1
|
Zhang X, Zhang X, Liu T, Sha K. Comprehensive analysis of the prognostic and immunological signature of TNFAIP8 family genes in human glioma. Sci Rep 2024; 14:17875. [PMID: 39090168 PMCID: PMC11294591 DOI: 10.1038/s41598-024-68784-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
TNFAIP8 family molecules have been recognized for their involvement in the progression of tumors across a range of cancer types. Emerging experimental data suggests a role for certain TNFAIP8 family molecules in the development of glioma. Nonetheless, the comprehensive understanding of the genomic alterations, prognostic significance, and immunological profiles of TNFAIP8 family molecules in glioma remains incomplete. In the study, using the comprehensive bioinformatics tools, we explored the unique functions of 4 TNFAIP8 members including TNFAIP8, TNFAIP8L1, TNFAIP8L2 and TNFAIP8L3 in glioma. The expressions of TNFAIP8, TNFAIP8L1, TNFAIP8L2, and TNFAIP8L3 were notably upregulated in glioma tissues compared to normal tissues. Furthermore, survival analysis indicated that elevated expression levels of TNFAIP8, TNFAIP8L1 and TNFAIP8L2 were correlated with unfavorable outcomes in terms of overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) among glioma patients. Genetic modifications, such as mutations and copy number alterations, within the TNFAIP8 family exhibited a significant association with extended OS, DSS and PFS in individuals diagnosed with glioma. The findings suggest a noteworthy correlation between TNFAIP8 family members and the age and 1p/19q codeletion status of glioma patients. We also found that there were significant relationships between TNFAIP8 family expression and tumor immunity in glioma. Furthermore, functional annotation of TNFAIP8 family members and their co-expressed genes in gliomas was carried out using GO and KEGG pathway analysis. The GO analysis revealed that the primary biological processes influenced by the TNFAIP8 family co-expressed genes included cell chemotaxis, temperature homeostasis, and endocytic vesicle formation. Additionally, the KEGG analysis demonstrated that TNFAIP8 family co-expressed genes are involved in regulating various pathways such as inflammatory mediator regulation of TRP channels, pathways in cancer, prolactin signaling pathway, and Fc gamma R-mediated phagocytosis. Overall, the findings suggest that TNFAIP8 family members may play a significant role in the development of glioma and have the potential to serve as prognostic indicators and therapeutic targets for individuals with glioma.
Collapse
Affiliation(s)
- Xuezhong Zhang
- Department of Laboratory Medicine, Zibo Central Hospital, Zibo, Shandong, China
| | - Xuebin Zhang
- Department of Anorectal Surgery, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, China
| | - Tonggang Liu
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China.
| | - Kaihui Sha
- Binzhou Medical University School of Nursing, Binzhou, 256603, Shandong, China.
| |
Collapse
|
2
|
Wu S, Tu Q, Yuan H, Wu Z, Yang Y, Chen C, Huang C. Comprehensive Analysis for Predicting Prognoses and Immune Responses of m6A-Related lncRNAs in Women with Lung Adenocarcinoma. Biochem Genet 2024; 62:2702-2720. [PMID: 37999876 DOI: 10.1007/s10528-023-10572-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
During the past decade, the average 5-year survival rate of patients with Lung adenocarcinoma (LUAD) has remained < 20%, although the targeted therapies and novel immunotherapy approaches have held promise. Epigenetic modifications could provide prognostic value as molecular biomarkers, and we aimed to identify the independent risk of m6A-related lncRNAs to establish a risk model for the clinical prediction of prognoses in women with LUAD. In this study, we first assessed 31 N6-methyladenosine (m6A)-related lncRNAs associated with overall survival. Moreover, we evaluated the expression of the oncogenic driver and the tumor immune microenvironment (TIME) in two female LUAD subtypes (clusters 1 and 2) using consensus clustering. We also found 16 m6A-related lncRNAs as the independent prognostic indicator of women with LUAD and established a risk model developed from these lncRNAs. We comprehensively investigated the correlation between the TIME and m6A-related lncRNA and found that m6A-related lncRNA may significantly affect the immune cell infiltration level in LUAD. In conclusion, our study provides evidence on the prognostic prediction in women with LUAD and may help elucidate the processes and mechanisms of m6A-regulated lncRNAs.
