka, 237-0061 Japan
| | - Tomohiro Usui
- Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 252-5210 Japan
| | | |
Collapse
|
7
|
The internal structure and geodynamics of Mars inferred from a 4.2-Gyr zircon record. Proc Natl Acad Sci U S A 2020; 117:30973-30979. [PMID: 33199613 PMCID: PMC7733809 DOI: 10.1073/pnas.2016326117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We discovered a zircon record in a Martian meteorite that spans 4.2 Gyr, nearly the entire geologic history of Mars. Ancient zircons define a bimodal distribution with groupings at 4474 ± 10 Ma and 4442 ± 17 Ma, reflecting intense bombardment episodes triggered by the migration of the gas giant planets. A group of younger detrital zircons record ages from 1548.0 ± 8.8 Ma to 299.5 ± 0.6 Ma. The only plausible sources for these grains are the Elysium and Tharsis volcanic provinces that are the expressions of deep-seated mantle plumes. The chondritic-like Hf-isotope compositions of these zircons require the existence of a primitive and convecting mantle reservoir. Thus, these grains provide a tangible record of the deep Martian interior. Combining U–Pb ages with Lu–Hf data in zircon provides insights into the magmatic history of rocky planets. The Northwest Africa (NWA) 7034/7533 meteorites are samples of the southern highlands of Mars containing zircon with ages as old as 4476.3 ± 0.9 Ma, interpreted to reflect reworking of the primordial Martian crust by impacts. We extracted a statistically significant zircon population (n = 57) from NWA 7533 that defines a temporal record spanning 4.2 Gyr. Ancient zircons record ages from 4485.5 ± 2.2 Ma to 4331.0 ± 1.4 Ma, defining a bimodal distribution with groupings at 4474 ± 10 Ma and 4442 ± 17 Ma. We interpret these to represent intense bombardment episodes at the planet’s surface, possibly triggered by the early migration of gas giant planets. The unradiogenic initial Hf-isotope composition of these zircons establishes that Mars’s igneous activity prior to ∼4.3 Ga was limited to impact-related reworking of a chemically enriched, primordial crust. A group of younger detrital zircons record ages from 1548.0 ± 8.8 Ma to 299.5 ± 0.6 Ma. The only plausible sources for these grains are the temporally associated Elysium and Tharsis volcanic provinces that are the expressions of deep-seated mantle plumes. The chondritic-like Hf-isotope compositions of these zircons require the existence of a primitive and convecting mantle reservoir, indicating that Mars has been in a stagnant-lid tectonic regime for most of its history. Our results imply that zircon is ubiquitous on the Martian surface, providing a faithful record of the planet’s magmatic history.
Collapse
|
8
|
Koike M, Nakada R, Kajitani I, Usui T, Tamenori Y, Sugahara H, Kobayashi A. In-situ preservation of nitrogen-bearing organics in Noachian Martian carbonates. Nat Commun 2020; 11:1988. [PMID: 32332762 PMCID: PMC7181736 DOI: 10.1038/s41467-020-15931-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/03/2020] [Indexed: 11/09/2022] Open
Abstract
Understanding the origin of organic material on Mars is a major issue in modern planetary science. Recent robotic exploration of Martian sedimentary rocks and laboratory analyses of Martian meteorites have both reported plausible indigenous organic components. However, little is known about their origin, evolution, and preservation. Here we report that 4-billion-year-old (Ga) carbonates in Martian meteorite, Allan Hills 84001, preserve indigenous nitrogen(N)-bearing organics by developing a new technique for high-spatial resolution in situ N-chemical speciation. The organic materials were synthesized locally and/or delivered meteoritically on Mars during Noachian age. The carbonates, alteration minerals from the Martian near-surface aqueous fluid, trapped and kept the organic materials intact over long geological times. This presence of N-bearing compounds requires abiotic or possibly biotic N-fixation and ammonia storage, suggesting that early Mars had a less oxidizing environment than today.
