1
|
Baroncelli GI, Carlucci G, Freri E, Giuca MR, Guarnieri V, Navarra G, Toschi B, Mora S. The diagnosis of hypophosphatasia in children as a multidisciplinary effort: an expert opinion. J Endocrinol Invest 2024; 47:739-747. [PMID: 37752373 PMCID: PMC10904512 DOI: 10.1007/s40618-023-02199-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
Hypophosphatasia (HPP) is a rare genetic disorder in which pathogenic variants of the ALPL gene lead to a marked decrease of tissue non-specific alkaline phosphatase (TNSALP) activity. Although HPP is a systemic disorder, its clinical manifestations are more evident on bones, teeth, muscle and central nervous system. The clinical spectrum ranges from severe forms with extreme skeletal deformities, respiratory impairment, seizures, to very mild forms with onset in late adulthood and few clinical signs. The diagnosis can be suspected by measurement of TNSALP activity, but the insufficient awareness among health professionals and the lack of official guidelines are responsible for delayed diagnosis in children with HPP. The purpose of the current document is to provide an expert opinion directed at optimizing the diagnostic pathway of pediatric HPP. From April to December 2022, a multidisciplinary working group of 6 experts including two pediatric endocrinologists, a pediatric neurologist, a pediatric odontologist, a clinical geneticist, and a molecular biologist gathered in a series of periodic meetings to discuss the main issues related to the diagnosis of HPP in children and formalize an Expert Opinion statement. The experts agreed on a diagnostic trail that begins with the recognition of specific clinical signs, leading to biochemical analyses of TNSALP activity and vitamin B6 serum concentration. Very important are the neurological and dental manifestation of the disease that should be thoroughly investigated. The evaluation of TNSALP activity must consider sex and age variability and low activity must be persistent. Repeated blood measurements are thus necessary. The molecular analysis is then mandatory to confirm the diagnosis and for genetic counseling.
Collapse
Affiliation(s)
- G I Baroncelli
- Pediatric and Adolescent Endocrinology, Division of Pediatrics, Department of Obstetrics, Gynecology and Pediatrics, University Hospital, Pisa, Italy
| | - G Carlucci
- OPT S.P.A., Soluzioni Per Il Mondo Healthcare, Milan, Italy
| | - E Freri
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - M R Giuca
- Unit of Pediatric Dentistry, Department of Surgical Medical Molecular Pathology and Critical Area, Dental and Oral Surgery Clinic, University of Pisa, Pisa, Italy
| | - V Guarnieri
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, Foggia, Italy
| | - G Navarra
- OPT S.P.A., Soluzioni Per Il Mondo Healthcare, Milan, Italy
| | - B Toschi
- Section of Medical Genetics, Department of Medical and Oncological Area, University Hospital, Pisa, Italy
| | - S Mora
- Laboratory of Pediatric Endocrinology, Department of Pediatrics, IRCCS San Raffaele Hospital, Milan, Italy.
| |
Collapse
|
2
|
Martos-Moreno GÁ, Rockman-Greenberg C, Ozono K, Petryk A, Kishnani PS, Dahir KM, Seefried L, Fang S, Högler W, Linglart A. Clinical Profiles of Children with Hypophosphatasia prior to Treatment with Enzyme Replacement Therapy: An Observational Analysis from the Global HPP Registry. Horm Res Paediatr 2023; 97:233-242. [PMID: 37442110 PMCID: PMC11078328 DOI: 10.1159/000531865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
INTRODUCTION The objective of this study was to better understand the clinical profiles of children with hypophosphatasia (HPP) prior to treatment with enzyme replacement therapy (ERT). METHODS Pretreatment demographics and medical histories of ERT-treated children (aged <18 years) enrolled in the Global HPP Registry (2015-2020) were analyzed overall, by age at first HPP manifestation (<6 months vs. 6 months to 18 years), and by geographic region (USA/Canada, Europe, and Japan). RESULTS Data from 151 children with HPP were analyzed. Sex distribution was balanced overall (52.3% female; 47.7% male) but differed in Japan (63.0% female; 37.0% male). Prior to ERT initiation, common manifestations were skeletal (67.5%) and extraskeletal, with the foremost types being muscular (48.3%), constitutional/metabolic (47.0%), and neurologic (39.7%). A high proportion of children who first presented at <6 months of age (perinatal/infantile period) had a history of bone deformity (59.3%) and respiratory failure (38.3%), while those aged 6 months to 18 years at first manifestation had a predominance of early loss of primary teeth (62.3%) and gross motor delay (41.0%). Those from Japan were reported to have a younger median age overall, the highest proportion of skeletal manifestations (80.4%) and growth impairment, while European data reported the highest proportion of muscular manifestations (70.7%). In the USA/Canada, skeletal and muscular manifestations were reported at the same frequency (57.4%). CONCLUSION Prior to ERT, skeletal and extraskeletal manifestations were commonly reported in children with HPP, with differences by age at first HPP manifestation and geographical region. Comprehensive assessments of children with HPP are warranted prior to ERT initiation.
Collapse
Affiliation(s)
- Gabriel Ángel Martos-Moreno
- Departments of Pediatrics and Pediatric Endocrinology Hospital Infantil Universitario Niño Jesús, IIS La Princesa, Universidad Autónoma de Madrid, CIBERobn, ISCIII, Madrid, Spain
| | | | - Keiichi Ozono
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Anna Petryk
- Alexion, AstraZeneca Rare Disease, Boston, MA, USA
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Kathryn M. Dahir
- Division of Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lothar Seefried
- Orthopedic Department, University of Würzburg, Würzburg, Germany
| | - Shona Fang
- Alexion, AstraZeneca Rare Disease, Boston, MA, USA
| | - Wolfgang Högler
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Agnès Linglart
- AP-HP, Paris-Saclay University, service d’endocrinologie et diabète de l’enfant, DMU 3 SEA, Centre de Référence des Maladies Rares du Métabolisme du Calcium et du Phosphate, Filière OSCAR; Paris-Saclay University, INSERM U1185, Bicêtre Paris-Saclay Hospital, Le Kremlin-Bicêtre, Paris, France
| |
Collapse
|
3
|
Raimann A, Haberler C, Patsch J, Ertl DA, Sadeghi K, Freilinger M, Lang S, Schmook M, Plecko B, Haeusler G. Lethal Encephalopathy in an Infant with Hypophosphatasia despite Enzyme Replacement Therapy. Horm Res Paediatr 2022; 94:390-398. [PMID: 34673643 DOI: 10.1159/000520341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/14/2021] [Indexed: 11/19/2022] Open
Abstract
Hypophosphatasia (HPP) is an inborn error of metabolism caused by loss-of-function mutations in the biomineralization-associated alkaline phosphatase gene, encoding tissue-nonspecific alkaline phosphatase (TNSALP). Symptoms include skeletal hypomineralization and extra-skeletal manifestations such as pyridoxine (B6)-responsive seizures due to impaired cerebral B6 passage. Since the introduction of enzyme replacement therapy (ERT), skeletal manifestations and B6-responsive seizures were reported to improve significantly. Nevertheless, there is an increasing evidence of B6-independent neurological manifestation of HPP including HPP-associated encephalopathy. Here, we present for the first time the brain alterations of an infant with neonatal HPP who died of neurological complications at the age of 5 months despite early initiation of ERT. CSF analysis showed normal concentrations of biogenic amines reflecting sufficient intracellular B6 availability. Postmortem histopathology revealed severe, localized affection of the cerebral cortex including cortical lesions in layers 2 and 3 in direct proximity to TNSALP-expressing neurons and hippocampal sclerosis. Our findings confirm that TNSALP deficiency may lead to a severe encephalopathy. We hypothesize that HPP-associated encephalopathy resistant to currently available ERT may develop in addition and probably independently of typical B6-responsive seizures in some patients. Prospective, controlled studies with close neurological follow-up including brain imaging are needed to identify patients at risk for severe neurological symptoms despite ERT.