Collapse
Affiliation(s)
- Sijie Wu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, #139 Renmin Road, Changsha, 410011, Hunan, China
| | - Qinxian Tu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, #139 Renmin Road, Changsha, 410011, Hunan, China
| | - Haoyong Yuan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, #139 Renmin Road, Changsha, 410011, Hunan, China
- Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, 410008, Hunan, China
| | - Zhongshi Wu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, #139 Renmin Road, Changsha, 410011, Hunan, China
- Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, 410008, Hunan, China
| | - Yifeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, #139 Renmin Road, Changsha, 410011, Hunan, China
| | - Chunyang Chen
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, #139 Renmin Road, Changsha, 410011, Hunan, China
- Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, 410008, Hunan, China
| | - Can Huang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, #139 Renmin Road, Changsha, 410011, Hunan, China.
- Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, 410008, Hunan, China.
| |
Collapse
|
3
|
Xie Y, Xiao J, Ying Y, Liu J, Zhang L, Zeng X. Bioinformatic identification reveals a m6A-binding protein, IGF2BP2, as a novel tumor-promoting gene signature in thyroid carcinoma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5663-5676. [PMID: 38289368 DOI: 10.1007/s00210-024-02961-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/15/2024] [Indexed: 08/18/2024]
Abstract
N6-methyladenosine (m6A) modification plays a crucial role in thyroid carcinoma (THCA). Insulin-like growth factor 2 binding protein 2 (IGF2BP2) is a m6A-binding protein. We aimed to explore the effect of IGF2BP2 on the development of THCA. Differentially expressed genes (DEGs) were screened from GSE50901 and GSE60542 datasets. LinkedOmics, Genebank, and Sequence-based RNA Adenosine Methylation Site Predictor databases were employed to find potential m6A modification sites. Protein-protein interaction network and receiver-operating characteristic curves were applied to determine hub genes of THCA. ESTIMATE revealed the effect of IGF2BP2 on tumor immunity. The mRNA expression of IGF2BP2 was detected using real-time quantitative polymerase chain reaction. The viability, migration, and invasion were assessed by Cell Counting Kit-8, wound healing, and transwell assays. A total of 166 common DEGs were identified from GSE50901 and GSE60542 datasets. One m6A-related gene, IGF2BP2, was differentially expressed in THCA and selected as the research target. The hub genes (CD44, DCN, CXCL12, ICAM1, SDC4, KIT, CTGF, and FMOD) were identified with high prediction values for THCA. Subsequently, the target genes of IGF2BP2, SDC4, and ICAM1, which had potential m6A modification sites, were screened out based on the hub genes. IGF2BP2 was upregulated in THCA and IGF2BP2 expression was positively correlated with immune infiltration in THCA. Additionally, knockdown of IGF2BP2 inhibited the proliferation, invasion, and migration of THCA cells. IGF2BP2 has a contributory effect on the progression of THCA, which is a novel biomarker and a therapeutic target for THCA.
Collapse
Affiliation(s)
- Yang Xie
- Suzhou Medical College of Soochow University, Suzhou, China
- Department of Thyroid and Hernia Surgery, The First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou, 341000, Jiangxi Province, China
- Institute of Thyroid Diseases, Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Thyroid Tumor, Ganzhou, China
| | - Junqi Xiao
- Department of Vascular Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yong Ying
- Department of Thyroid and Hernia Surgery, The First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou, 341000, Jiangxi Province, China
| | - Jiafeng Liu
- Department of Thyroid and Hernia Surgery, The First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou, 341000, Jiangxi Province, China
| | - Leiying Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiangtai Zeng
- Suzhou Medical College of Soochow University, Suzhou, China.
- Department of Thyroid and Hernia Surgery, The First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou, 341000, Jiangxi Province, China.
- Institute of Thyroid Diseases, Gannan Medical University, Ganzhou, China.
- Ganzhou Key Laboratory of Thyroid Tumor, Ganzhou, China.