Collapse
Affiliation(s)
- Mizuho Koike
- Department of Solar System Sciences, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210, Japan.
| | - Ryoichi Nakada
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 200 Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Iori Kajitani
- Department of Solar System Sciences, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210, Japan
- Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomohiro Usui
- Department of Solar System Sciences, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8550, Japan
| | - Yusuke Tamenori
- Spectroscopy and Imaging Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Haruna Sugahara
- Department of Solar System Sciences, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210, Japan
| | - Atsuko Kobayashi
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8550, Japan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
9
|
Vance SD, Melwani Daswani M. Serpentinite and the search for life beyond Earth. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20180421. [PMID: 31902342 DOI: 10.1098/rsta.2018.0421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Hydrogen from serpentinization is a source of chemical energy for some life forms on Earth. It is a potential fuel for life in the subsurface of Mars and in the icy ocean worlds in the outer solar system. Serpentinization is also implicated in life's origin. Planetary exploration offers a way to investigate such theories by characterizing and ultimately searching for life in geochemical settings that no longer exist on Earth. At present, much of the current context of serpentinization on other worlds relies on inference from modelling and studies on Earth. While there is evidence from orbital spectral imaging and martian meteorites that serpentinization has occurred on Mars, the extent and duration of that activity has not been constrained. Similarly, ongoing serpentinization might explain hydrogen found in the ocean of Saturn's tiny moon Enceladus, but this raises questions about how long such activity has persisted. Titan's hydrocarbon-rich atmosphere may derive from ancient or present-day serpentinization at the bottom of its ocean. In Europa, volcanism or serpentinization may provide hydrogen as a redox couple to oxygen generated at the moon's surface. We assess the potential extent of serpentinization in the solar system's wet and rocky worlds, assuming that microfracturing from thermal expansion anisotropy sets an upper limit on the percolation depth of surface water into the rocky interiors. In this bulk geophysical model, planetary cooling from radiogenic decay implies the infiltration of water to greater depths through time, continuing to the present. The serpentinization of this newly exposed rock is assessed as a significant source of global hydrogen. Comparing the computed hydrogen and surface-generated oxygen delivered to Europa's ocean reveals redox fluxes similar to Earth's. Planned robotic exploration missions to other worlds can aid in understanding the planetary context of serpentinization, testing the predictions herein. This article is part of a discussion meeting issue 'Serpentinite in the Earth System'.
Collapse
Affiliation(s)
- S D Vance
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109-8001, USA
| | - M Melwani Daswani
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109-8001, USA
| |
Collapse
|
10
|
McLoughlin N, Grosch EG, Vullum PE, Guagliardo P, Saunders M, Wacey D. Critically testing olivine-hosted putative martian biosignatures in the Yamato 000593 meteorite-Geobiological implications. GEOBIOLOGY 2019; 17:691-707. [PMID: 31478592 DOI: 10.1111/gbi.12361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/12/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
On rocky planets such as Earth and Mars the serpentinization of olivine in ultramafic crust produces hydrogen that can act as a potential energy source for life. Direct evidence of fluid-rock interaction on Mars comes from iddingsite alteration veins found in martian meteorites. In the Yamato 000593 meteorite, putative biosignatures have been reported from altered olivines in the form of microtextures and associated organic material that have been compared to tubular bioalteration textures found in terrestrial sub-seafloor volcanic rocks. Here, we use a suite of correlative, high-sensitivity, in situ chemical, and morphological analyses to characterize and re-evaluate these microalteration textures in Yamato 000593, a clinopyroxenite from the shallow subsurface of Mars. We show that the altered olivine crystals have angular and micro-brecciated margins and are also highly strained due to impact-induced fracturing. The shape of the olivine microalteration textures is in no way comparable to microtunnels of inferred biological origin found in terrestrial volcanic glasses and dunites, and rather we argue that the Yamato 000593 microtextures are abiotic in origin. Vein filling iddingsite extends into the olivine microalteration textures and contains amorphous organic carbon occurring as bands and sub-spherical concentrations <300 nm across. We propose that a martian impact event produced the micro-brecciated olivine crystal margins that reacted with subsurface hydrothermal fluids to form iddingsite containing organic carbon derived from abiotic sources. These new data have implications for how we might seek potential biosignatures in ultramafic rocks and impact craters on both Mars and Earth.