Collapse
Affiliation(s)
- Adalbert Raimann
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,Vienna Bone and Growth Center, Vienna, Austria
| | | | - Janina Patsch
- Vienna Bone and Growth Center, Vienna, Austria.,Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Diana-Alexandra Ertl
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,Vienna Bone and Growth Center, Vienna, Austria
| | - Kambis Sadeghi
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Michael Freilinger
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Susanna Lang
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Maria Schmook
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Barbara Plecko
- Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Gabriele Haeusler
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,Vienna Bone and Growth Center, Vienna, Austria
| |
Collapse
|
4
|
Bayat A, de Valles-Ibáñez G, Pendziwiat M, Knaus A, Alt K, Biamino E, Bley A, Calvert S, Carney P, Caro-Llopis A, Ceulemans B, Cousin J, Davis S, des Portes V, Edery P, England E, Ferreira C, Freeman J, Gener B, Gorce M, Heron D, Hildebrand MS, Jezela-Stanek A, Jouk PS, Keren B, Kloth K, Kluger G, Kuhn M, Lemke JR, Li H, Martinez F, Maxton C, Mefford HC, Merla G, Mierzewska H, Muir A, Monfort S, Nicolai J, Norman J, O'Grady G, Oleksy B, Orellana C, Orec LE, Peinhardt C, Pronicka E, Rosello M, Santos-Simarro F, Schwaibold EMC, Stegmann APA, Stumpel CT, Szczepanik E, Terczyńska I, Thevenon J, Tzschach A, Van Bogaert P, Vittorini R, Walsh S, Weckhuysen S, Weissman B, Wolfe L, Reymond A, De Nittis P, Poduri A, Olson H, Striano P, Lesca G, Scheffer IE, Møller RS, Sadleir LG. PIGN encephalopathy: Characterizing the epileptology. Epilepsia 2022; 63:974-991. [PMID: 35179230 DOI: 10.1111/epi.17173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Epilepsy is common in patients with PIGN diseases due to biallelic variants; however, limited epilepsy phenotyping data have been reported. We describe the epileptology of PIGN encephalopathy. METHODS We recruited patients with epilepsy due to biallelic PIGN variants and obtained clinical data regarding age at seizure onset/offset and semiology, development, medical history, examination, electroencephalogram, neuroimaging, and treatment. Seizure and epilepsy types were classified. RESULTS Twenty six patients (13 female) from 26 families were identified, with mean age 7 years (range = 1 month to 21 years; three deceased). Abnormal development at seizure onset was present in 25 of 26. Developmental outcome was most frequently profound (14/26) or severe (11/26). Patients presented with focal motor (12/26), unknown onset motor (5/26), focal impaired awareness (1/26), absence (2/26), myoclonic (2/26), myoclonic-atonic (1/26), and generalized tonic-clonic (2/26) seizures. Twenty of 26 were classified as developmental and epileptic encephalopathy (DEE): 55% (11/20) focal DEE, 30% (6/20) generalized DEE, and 15% (3/20) combined DEE. Six had intellectual disability and epilepsy (ID+E): two generalized and four focal epilepsy. Mean age at seizure onset was 13 months (birth to 10 years), with a lower mean onset in DEE (7 months) compared with ID+E (33 months). Patients with DEE had drug-resistant epilepsy, compared to 4/6 ID+E patients, who were seizure-free. Hyperkinetic movement disorder occurred in 13 of 26 patients. Twenty-seven of 34 variants were novel. Variants were truncating (n = 7), intronic and predicted to affect splicing (n = 7), and missense or inframe indels (n = 20, of which 11 were predicted to affect splicing). Seven variants were recurrent, including p.Leu311Trp in 10 unrelated patients, nine with generalized seizures, accounting for nine of the 11 patients in this cohort with generalized seizures. SIGNIFICANCE PIGN encephalopathy is a complex autosomal recessive disorder associated with a wide spectrum of epilepsy phenotypes, typically with substantial profound to severe developmental impairment.