| |
Collapse
|
4
|
Zhao Y, Qin D, Li X, Wang T, Zhang T, Rao X, Min L, Wan Z, Luo C, Xiao M. Identification of NINJ1 as a novel prognostic predictor for retroperitoneal liposarcoma. Discov Oncol 2024; 15:155. [PMID: 38733554 PMCID: PMC11088571 DOI: 10.1007/s12672-024-01016-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Retroperitoneal liposarcoma (RPLS) is known for its propensity for local recurrence and short survival time. We aimed to identify a credible and specific prognostic biomarker for RPLS. METHODS Cases from The Cancer Genome Atlas (TCGA) sarcoma dataset were included as the training group. Co-expression modules were constructed using weighted gene co-expression network analysis (WGCNA) to explore associations between modules and survival. Survival analysis of hub genes was performed using the Kaplan-Meier method. In addition, independent external validation was performed on a cohort of 135 Chinese RPLS patients from the REtroperitoneal SArcoma Registry (RESAR) study (NCT03838718). RESULTS A total of 19 co-expression modules were constructed based on the expression levels of 26,497 RNAs in the TCGA cohort. Among these modules, the green module exhibited a positive correlation with overall survival (OS, p = 0.10) and disease-free survival (DFS, p = 0.06). Gene set enrichment analysis showed that the green module was associated with endocytosis and soft-tissue sarcomas. Survival analysis demonstrated that NINJ1, a hub gene within the green module, was positively associated with OS (p = 0.019) in the TCGA cohort. Moreover, in the validation cohort, patients with higher NINJ1 expression levels displayed a higher probability of survival for both OS (p = 0.023) and DFS (p = 0.012). Multivariable Cox analysis further confirmed the independent prognostic significance of NINJ1. CONCLUSIONS We here provide a foundation for the establishment of a consensus prognostic biomarker for RPLS, which should not only facilitate medical treatment but also guide the development of novel targeted drugs.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Da Qin
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Xiangji Li
- Department of Retroperitoneal Tumor Surgery, International Hospital, Peking University, Beijing, China
| | - Tiange Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Tong Zhang
- Department of Pathology, International Hospital, Peking University, Beijing, China
| | - Xiaosong Rao
- Department of Pathology, International Hospital, Peking University, Beijing, China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Zhiyi Wan
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chenghua Luo
- Department of Retroperitoneal Tumor Surgery, Peking University People's Hospital, Beijing, China.
| | - Mengmeng Xiao
- Department of Retroperitoneal Tumor Surgery, International Hospital, Peking University, Beijing, China.
| |
Collapse
|
5
|
Liu H, Ma H, Li Y, Zhao H. Advances in epigenetic modifications and cervical cancer research. Biochim Biophys Acta Rev Cancer 2023; 1878:188894. [PMID: 37011697 DOI: 10.1016/j.bbcan.2023.188894] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
Cervical cancer (CC) is an important public health problem for women, and perspectives and information regarding its prevention and treatment are quickly evolving. Human papilloma virus (HPV) has been recognized as a major contributor to CC development; however, HPV infection is not the only cause of CC. Epigenetics refers to changes in gene expression levels caused by non-gene sequence changes. Growing evidence suggests that the disruption of gene expression patterns which were governed by epigenetic modifications can result in cancer, autoimmune diseases, and various other maladies. This article mainly reviews the current research status of epigenetic modifications in CC based on four aspects, respectively DNA methylation, histone modification, noncoding RNA regulation and chromatin regulation, and we also discuss their functions and molecular mechanisms in the occurrence and progression of CC. This review provides new ideas for early screening, risk assessment, molecular targeted therapy and prognostic prediction of CC.
Collapse
|
6
|
Recent advances in nuclear receptor-binding SET domain 2 (NSD2) inhibitors: An update and perspectives. Eur J Med Chem 2023; 250:115232. [PMID: 36863225 DOI: 10.1016/j.ejmech.2023.115232] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
Nuclear receptor-binding SET domain 2 (NSD2) is a histone lysine methyltransferase (HKMTase), which is mainly responsible for the di-methylation of lysine residues on histones, which are involved in the regulation of various biological pathways. The amplification, mutation, translocation, or overexpression of NSD2 can be linked to various diseases. NSD2 has been identified as a promising drug target for cancer therapy. However, relatively few inhibitors have been discovered and this field still needs further exploration. This review provides a detailed summary of the biological studies related to NSD2 and the current progress of inhibitors, research, and describes the challenges in the development of NSD2 inhibitors, including SET (su(var), enhancer-of-zeste, trithorax) domain inhibitors and PWWP1 (proline-tryptophan-tryptophan-proline 1) domain inhibitors. Through analysis and discussion of the NSD2-related crystal complexes and the biological evaluation of related small molecules, we hope to provide insights for future drug design and optimization methods that will stimulate the development of novel NSD2 inhibitors.