Collapse
Affiliation(s)
| | - Eugene G Grosch
- Department of Geology, Rhodes University, Grahamstown, South Africa
| | - Per Erik Vullum
- SINTEF Materials and Chemistry, Trondheim, Norway
- Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Paul Guagliardo
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia
| | - Martin Saunders
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - David Wacey
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
11
|
Mateo-Marti E, Galvez-Martinez S, Gil-Lozano C, Zorzano MP. Pyrite-induced uv-photocatalytic abiotic nitrogen fixation: implications for early atmospheres and Life. Sci Rep 2019; 9:15311. [PMID: 31653928 PMCID: PMC6814809 DOI: 10.1038/s41598-019-51784-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/08/2019] [Indexed: 11/09/2022] Open
Abstract
The molecular form of nitrogen, N2, is universally available but is biochemically inaccessible for life due to the strength of its triple bond. Prior to the emergence of life, there must have been an abiotic process that could fix nitrogen in a biochemically usable form. The UV photo-catalytic effects of minerals such as pyrite on nitrogen fixation have to date been overlooked. Here we show experimentally, using X-ray photoemission and infrared spectroscopies that, under a standard earth atmosphere containing nitrogen and water vapour at Earth or Martian pressures, nitrogen is fixed to pyrite as ammonium iron sulfate after merely two hours of exposure to 2,3 W/m 2 of ultraviolet irradiance in the 200-400 nm range. Our experiments show that this process exists also in the absence of UV, although about 50 times slower. The experiments also show that carbonates species are fixed on pyrite surface.
Collapse
Affiliation(s)
- E Mateo-Marti
- Centro de Astrobiología (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850-Torrejón de Ardoz, Madrid, Spain.
| | - S Galvez-Martinez
- Centro de Astrobiología (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850-Torrejón de Ardoz, Madrid, Spain
| | - C Gil-Lozano
- Centro de Astrobiología (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850-Torrejón de Ardoz, Madrid, Spain
| | - María-Paz Zorzano
- Centro de Astrobiología (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850-Torrejón de Ardoz, Madrid, Spain.,Department of Computer Science, Electrical and Space Engineering, Luleå Universit of Technology, 97187, Luleå, Sweden
| |
Collapse
|
12
|
Abstract
Silica polymorphs, such as quartz, tridymite, cristobalite, coesite, stishovite, seifertite, baddeleyite-type SiO2, high-pressure silica glass, moganite, and opal, have been found in lunar and/or martian rocks by macro-microanalyses of the samples and remote-sensing observations on the celestial bodies. Because each silica polymorph is stable or metastable at different pressure and temperature conditions, its appearance is variable depending on the occurrence of the lunar and martian rocks. In other words, types of silica polymorphs provide valuable information on the igneous process (e.g., crystallization temperature and cooling rate), shock metamorphism (e.g., shock pressure and temperature), and hydrothermal fluid activity (e.g., pH and water content), implying their importance in planetary science. Therefore, this article focused on reviewing and summarizing the representative and important investigations of lunar and martian silica from the viewpoints of its discovery from lunar and martian materials, the formation processes, the implications for planetary science, and the future prospects in the field of “micro-mineralogy”.
Collapse
|
13
|
Adcock CT, Tschauner O, Hausrath EM, Udry A, Luo SN, Cai Y, Ren M, Lanzirotti A, Newville M, Kunz M, Lin C. Shock-transformation of whitlockite to merrillite and the implications for meteoritic phosphate. Nat Commun 2017; 8:14667. [PMID: 28262701 PMCID: PMC5343502 DOI: 10.1038/ncomms14667] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 01/23/2017] [Indexed: 11/17/2022] Open
Abstract
Meteorites represent the only samples available for study on Earth of a number of planetary bodies. The minerals within meteorites therefore hold the key to addressing numerous questions about our solar system. Of particular interest is the Ca-phosphate mineral merrillite, the anhydrous end-member of the merrillite–whitlockite solid solution series. For example, the anhydrous nature of merrillite in Martian meteorites has been interpreted as evidence of water-limited late-stage Martian melts. However, recent research on apatite in the same meteorites suggests higher water content in melts. One complication of using meteorites rather than direct samples is the shock compression all meteorites have experienced, which can alter meteorite mineralogy. Here we show whitlockite transformation into merrillite by shock-compression levels relevant to meteorites, including Martian meteorites. The results open the possibility that at least part of meteoritic merrillite may have originally been H+-bearing whitlockite with implications for interpreting meteorites and the need for future sample return. Quantifying the amount of water in meteorites remains challenging, with minerals the key to understanding water contents. Here, Adcock et al. perform shock experiments on H+-bearing whitlockite demonstrating that it may transform into anhydrous merrillite, which is commonly found in Martian meteorites.