Collapse
Affiliation(s)
- Allan Bayat
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark.,Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark
| | | | - Manuela Pendziwiat
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian Albrecht University, Kiel, Germany.,Institute of Clinical Molecular Biology, Christian Albrecht University of Kiel, Kiel, Germany
| | - Alexej Knaus
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rhenish Friedrich Wilhelm University of Bonn, Bonn, Germany
| | | | - Elisa Biamino
- Department of Pediatrics, Regina Margherita Children's Hospital, Turin, Italy
| | - Annette Bley
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sophie Calvert
- Department of Neurosciences, Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - Patrick Carney
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | | | - Berten Ceulemans
- Department of Pediatric Neurology, Antwerp University Hospital, Edegem, Belgium
| | - Janice Cousin
- Section of Human Biochemical Genetics, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Suzanne Davis
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | | | - Patrick Edery
- Department of Medical Genetics, University Hospital of Lyon, Lyon, France
| | - Eleina England
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Carlos Ferreira
- National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Jeremy Freeman
- Royal Children's Hospital, Parkville, Victoria, Australia.,Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Blanca Gener
- Department of Genetics, Cruces University Hospital, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | | | - Delphine Heron
- Department of Genetics, Intellectual Disability and Autism Clinical Research Group, Pierre and Marie Curie University, Pitié-Salpêtrière Hospital, Public Hospital Network of Paris, Paris, France
| | - Michael S Hildebrand
- Royal Children's Hospital, Florey institute and Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Epilepsy Research Centre, Department of Medicine (Austin Health), University of Melbourne, Heidelberg, Victoria, Australia
| | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Pierre-Simon Jouk
- Inserm U1209, Grenoble Alpes University Hospital Center, University of Grenoble Alpes, Grenoble, France
| | - Boris Keren
- Department of Genetics, Intellectual Disability and Autism Clinical Research Group, Pierre and Marie Curie University, Pitié-Salpêtrière Hospital, Public Hospital Network of Paris, Paris, France
| | - Katja Kloth
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany.,Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Hong Li
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Francisco Martinez
- Genomics Unit, University and Polytechnic Hospital La Fe, Valencia, Spain
| | | | - Heather C Mefford
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St, Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Giuseppe Merla
- Department of Pediatrics, Regina Margherita Children's Hospital, Turin, Italy
| | - Hanna Mierzewska
- Department of Mother and Child Neurology, Institute of Mother and Child, Warsaw, Poland
| | - Alison Muir
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St, Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Sandra Monfort
- Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Joost Nicolai
- Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | - Gina O'Grady
- Starship Children's Hospital, Auckland, New Zealand
| | - Barbara Oleksy
- Department of Child and Adolescent Neurology, Institute of Mother and Child, Warsaw, Poland
| | - Carmen Orellana
- Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Laura Elena Orec
- Center for Child and Adolescent Medicine, Pediatric Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Ewa Pronicka
- Department of Medical Genetics, Children's Memorial Health Institute, Warsaw, Poland
| | - Monica Rosello
- Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | | | - Alexander P A Stegmann
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Constance T Stumpel
- Department of Clinical Genetics and School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Elzbieta Szczepanik
- Department of Child and Adolescent Neurology, Institute of Mother and Child, Warsaw, Poland
| | - Iwona Terczyńska
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland
| | - Julien Thevenon
- Department of Genetics, University of Bourgogne-Franche Comté, Dijon, France
| | - Andreas Tzschach
- Institute of Clinical Genetics, Dresden University of Technology, Dresden, Germany
| | | | - Roberta Vittorini
- Department of Pediatrics, Regina Margherita Children's Hospital, Turin, Italy
| | - Sonja Walsh
- Institute of Clinical Genetics, Dresden University of Technology, Dresden, Germany
| | - Sarah Weckhuysen
- Neurology Department, University Hospital Antwerp, Antwerp, Belgium.,Applied and Translational Genomics Group, Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
| | - Barbara Weissman
- Center for Child and Adolescent Medicine, Pediatric Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Lynne Wolfe
- National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Annapurna Poduri
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Heather Olson
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Gaetan Lesca
- Department of Medical Genetics, University Hospital of Lyon, Lyon, France
| | - Ingrid E Scheffer
- Royal Children's Hospital, Florey institute and Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Departments of Medicine and Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Rikke S Møller
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark.,Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| |
Collapse
|
5
|
Kavčič A, Paro-Panjan D, Soltirovska-Šalamon A. Hypophosphatasia as a rare cause of neonatal seizures. Arch Pediatr 2021; 28:496-499. [PMID: 34154874 DOI: 10.1016/j.arcped.2021.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/14/2020] [Accepted: 02/13/2021] [Indexed: 10/21/2022]
Abstract
Severe forms of hypophosphatasia due to loss-of-function in the ALPL gene may present with diverse neurological problems including pyridoxine-responsive seizures. We present a short report of pyridoxine-responsive neonatal seizures. Due to severe osteopenia with unmeasurable levels of alkaline phosphatase, targeted genetic screening was performed and two pathogenic variants in the gene for the nonspecific alkaline phosphatase confirmed the diagnosis of hypophosphatasia. We would like to emphasize the importance of considering infantile hypophosphatasia in the differential diagnosis of pyridoxine-responsive seizures with concomitant low alkaline phosphatase level and bone pathology, especially with the new treatments becoming available in the future.
Collapse
Affiliation(s)
- A Kavčič
- University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - D Paro-Panjan
- Department of Neonatology, Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - A Soltirovska-Šalamon
- Department of Neonatology, Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia; Faculty of Medicine University of Ljubljana, Slovenia.
| |
Collapse
|
6
|
Hypophosphatasia: A Unique Disorder of Bone Mineralization. Int J Mol Sci 2021; 22:ijms22094303. [PMID: 33919113 PMCID: PMC8122659 DOI: 10.3390/ijms22094303] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/25/2022] Open
Abstract
Hypophosphatasia (HPP) is a rare genetic disease characterized by a decrease in the activity of tissue non-specific alkaline phosphatase (TNSALP). TNSALP is encoded by the ALPL gene, which is abundantly expressed in the skeleton, liver, kidney, and developing teeth. HPP exhibits high clinical variability largely due to the high allelic heterogeneity of the ALPL gene. HPP is characterized by multisystemic complications, although the most common clinical manifestations are those that occur in the skeleton, muscles, and teeth. These complications are mainly due to the accumulation of inorganic pyrophosphate (PPi) and pyridoxal-5′-phosphate (PLP). It has been observed that the prevalence of mild forms of the disease is more than 40 times the prevalence of severe forms. Patients with HPP present at least one mutation in the ALPL gene. However, it is known that there are other causes that lead to decreased alkaline phosphatase (ALP) levels without mutations in the ALPL gene. Although the phenotype can be correlated with the genotype in HPP, the prediction of the phenotype from the genotype cannot be made with complete certainty. The availability of a specific enzyme replacement therapy for HPP undoubtedly represents an advance in therapeutic strategy, especially in severe forms of the disease in pediatric patients.