Collapse
|
7
|
Wu H, Xu H, Huang S, Tang Y, Tang J, Zhou H, Xie L, Qiao G. m 6A-binding protein IGF2BP1 promotes the malignant phenotypes of lung adenocarcinoma. Front Oncol 2022; 12:989817. [PMID: 36249006 PMCID: PMC9554348 DOI: 10.3389/fonc.2022.989817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/06/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD), the most common type of lung cancer, poses a significant threat to the life of patients. N6-methyladenosine modification is the most abundant epigenetic modification and may play an important role in the lung carcinogenesis. IGF2BP1 is a newly discovered m6A-binding protein, but little is known about its role in LUAD. METHODS Data from TCGA, GEO, Kaplan-Meier Plotter, and GEPIA databases were systematically analyzed to access the expression and prognostic value of IGF2BP1 on LUAD. Real-time polymerase chain reaction, Western blot, and immunohistochemistry were performed to detect the mRNA and protein level of IGF2BP1 in LUAD tissues and para-carcinoma tissues. Functional cell experiments, including Cell Counting Kit-8 assay, Transwell invasion assay, wound healing assay, Annexin V-FITC/PI double-staining assay, and TUNEL assay, were used to investigate the functions of IGF2BP1 on LUAD cell proliferation, invasion, migration, and apoptosis, respectively. The top 50 genes that were positively or negatively related to the expression of IGF2BP1 were identified, and pathway enrichment analysis was performed. m6A modification sites within IGF2BP1-related genes were predicted by SRAMP. RESULT 16 m6A regulators were significantly differentially expressed in LUAD tissues. IGF2BP1 was upregulated in LUAD tissues compared with para-carcinoma tissues. High expression of IGF2PB1 was significantly associated with higher clinical stages and poor prognosis of LUAD patients. Furthermore, our functional experiments indicated that IGF2BP1 facilitated cell proliferation, invasion, and migration and suppressed apoptosis in LUAD. Functional enrichment analysis of IGF2BP1-related genes indicated enrichment in several pathways related to oncogenesis. Additionally, m6A modification sites were detected within IGF2BP1-related genes. CONCLUSIONS Our findings demonstrate that IGF2BP1 plays a contributory role in the development and progression of LUAD. IGF2BP1 has the potential to become a prognostic predictor and therapeutic target for LUAD.
Collapse
Affiliation(s)
- Hansheng Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haijie Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Shujie Huang
- Shantou University Medical College, Shantou, China
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yong Tang
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiming Tang
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Haiyu Zhou
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Liang Xie
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guibin Qiao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
8
|
Xiao W, Zhou Q, Wen X, Wang R, Liu R, Wang T, Shi J, Hu Y, Hou J. Small-Molecule Inhibitors Overcome Epigenetic Reprogramming for Cancer Therapy. Front Pharmacol 2021; 12:702360. [PMID: 34603017 PMCID: PMC8484527 DOI: 10.3389/fphar.2021.702360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer treatment is a significant challenge for the global health system, although various pharmacological and therapeutic discoveries have been made. It has been widely established that cancer is associated with epigenetic modification, which is reversible and becomes an attractive target for drug development. Adding chemical groups to the DNA backbone and modifying histone proteins impart distinct characteristics on chromatin architecture. This process is mediated by various enzymes modifying chromatin structures to achieve the diversity of epigenetic space and the intricacy in gene expression files. After decades of effort, epigenetic modification has represented the hallmarks of different cancer types, and the enzymes involved in this process have provided novel targets for antitumor therapy development. Epigenetic drugs show significant effects on both preclinical and clinical studies in which the target development and research offer a promising direction for cancer therapy. Here, we summarize the different types of epigenetic enzymes which target corresponding protein domains, emphasize DNA methylation, histone modifications, and microRNA-mediated cooperation with epigenetic modification, and highlight recent achievements in developing targets for epigenetic inhibitor therapy. This article reviews current anticancer small-molecule inhibitors targeting epigenetic modified enzymes and displays their performances in different stages of clinical trials. Future studies are further needed to address their off-target effects and cytotoxicity to improve their clinical translation.