Collapse
Affiliation(s)
- C T Adcock
- Department of Geoscience, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - O Tschauner
- Department of Geoscience, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Las Vegas, Nevada 89154, USA.,High Pressure Science and Engineering Center, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Las Vegas, Nevada 89154, USA.,LSPM-CNRS, Institut Galilée, Université Paris 13, Nord, 99, av. J. B. Clément, 93430 Villetaneuse, France.,Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - E M Hausrath
- Department of Geoscience, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - A Udry
- Department of Geoscience, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - S N Luo
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.,The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031, China
| | - Y Cai
- The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031, China.,CAS Key Laboratory of Materials Behavior and Design, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - M Ren
- Department of Geoscience, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - A Lanzirotti
- GeoScienceEnviro Center for Advanced Radiation Sources, University of Chicago, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - M Newville
- GeoScienceEnviro Center for Advanced Radiation Sources, University of Chicago, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - M Kunz
- Lawrence Berkeley National Laboratory, Advanced Light Source, University of California, Berkeley, Berkeley, California 94720, USA
| | - C Lin
- High Pressure Collaborative Access Team (HPCAT), Geophysical Laboratory, Carnegie Institution of Washington, Argonne, Illinois 60439, USA
| |
Collapse
|
14
|
Lapen TJ, Righter M, Andreasen R, Irving AJ, Satkoski AM, Beard BL, Nishiizumi K, Jull AJT, Caffee MW. Two billion years of magmatism recorded from a single Mars meteorite ejection site. SCIENCE ADVANCES 2017; 3:e1600922. [PMID: 28164153 PMCID: PMC5287701 DOI: 10.1126/sciadv.1600922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 12/22/2016] [Indexed: 06/06/2023]
Abstract
The timing and nature of igneous activity recorded at a single Mars ejection site can be determined from the isotope analyses of Martian meteorites. Northwest Africa (NWA) 7635 has an Sm-Nd crystallization age of 2.403 ± 0.140 billion years, and isotope data indicate that it is derived from an incompatible trace element-depleted mantle source similar to that which produced a geochemically distinct group of 327- to 574-million-year-old "depleted" shergottites. Cosmogenic nuclide data demonstrate that NWA 7635 was ejected from Mars 1.1 million years ago (Ma), as were at least 10 other depleted shergottites. The shared ejection age is consistent with a common ejection site for these meteorites. The spatial association of 327- to 2403-Ma depleted shergottites indicates >2 billion years of magmatism from a long-lived and geochemically distinct volcanic center near the ejection site.
Collapse
Affiliation(s)
- Thomas J. Lapen
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204–5007, USA
| | - Minako Righter
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204–5007, USA
| | - Rasmus Andreasen
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204–5007, USA
- Department of Geoscience, Aarhus University, Aarhus, Denmark
| | - Anthony J. Irving
- Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195–1310, USA
| | - Aaron M. Satkoski
- Department of Geoscience, University of Wisconsin–Madison, Madison, WI 53706–1692, USA
- NASA Astrobiology Institute, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Brian L. Beard
- Department of Geoscience, University of Wisconsin–Madison, Madison, WI 53706–1692, USA
- NASA Astrobiology Institute, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Kunihiko Nishiizumi
- Space Sciences Laboratory, University of California, Berkeley, Berkeley, CA, USA
| | | | - Marc W. Caffee
- Department of Physics, Purdue University, West Lafayette, IN 47907–2036, USA
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907–2051, USA
| |
Collapse
|
15
|
Milam KA, McSween HY, Moersch J, Christensen PR. Distribution and variation of plagioclase compositions on Mars. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009je003495] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Rao MN, Nyquist LE, Wentworth SJ, Sutton SR, Garrison DH. The nature of Martian fluids based on mobile element studies in salt-assemblages from Martian meteorites. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je002958] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Treiman AH, Dyar MD, McCanta M, Noble SK, Pieters CM. Martian Dunite NWA 2737: Petrographic constraints on geological history, shock events, and olivine color. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002777] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Abstract
One of the goals of the present Martian exploration is to search for evidence of extinct (or even extant) life. This could be redefined as a search for carbon. The carbon cycle (or, more properly, cycles) on Earth is a complex interaction among three reservoirs: the atmosphere; the hydrosphere; and the lithosphere. Superimposed on this is the biosphere, and its presence influences the fixing and release of carbon in these reservoirs over different time-scales. The overall carbon balance is kept at equilibrium on the surface by a combination of tectonic processes (which bury carbon), volcanism (which releases it) and biology (which mediates it). In contrast to Earth, Mars presently has no active tectonic system; neither does it possess a significant biosphere. However, these observations might not necessarily have held in the past. By looking at how Earth's carbon cycles have changed with time, as both the Earth's tectonic structure and a more sophisticated biology have evolved, and also by constructing a carbon cycle for Mars based on the carbon chemistry of Martian meteorites, we investigate whether or not there is evidence for a Martian biosphere.