Collapse
|
7
|
Pierpont EI, Simmons JH, Spurlock KJ, Shanley R, Sarafoglou KM. Impact of pediatric hypophosphatasia on behavioral health and quality of life. Orphanet J Rare Dis 2021; 16:80. [PMID: 33579333 PMCID: PMC7881480 DOI: 10.1186/s13023-021-01722-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Hypophosphatasia (HPP) is a rare genetic disorder caused by loss-of-function mutations in the ALPL gene encoding tissue nonspecific alkaline phosphatase. It is characterized by defective bone mineralization associated with low alkaline phosphatase activity. Clinical features of pediatric HPP are highly variable, and can include premature loss of teeth, musculoskeletal problems, and impaired mobility. The effects of pediatric HPP on sleep, mood, regulation of attention and behavior, and other aspects of behavioral health have not been comprehensively studied. METHODS Parents of 30 children with HPP (14 females, 16 males) between the ages of 3 and 16 years (mean age = 8.0 years) enrolled in this cross-sectional survey-based study. Molecular genetic and biochemical testing as well as clinical records were reviewed to verify diagnosis of HPP. The cohort included 15 patients with a more clinically severe presentation of HPP who had received treatment with enzyme replacement therapy (asfotase alfa) and 15 children with less severe HPP who were treatment-naïve. Parents provided information regarding psychopathological comorbidity, emotional and behavioral well-being, and quality of life. RESULTS Clinically significant behavioral health challenges were evident in 67% of children with HPP. The most common behavioral findings included sleep disturbance and symptoms of attention deficit hyperactivity disorder (ADHD), each of which were observed ≥ 50% of individuals. Sleep disturbance, pain interference, poor behavioral regulation, and mood/anxiety symptoms were associated with reduced physical and psychosocial quality of life. Behavioral concerns were evident among children with HPP receiving asfotase alfa treatment as well as among children with clinically less severe disease who had not initiated therapy. Although most children in the cohort (77%) had age-typical development of adaptive skills, emotional and behavioral challenges were associated with weaker adaptive function. CONCLUSIONS Children with HPP are at increased risk for ADHD symptoms and other behavioral health challenges. There is likely an under-recognition of these findings in clinical practice.
Collapse
Affiliation(s)
- Elizabeth I Pierpont
- Department of Pediatrics, University of Minnesota Medical School, 2450 Riverside Avenue South, RPB 550, Minneapolis, MN, 55454, USA.
| | - Jill H Simmons
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Katherine J Spurlock
- Department of Pediatrics, University of Minnesota Medical School, 2450 Riverside Avenue South, RPB 550, Minneapolis, MN, 55454, USA
| | - Ryan Shanley
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Kyriakie M Sarafoglou
- Department of Pediatrics, University of Minnesota Medical School, 2450 Riverside Avenue South, RPB 550, Minneapolis, MN, 55454, USA.,Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA
| |
Collapse
|
8
|
Durrough C, Colazo JM, Simmons J, Hu JR, Hudson M, Black M, de Riesthal M, Dahir K. Characterization of physical, functional, and cognitive performance in 15 adults with hypophosphatasia. Bone 2021; 142:115695. [PMID: 33069919 DOI: 10.1016/j.bone.2020.115695] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/08/2020] [Accepted: 10/12/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Given the small but growing body of literature related to physical functioning and the scarce data related to fine motor and cognitive functioning in adults with hypophosphatasia (HPP), our objective was to characterize physical, functional, and cognitive performance in adults with HPP. A future objective is to utilize this characterization to develop guidelines for evaluation by physical therapists (PT), occupational therapists (OT), and speech-language pathologists (SLP). METHOD We evaluated physical, functional, and cognitive performance in 15 adults with HPP through standardized assessments of mobility, balance, fine motor control, activities of daily living, cognition, and self-reported measures of health-related quality of life, fatigue, depression, and anxiety. The median age at enrollment was 44 years (range 26-79 years). Among the participants, 11 (73%) were women. Five participants (33%) were on enzyme replacement therapy. RESULTS Compared with the general population, HPP participants traveled shorter distances on the Six-Minute Walk Test (420 m (m) [SD: 132] vs 620 m [SD: 49], p < 0.00005), had slower gait on the 10-Meter Walk Test [HPP men (3.71 ft/s (f/s) [SD: 0.77] vs 4.70 f/s [SD: 0.14], p < 0.00005) and HPP women (3.39 f/s [SD: 0.67] vs 4.56 f/s [SD: 0.09], p < 0.00005)]. HPP participants had decreased upper extremity (UE) dexterity by Nine Hole Peg Test [right UE in HPP men (22.7 s (s) [SD: 2.3] vs 19.0 s [SD: 3.9], p = 0.03), left UE in HPP men (23.3 s [SD: 0.7] vs 19.8 s [SD: 3.7], p = 0.03), right UE in HPP women (19.8 s [SD: 2.0] vs 17.7 s [SD: 3.2], p = 0.01), and left UE in HPP women (21.1 s [SD: 2.5] vs 18.9 s[SD: 3.4], p = 0.02)], and some had abnormally slow bilateral UE reaction times via Dynavision (0.9 s [0.85,0.96], functional speed <1.15 s). On the Short Form-36 (SF36), HPP patients reported worse energy/fatigue (30.4 [SD 22.7] vs 52.2 [SD: 22.4], p = 0.0001), social functioning (54.5 [SD: 34.2] vs 78.8 [SD: 25.5], p = 0.0002), pain (46.1 [SD: 27.3] vs 70.8 [SD: 25.5], p = 0.0001), general health (36.8 [SD: 24.0] vs 57.0 [SD: 21.1], p = 0.0002), and health change i.e. perception of health improvement (32.1 [SD: 15.3] vs 59.1 [SD: 23.1], p < 0.00005) than the general population. Fatigue Severity Scale scores were well above the median for a healthy population (5.21 [SD: 1.8] vs 2.3 [SD: 1.21], p < 0.00005), indicating significant fatigue. HPP participants had significantly higher DASS scores for depression (8.5 [SD: 6.5] vs 5.0 [SD: 7.5], p = 0.02), anxiety (7.9 [SD: 6.7] vs 3.4 [SD: 5.1], p = 0.00009), and stress (14.7 [SD: 12.4] vs 8.1 [SD: 8.4], p = 0.0003) compared to the general population. CONCLUSION Objective functional assessments demonstrated defects in physical functioning, including decreased ability to walk distances, slow gait speed, and diminished ability to repeatedly rise from a sitting position. In addition, participants self-reported significant limitations due to physical dysfunction. Decreased upper extremity dexterity may indicate problems with activities of daily living and delayed reaction times can have safety implications. Some patients with HPP have increased difficulties with depression, anxiety, and stress. PT, OT, and SLP specialists can aid in establishing baseline assessment of impairment and objective metrics for assessing efficacy of treatment.
Collapse
Affiliation(s)
| | - Juan M Colazo
- Medical Scientist Training Program, Vanderbilt University and Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jill Simmons
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jiun-Ruey Hu
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Margaret Hudson
- Vanderbilt Pi Beta Phi Rehabilitation Institute, Nashville, TN, USA
| | - Margo Black
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Kathryn Dahir
- Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
9
|
Bayat A, Knaus A, Pendziwiat M, Afenjar A, Barakat TS, Bosch F, Callewaert B, Calvas P, Ceulemans B, Chassaing N, Depienne C, Endziniene M, Ferreira CR, Moura de Souza CF, Freihuber C, Ganesan S, Gataullina S, Guerrini R, Guerrot A, Hansen L, Jezela‐Stanek A, Karsenty C, Kievit A, Kooy FR, Korff CM, Kragh Hansen J, Larsen M, Layet V, Lesca G, McBride KL, Meuwissen M, Mignot C, Montomoli M, Moore H, Naudion S, Nava C, Nougues M, Parrini E, Pastore M, Schelhaas JH, Skinner S, Szczałuba K, Thomas A, Thomassen M, Tranebjærg L, Slegtenhorst M, Wolfe LA, Lal D, Gardella E, Bomme Ousager L, Brünger T, Helbig I, Krawitz P, Møller RS. Lessons learned from 40 novel
PIGA
patients and a review of the literature. Epilepsia 2020; 61:1142-1155. [DOI: 10.1111/epi.16545] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Allan Bayat
- Institute for Regional Health Services University of Southern Denmark Odense Denmark
- Department of Epilepsy Genetics and Personalized Medicine Danish Epilepsy Center Dianalund Denmark
| | - Alexej Knaus
- Institute for Genomic Statistics and Bioinformatics University Hospital Bonn Rheinische Friedrich‐Wilhelms‐University Bonn Bonn Germany
| | - Manuela Pendziwiat
- Department of Neuropediatrics University Medical Center Schleswig‐Holstein Christian Albrechts University Kiel Germany
| | - Alexandra Afenjar
- CRMR Congenital Malformations and Diseases of the Cerebellum and Rare Causes of Intellectual Disabilities Department of Genetics Sorbonne University, AP‐HP, Trousseau Hospital Paris France
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics Erasmus MC, University Medical Center Rotterdam the Netherlands
| | | | - Bert Callewaert
- Center for Medical Genetics Ghent University Hospital Ghent Belgium
- Department of Biomolecular Medicine Ghent University Ghent Belgium
| | - Patrick Calvas
- UMR1056 INSERM‐Université de Toulouse, Department of Genetics University Hospital of Toulouse Toulouse France
| | - Berten Ceulemans
- Department of Pediatric Neurology University Hospital and University of Antwerp Antwerp Belgium
| | - Nicolas Chassaing
- UMR1056 INSERM‐Université de Toulouse, Department of Genetics University Hospital of Toulouse Toulouse France
| | - Christel Depienne
- Institute of Human Genetics University Hospital Essen University of Duisburg‐Essen Essen Germany
- UMR S1127, Inserm U1127, CNRS UMR 7225 Institute of brain and spinal cord Sorbonne University Paris France
| | - Milda Endziniene
- Neurology Department Medical Academy Lithuanian University of Health Sciences Kaunas Lithuania
| | - Carlos R. Ferreira
- Medical Genomics and Metabolic Genetics Branch National Human Genome Research Institute, National Institutes of Health Bethesda MarylandUSA
| | | | - Cécile Freihuber
- Department of Pediatric Neurology AP‐HP, GHUEP Armand Trousseau University Hospital Paris France
- GRC ConCer‐LD Sorbonne University, UPMC University of Paris 06 Paris France
| | - Shiva Ganesan
- Division of Neurology Children’s Hospital of Philadelphia Philadelphia PennsylvaniaUSA
- Epilepsy NeuroGenetics Initiative Children's Hospital of Philadelphia Philadelphia PennsylvaniaUSA
- Department of Biomedical and Health Informatics Children’s Hospital of Philadelphia Philadelphia PennsylvaniaUSA
| | - Svetlana Gataullina
- Sleep Disorders Center AP‐HP, Antoine‐Béclère Hospital Clamart France
- Department of Pediatrics and Neonatal Intensive Care André Grégoire Hospital Montreuil France
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories Department of Neuroscience, A. Meyer Children's Hospital University of Florence Florence Italy
| | - Anne‐Marie Guerrot
- Department of Genetics and Reference Center for Developmental Disorders Normandy Center for Genomic and Personalized Medicine Normandy University, UNIROUEN Inserm U1245 and Rouen University Hospital Rouen France
| | - Lars Hansen
- Department of Cellular and Molecular Medicine Faculty of Health Science Copenhagen Center for Glycomics Copenhagen Denmark
| | - Aleksandra Jezela‐Stanek
- Department of Genetics and Clinical Immunology National Institute of Tuberculosis and Lung Diseases Warsaw Poland
| | - Caroline Karsenty
- Neuropediatrics Department University Hospital of Toulouse Toulouse France
| | - Anneke Kievit
- Department of Clinical Genetics Erasmus MC, University Medical Center Rotterdam the Netherlands
| | - Frank R. Kooy
- Department of Medical Genetics University of Antwerp Antwerp Belgium
| | - Christian M. Korff
- Pediatric Neurology Unit Department of the Woman, Child, and Adolescent University Hospitals Geneva Geneva Switzerland
| | | | - Martin Larsen
- Department of Clinical Genetics Odense University Hospital Odense Denmark
- Human Genetics Department of Clinical Research University of Southern Denmark Odense Denmark
| | - Valérie Layet
- Department of Genetics Du Havre Hospital Le Havre France
| | - Gaetan Lesca
- Department of Medical Genetics Lyon University Hospital Lyon France
- Institut Neuromyogene University Claude Bernard Lyon 1, Lyon University Lyon France
| | - Kim L. McBride
- Division of Genetic and Genomic Medicine Nationwide Children's Hospital Columbus OhioUSA
- Center for Cardiovascular Research Nationwide Children's Hospital Columbus OhioUSA
- Department of Pediatrics Ohio State University Columbus OhioUSA
| | - Marije Meuwissen
- Department of Medical Genetics University of Antwerp Antwerp Belgium
| | - Cyril Mignot
- APHP Department of Genetics Pitié‐Salpêtrière Hospital Reference Center for Rare Causes of Intellectual Disabilities Paris France
- Department of Genetics Inserm U1127, CNRS UMR 7225 Institute for brain and spinal cord ICM, AP‐HP De la Pitié Salpêtrière Hospital, Sorbonne University Paris France
| | - Martino Montomoli
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories Department of Neuroscience, A. Meyer Children's Hospital University of Florence Florence Italy
| | - Hannah Moore
- Greenwood Genetic Center Greenwood South CarolinaUSA
| | - Sophie Naudion
- Department of Genetics, University of Bordeaux Bordeaux France
| | - Caroline Nava
- Department of Genetics Inserm U1127, CNRS UMR 7225 Institute for brain and spinal cord ICM, AP‐HP De la Pitié Salpêtrière Hospital, Sorbonne University Paris France
| | | | - Elena Parrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories Department of Neuroscience, A. Meyer Children's Hospital University of Florence Florence Italy
| | - Matthew Pastore
- Division of Genetic and Genomic Medicine Nationwide Children's Hospital Columbus OhioUSA
- Department of Pediatrics Ohio State University Columbus OhioUSA
| | | | | | | | - Ashley Thomas
- Department of Neurology University of Alabama at Birmingham Birmingham AlabamaUSA
| | - Mads Thomassen
- Department of Clinical Genetics Odense University Hospital Odense Denmark
- Human Genetics Department of Clinical Research University of Southern Denmark Odense Denmark
| | - Lisbeth Tranebjærg
- Department of Clinical Genetics Rigshospitalet/Kennedy Center Glostrup Denmark
- Institute of Clinical Medicine University of Copenhagen Copenhagen Denmark
| | - Marjon Slegtenhorst