Collapse
Affiliation(s)
- Monica M Grady
- Planetary and Space Sciences Research Institute, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK.
| | | |
Collapse
|
19
|
Anand M, Russell SS, Blackhurst RL, Grady MM. Searching for signatures of life on Mars: an Fe-isotope perspective. Philos Trans R Soc Lond B Biol Sci 2006; 361:1715-20. [PMID: 17008212 PMCID: PMC1664681 DOI: 10.1098/rstb.2006.1899] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent spacecraft and lander missions to Mars have reinforced previous interpretations that Mars was a wet and warm planet in the geological past. The role of liquid water in shaping many of the surface features on Mars has long been recognized. Since the presence of liquid water is essential for survival of life, conditions on early Mars might have been more favourable for the emergence and evolution of life. Until a sample return mission to Mars, one of the ways of studying the past environmental conditions on Mars is through chemical and isotopic studies of Martian meteorites. Over 35 individual meteorite samples, believed to have originated on Mars, are now available for lab-based studies. Fe is a key element that is present in both primary and secondary minerals in the Martian meteorites. Fe-isotope ratios can be fractionated by low-temperature processes which includes biological activity. Experimental investigations of Fe reduction and oxidation by bacteria have produced large fractionation in Fe-isotope ratios. Hence, it is considered likely that if there is/were any form of life present on Mars then it might be possible to detect its signature by Fe-isotope studies of Martian meteorites. In the present study, we have analysed a number of Martian meteorites for their bulk-Fe-isotope composition. In addition, a set of terrestrial analogue material has also been analysed to compare the results and draw inferences. So far, our studies have not found any measurable Fe-isotopic fractionation in bulk Martian meteorites that can be ascribed to any low-temperature process operative on Mars.
Collapse
Affiliation(s)
- M Anand
- Department of Mineralogy, The Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| | | | | | | |
Collapse
|
20
|
Perry RS, Hartmann WK. Mars primordial crust: unique sites for investigating proto-biologic properties. ORIGINS LIFE EVOL B 2006; 36:533-40. [PMID: 17131091 DOI: 10.1007/s11084-006-9037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The Martian meteorite collection suggests that intact outcrops or boulder-scale fragments of the 4.5 Ga Martian crust exist within tens of meters of the present day surface of Mars. Mars may be the only planet where such primordial crust samples, representing the first 100 Ma of a planet's environment, are available. The primordial crust has been destroyed on Earth by plate tectonics and other geological phenomena and is buried on the Moon under hundreds or thousands of meters of megaregoltih. Early Mars appears to have been remarkably similar to early Earth, and samples of rock from the first few Ma or first 100 Ma may reveal "missing link" proto-biological forms that could shed light on the transition from abiotic organic chemistry to living cells. Such organic snapshots of nascent life are unlikely to be found on Earth.
Collapse
Affiliation(s)
- Randall S Perry
- Department of Earth Science and Engineering, South Kensington Campus, Impacts and Astromaterials Research Centre, Imperial College, London, UK.
| | | |
Collapse
|
21
|
Borg L. A review of meteorite evidence for the timing of magmatism and of surface or near-surface liquid water on Mars. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2005je002402] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|