- Department of Clinical Genetics Erasmus MC, University Medical Center Rotterdam the Netherlands
| | - Lynne A. Wolfe
- Undiagnosed Diseases Program, Common Fund National Institutes of Health Bethesda MarylandUSA
- Section of Human Biochemical Genetics National Human Genome Research Institute Bethesda MarylandUSA
| | - Dennis Lal
- Cologne Center for Genomics University Hospital Cologne, University of Cologne Cologne Germany
- Stanley Center for Psychiatric Research Broad Institute of Massachusetts Institute of Technology and Harvard Cambridge MassachusettsUSA
- Analytic and Translational Genetics Unit Massachusetts General Hospital Boston MassachusettsUSA
- Epilepsy Center Neurological Institute Cleveland Clinic Cleveland OhioUSA
- Genomic Medicine Institute Lerner Research Institute Cleveland Clinic Cleveland OhioUSA
| | - Elena Gardella
- Institute for Regional Health Services University of Southern Denmark Odense Denmark
- Department of Epilepsy Genetics and Personalized Medicine Danish Epilepsy Center Dianalund Denmark
- Department of Clinical Neurophysiology Danish Epilepsy Center Dianalund Denmark
| | - Lilian Bomme Ousager
- Department of Clinical Genetics Odense University Hospital Odense Denmark
- Human Genetics Department of Clinical Research University of Southern Denmark Odense Denmark
| | - Tobias Brünger
- Cologne Center for Genomics University Hospital Cologne, University of Cologne Cologne Germany
| | - Ingo Helbig
- Department of Neuropediatrics University Medical Center Schleswig‐Holstein Christian Albrechts University Kiel Germany
- Division of Neurology Children’s Hospital of Philadelphia Philadelphia PennsylvaniaUSA
- Epilepsy NeuroGenetics Initiative Children's Hospital of Philadelphia Philadelphia PennsylvaniaUSA
- Department of Biomedical and Health Informatics Children’s Hospital of Philadelphia Philadelphia PennsylvaniaUSA
- Department of Neurology University of Pennsylvania, Perelman School of Medicine Philadelphia PennsylvaniaUSA
| | - Peter Krawitz
- Institute for Genomic Statistics and Bioinformatics University Hospital Bonn Rheinische Friedrich‐Wilhelms‐University Bonn Bonn Germany
| | - Rikke S. Møller
- Institute for Regional Health Services University of Southern Denmark Odense Denmark
- Department of Epilepsy Genetics and Personalized Medicine Danish Epilepsy Center Dianalund Denmark
| |
Collapse
|
10
|
Michigami T, Ohata Y, Fujiwara M, Mochizuki H, Adachi M, Kitaoka T, Kubota T, Sawai H, Namba N, Hasegawa K, Fujiwara I, Ozono K. Clinical Practice Guidelines for Hypophosphatasia. Clin Pediatr Endocrinol 2020; 29:9-24. [PMID: 32029969 PMCID: PMC6958520 DOI: 10.1297/cpe.29.9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/16/2019] [Indexed: 12/17/2022] Open
Abstract
Hypophosphatasia (HPP) is a rare bone disease caused by inactivating mutations in the
ALPL gene, which encodes tissue-nonspecific alkaline phosphatase
(TNSALP). Patients with HPP have varied clinical manifestations and are classified based
on the age of onset and severity. Recently, enzyme replacement therapy using bone-targeted
recombinant alkaline phosphatase (ALP) has been developed, leading to improvement in the
prognosis of patients with life-threatening HPP. Considering these recent advances,
clinical practice guidelines have been generated to provide physicians with guides for
standard medical care for HPP and to support their clinical decisions. A task force was
convened for this purpose, and twenty-one clinical questions (CQs) were formulated,
addressing the issues of clinical manifestations and diagnosis (7 CQs) and those of
management and treatment (14 CQs). A systematic literature search was conducted using
PubMed/MEDLINE, and evidence-based recommendations were developed. The guidelines have
been modified according to the evaluations and suggestions from the Clinical Guideline
Committee of The Japanese Society for Pediatric Endocrinology (JSPE) and public comments
obtained from the members of the JSPE and a Japanese HPP patient group, and then approved
by the Board of Councils of the JSPE. We anticipate that the guidelines will be revised
regularly and updated.
Collapse
Affiliation(s)
- Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Osaka, Japan.,Task Force for Hypophosphatasia Guidelines
| | - Yasuhisa Ohata
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.,Task Force for Hypophosphatasia Guidelines
| | - Makoto Fujiwara
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.,Task Force for Hypophosphatasia Guidelines
| | - Hiroshi Mochizuki
- Division of Endocrinology and Metabolism, Saitama Children's Medical Center, Saitama, Japan.,Task Force for Hypophosphatasia Guidelines
| | - Masanori Adachi
- Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, Kanagawa, Japan.,Task Force for Hypophosphatasia Guidelines
| | - Taichi Kitaoka
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.,Task Force for Hypophosphatasia Guidelines
| | - Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.,Task Force for Hypophosphatasia Guidelines
| | - Hideaki Sawai
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, Hyogo, Japan.,Task Force for Hypophosphatasia Guidelines
| | - Noriyuki Namba
- Division of Pediatrics and Perinatology, Tottori University Faculty of Medicine, Tottori, Japan.,Task Force for Hypophosphatasia Guidelines
| | - Kosei Hasegawa
- Department of Pediatrics, Okayama University Hospital, Okayama, Japan.,Task Force for Hypophosphatasia Guidelines
| | - Ikuma Fujiwara
- Department of Pediatrics, Sendai City Hospital, Miyagi, Japan.,Task Force for Hypophosphatasia Guidelines
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.,Task Force for Hypophosphatasia Guidelines
| |
Collapse
|
11
|
Ishiguro T, Sugiyama Y, Ueda K, Muramatsu Y, Tsuda H, Kotani T, Michigami T, Tachikawa K, Akiyama T, Hayakawa M. Findings of amplitude-integrated electroencephalogram recordings and serum vitamin B6 metabolites in perinatal lethal hypophosphatasia during enzyme replacement therapy. Brain Dev 2019; 41:721-725. [PMID: 31000369 DOI: 10.1016/j.braindev.2019.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/17/2019] [Accepted: 03/29/2019] [Indexed: 11/24/2022]
Abstract
Hypophosphatasia (HPP) is a rare disorder caused by low serum tissue non-specific alkaline phosphatase (ALP) activity due to hypomorphic mutations in the ALPL gene. HPP is characterized by defective bone mineralization. It frequently accompanies pyridoxine-responsive seizures. Because alkaline phosphatase change pyridoxal 5' phosphate (PLP) into pyridoxal (PL), which can cross the blood brain barrier and regulates inhibitory neurotransmitter gamma-aminobutyric acid. The female patient was born at a gestational age of 37 weeks 2 days. She presented severe respiratory disorder due to extreme thoracic hypoplasia. With the extremely low serum ALP value (14 IU/L), she was clinically diagnosed as HPP. The diagnosis was confirmed with genetic testing. On day1, the subclinical seizures were detected by aEEG. Together with enzyme replacement therapy by asfotase alfa, pyridoxine hydrochloride was administered, then the seizures were rapidly controlled. While confirming that there was no seizure by aEEG monitoring, pyridoxine hydrochloride was gradually discontinued after 1 month. Before administration of pyridoxine hydrochloride, PL was extremely low (4.7 nM) and PLP was increased (1083 nM). After the withdrawal, PL was increased to 84.9 nM only by enzyme replacement. Monitoring with aEEG enabled early intervention for pyridoxine responsive seizures. Confirming increased serum PL concentration is a prudent step in determining when to reduce or discontinue pyridoxine hydrochloride during enzyme replacement therapy.
Collapse
Affiliation(s)
- Tomonori Ishiguro
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichiro Sugiyama
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan; Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan.
| | - Kazuto Ueda
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Yukako Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Tsuda
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomomi Kotani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshimi Michigami
- Department of Bone and Mineral Research, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Kanako Tachikawa
- Department of Bone and Mineral Research, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Tomoyuki Akiyama
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiro Hayakawa
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
12
|
Colazo JM, Hu JR, Dahir KM, Simmons JH. Neurological symptoms in Hypophosphatasia. Osteoporos Int 2019; 30:469-480. [PMID: 30215116 DOI: 10.1007/s00198-018-4691-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/26/2018] [Indexed: 12/27/2022]
Abstract
UNLABELLED Hypophosphatasia (HPP) typically manifests with fractures, tooth loss, and muscle pain. Although mental health diagnoses and neurological symptoms have not been previously well documented in HPP, they occur commonly. The recognition of non-traditional symptoms may improve patient satisfaction, preempt costly evaluation and misdiagnosis, and lead to further treatment options. INTRODUCTION Hypophosphatasia (HPP) is an inborn error of metabolism due to deficiency of tissue non-specific alkaline phosphatase (TNSALP). It is traditionally characterized by rickets in children and osteomalacia in adults, along with fractures, tooth loss, and muscle pain. Neurological symptoms and mental health diagnoses have not been widely reported, and we therefore report their prevalence in a cohort of patients with HPP. METHODS A retrospective chart review was performed on a series of 82 HPP patients. Patient charts were reviewed to identify the possible presence and onset of 13 common neurological symptoms. RESULTS Median age was 36 years (2 to 79). Seventeen had adult onset HPP (> 18 years) and 65 had pediatric onset HPP (< 18 years). Median time from symptom onset to HPP diagnosis was 8 years (0 to 67). Seventy-four percent had a family history of bone disease, while 17% had a family history of neurologic disease. Bone problems occurred in 89%, dental problems in 77%, and muscle problems in 66%. Fatigue occurred in 66%, headache in 61%, sleep disturbance in 51%, gait change in 44%, vertigo in 43%, depression in 39%, anxiety in 35%, neuropathy in 35%, and hearing loss in 33%. CONCLUSIONS The extra-skeletal manifestations of HPP, specifically neurological symptoms, have not been previously well documented. However, mental health diagnoses and neurological symptoms such as headache and sleep disturbance occur commonly in patients with HPP. The recognition of non-traditional symptoms in HPP may improve patient satisfaction, preempt costly evaluation and misdiagnosis, and may lead to further treatment options.
Collapse
Affiliation(s)
- J M Colazo
- Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - J R Hu
- Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - K M Dahir
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - J H Simmons
- Department of Pediatrics, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
13
|
A homozygous missense variant in the alkaline phosphatase gene ALPL is associated with a severe form of canine hypophosphatasia. Sci Rep 2019; 9:973. [PMID: 30700765 PMCID: PMC6353930 DOI: 10.1038/s41598-018-37801-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/13/2018] [Indexed: 12/25/2022] Open
Abstract
Inherited skeletal disorders affect both humans and animals. In the current study, we have performed series of clinical, pathological and genetic examinations to characterize a previously unreported skeletal disease in the Karelian Bear Dog (KBD) breed. The disease was recognized in seven KBD puppies with a variable presentation of skeletal hypomineralization, growth retardation, seizures and movement difficulties. Exome sequencing of one affected dog revealed a homozygous missense variant (c.1301T > G; p.V434G) in the tissue non-specific alkaline phosphatase gene, ALPL. The identified recessive variant showed full segregation with the disease in a cohort of 509 KBDs with a carrier frequency of 0.17 and was absent from 303 dogs from control breeds. In humans, recessive and dominant ALPL mutations cause hypophosphatasia (HPP), a metabolic bone disease with highly heterogeneous clinical manifestations, ranging from lethal perinatal hypomineralization to a relatively mild dental disease. Our study reports the first naturally occurring HPP in animals, resembling the human infantile form. The canine HPP model may serve as a preclinical model while a genetic test will assist in breeding programs.
Collapse
|
14
|
Okawa R, Miura J, Kokomoto K, Nakano K. Evaluation of avulsed primary incisor in 3-year-old girl with hypophosphatasia who received enzyme replacement therapy. PEDIATRIC DENTAL JOURNAL 2018. [DOI: 10.1016/j.pdj.2018.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Kishnani PS, Rush ET, Arundel P, Bishop N, Dahir K, Fraser W, Harmatz P, Linglart A, Munns CF, Nunes ME, Saal HM, Seefried L, Ozono K. Monitoring guidance for patients with hypophosphatasia treated with asfotase alfa. Mol Genet Metab 2017; 122:4-17. [PMID: 28888853 DOI: 10.1016/j.ymgme.2017.07.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 11/15/2022]
Abstract
Hypophosphatasia (HPP) is a rare, inherited, systemic, metabolic disorder caused by autosomal recessive mutations or a single dominant-negative mutation in the gene encoding tissue-nonspecific alkaline phosphatase (TNSALP). The disease is associated with a broad range of signs, symptoms, and complications, including impaired skeletal mineralization, altered calcium and phosphate metabolism, recurrent fractures, pain, respiratory problems, impaired growth and mobility, premature tooth loss, developmental delay, and seizures. Asfotase alfa is a human, recombinant enzyme replacement therapy that is approved in many countries for the treatment of patients with HPP. To address the unmet need for guidance in the monitoring of patients receiving asfotase alfa, an international panel of physicians with experience in diagnosing and managing HPP convened in May 2016 to discuss treatment monitoring parameters. The panel discussions focused on recommendations for assessing and monitoring patients after the decision to treat with asfotase alfa had been made and did not include recommendations for whom to treat. Based on the consensus of panel members, this review provides guidance on the monitoring of patients with HPP during treatment with asfotase alfa, including recommendations for laboratory, efficacy, and safety assessments and the frequency with which these should be performed during the course of treatment. Recommended assessments are based on patient age and include regular monitoring of biochemistry, skeletal radiographs, respiratory function, growth, pain, mobility and motor function, and quality of life. Because of the systemic presentation of HPP, a coordinated, multidisciplinary, team-based, patient-focused approach is recommended in the management of patients receiving asfotase alfa. Monitoring of efficacy and safety outcomes must be tailored to the individual patient, depending on medical history, clinical manifestations, availability of resources in the clinical setting, and the clinician's professional judgment.
Collapse
Affiliation(s)
- Priya S Kishnani
- Division of Medical Genetics, Duke University Medical Center, Durham, NC 27710, USA.
| | - Eric T Rush
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA(2)
| | - Paul Arundel
- Metabolic Bone Team, Sheffield Children's NHS Foundation Trust, Sheffield S10 2TH, UK
| | - Nick Bishop
- Academic Unit of Child Health, University of Sheffield and Sheffield Children's Hospital, Sheffield S10 2TH, UK
| | - Kathryn Dahir
- Division of Diabetes and Endocrinology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - William Fraser
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7UY, UK
| | - Paul Harmatz
- Pediatric Gastroenterology and Nutrition, UCSF Benioff Children's Hospital Oakland, Oakland, CA 94609, USA
| | - Agnès Linglart
- Service d'Endocrinologie Pédiatrique, Hôpital Bicêtre Paris-Sud, APHP, 94270 Le Kremlin Bicêtre, France
| | - Craig F Munns
- Paediatrics & Child Health, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Mark E Nunes
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| | - Howard M Saal
- Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Lothar Seefried
- Orthopedic Department, University of Würzburg, Würzburg, Bavaria 97074, Germany
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
16
|
Cruz T, Gleizes M, Balayssac S, Mornet E, Marsal G, Millán JL, Malet-Martino M, Nowak LG, Gilard V, Fonta C. Identification of altered brain metabolites associated with TNAP activity in a mouse model of hypophosphatasia using untargeted NMR-based metabolomics analysis. J Neurochem 2017; 140:919-940. [PMID: 28072448 DOI: 10.1111/jnc.13950] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/18/2016] [Accepted: 01/04/2017] [Indexed: 12/20/2022]
Abstract
Tissue non-specific alkaline phosphatase (TNAP) is a key player of bone mineralization and TNAP gene (ALPL) mutations in human are responsible for hypophosphatasia (HPP), a rare heritable disease affecting the mineralization of bones and teeth. Moreover, TNAP is also expressed by brain cells and the severe forms of HPP are associated with neurological disorders, including epilepsy and brain morphological anomalies. However, TNAP's role in the nervous system remains poorly understood. To investigate its neuronal functions, we aimed to identify without any a priori the metabolites regulated by TNAP in the nervous tissue. For this purpose we used 1 H- and 31 P NMR to analyze the brain metabolome of Alpl (Akp2) mice null for TNAP function, a well-described model of infantile HPP. Among 39 metabolites identified in brain extracts of 1-week-old animals, eight displayed significantly different concentration in Akp2-/- compared to Akp2+/+ and Akp2+/- mice: cystathionine, adenosine, GABA, methionine, histidine, 3-methylhistidine, N-acetylaspartate (NAA), and N-acetyl-aspartyl-glutamate, with cystathionine and adenosine levels displaying the strongest alteration. These metabolites identify several biochemical processes that directly or indirectly involve TNAP function, in particular through the regulation of ecto-nucleotide levels and of pyridoxal phosphate-dependent enzymes. Some of these metabolites are involved in neurotransmission (GABA, adenosine), in myelin synthesis (NAA, NAAG), and in the methionine cycle and transsulfuration pathway (cystathionine, methionine). Their disturbances may contribute to the neurodevelopmental and neurological phenotype of HPP.
Collapse
Affiliation(s)
- Thomas Cruz
- Groupe de RMN Biomédicale, Laboratoire SPCMIB (CNRS UMR 5068), Université Paul Sabatier, Université de Toulouse, Toulouse Cedex, France
| | - Marie Gleizes
- Centre de Recherche Cerveau et Cognition (CerCo), Université de Toulouse UPS; CNRS UMR 5549, Toulouse, France
| | - Stéphane Balayssac
- Groupe de RMN Biomédicale, Laboratoire SPCMIB (CNRS UMR 5068), Université Paul Sabatier, Université de Toulouse, Toulouse Cedex, France
| | - Etienne Mornet
- Unité de Génétique Constitutionnelle Prénatale et Postnatale, Service de Biologie, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Grégory Marsal
- Centre de Recherche Cerveau et Cognition (CerCo), Université de Toulouse UPS; CNRS UMR 5549, Toulouse, France
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Myriam Malet-Martino
- Groupe de RMN Biomédicale, Laboratoire SPCMIB (CNRS UMR 5068), Université Paul Sabatier, Université de Toulouse, Toulouse Cedex, France
| | - Lionel G Nowak
- Centre de Recherche Cerveau et Cognition (CerCo), Université de Toulouse UPS; CNRS UMR 5549, Toulouse, France
| | - Véronique Gilard
- Groupe de RMN Biomédicale, Laboratoire SPCMIB (CNRS UMR 5068), Université Paul Sabatier, Université de Toulouse, Toulouse Cedex, France
| | - Caroline Fonta
- Centre de Recherche Cerveau et Cognition (CerCo), Université de Toulouse UPS; CNRS UMR 5549, Toulouse, France
| |
Collapse
|
17
|
Baujat G, Michot C, Le Quan Sang K, Cormier-Daire V. Perinatal and infantile hypophosphatasia: clinical features and treatment. Arch Pediatr 2017; 24:5S61-5S65. [DOI: 10.1016/s0929-693x(18)30016-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|