Collapse
Affiliation(s)
- Wenjing Xiao
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China.,Department of Pharmacy, The General Hospital of Western Theater Command of PLA, Chengdu, China
| | - Qiaodan Zhou
- Department of Ultrasonic, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xudong Wen
- Department of Gastroenterology and Hepatology, Chengdu First People's Hospital, Chengdu, China
| | - Rui Wang
- Information Department of Medical Security Center, The General Hospital of Western Theater Command of PLA, Chengdu, China
| | - Ruijie Liu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Tingting Wang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yonghe Hu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China.,Department of Pharmacy, The General Hospital of Western Theater Command of PLA, Chengdu, China
| | - Jun Hou
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China.,Department of Pharmacy, The General Hospital of Western Theater Command of PLA, Chengdu, China
| |
Collapse
|
9
|
Güzel C, van Sten-Van't Hoff J, de Kok IMCM, Govorukhina NI, Boychenko A, Luider TM, Bischoff R. Molecular markers for cervical cancer screening. Expert Rev Proteomics 2021; 18:675-691. [PMID: 34551656 DOI: 10.1080/14789450.2021.1980387] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Cervical cancer remains a significant healthcare problem, notably in low- to middle-income countries. While a negative test for hrHPV has a predictive value of more than 99.5%, its positive predictive value is less than 10% for CIN2+ stages. This makes the use of a so-called triage test indispensable for population-based screening to avoid referring women, that are ultimately at low risk of developing cervical cancer, to a gynecologist. This review will give an overview of tests that are based on epigenetic marker panels and protein markers. AREAS COVERED There is a medical need for molecular markers with a better predictive value to discriminate hrHPV-positive women that are at risk of developing cervical cancer from those that are not. Areas covered are epigenetic and protein markers as well as health economic considerations in view of the fact that most cases of cervical cancer arise in low-to-middle-income countries. EXPERT OPINION While there are biomarker assays based on changes at the nucleic acid (DNA methylation patterns, miRNAs) and at the protein level, they are not widely used in population screening. Combining nucleic acid-based and protein-based tests could improve the overall specificity for discriminating CIN2+ lesions that carry a low risk of progressing to cervical cancer within the screening interval from those that carry an elevated risk. The challenge is to reduce unnecessary referrals without an undesired increase in false-negative diagnoses resulting in cases of cervical cancer that could have been prevented. A further challenge is to develop tests for low-and middle-income countries, which is critical to reduce the worldwide burden of cervical cancer.
Collapse
Affiliation(s)
- Coşkun Güzel
- Erasmus MC, Department of Neurology, University of Groningen, Rotterdam, The Netherlands
| | | | | | - Natalia I Govorukhina
- Department of Analytical Biochemistry, University of Groningen, Groningen, The Netherlands
| | | | - Theo M Luider
- Erasmus MC, Department of Neurology, University of Groningen, Rotterdam, The Netherlands
| | - Rainer Bischoff
- Department of Analytical Biochemistry, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
10
|
Tang J, Pan R, Xu L, Ma Q, Ying X, Zhao J, Zhao H, Miao L, Xu Y, Duan S, Wang J. IL10 hypomethylation is associated with the risk of gastric cancer. Oncol Lett 2021; 21:241. [PMID: 33664805 PMCID: PMC7882872 DOI: 10.3892/ol.2021.12502] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 09/10/2020] [Indexed: 12/17/2022] Open
Abstract
Interleukin-10 (IL10), a pleiotropic cytokine secreted by type-2 helper (Th2) T cells, contributes to the oncogenic activation or inactivation of tumor-suppressor genes. The present study investigated whether hypomethylation of IL10 CpG island (CGI) was associated with the risk of developing gastric cancer (GC) and the prognosis of patients with GC. A fragment (hg18, chr1: 206945638-206945774) at the CGI of IL10 was selected for the present methylation assay. Quantitative methylation-specific PCR was used to evaluate the methylation of IL10 CGI in 117 tumor samples from patients with GC. The results demonstrated that IL10 CGI methylation was significantly lower in the tumor tissues compared with that in the paired adjacent non-tumor tissues (median percentage of methylated reference, 29.16 vs. 42.82%, respectively; P=4×10−8). Furthermore, results from receiver operating characteristic curve analysis identified a significant area under the curve of 0.706, with a sensitivity and a specificity of 77.8 and 58.1%, respectively, between cancer tissues and paired adjacent non-tumor tissues. Furthermore, the methylation of IL10 CGI was significantly associated with patients' age at diagnosis (r=−0.201; P=0.03). Subgroup analyses demonstrated that the association between IL10 CGI hypomethylation and the risk of GC was specific for patients with low differentiation (P=1×10−7) and Borrmann types III+IV (P=1×10−7). In addition, IL10 CGI hypomethylation was significantly associated with the risk of GC for patients without smoking history (P=3×10−7) or a family history of cancer (P=2×10−7). The results from Kaplan-Meier survival analysis demonstrated that IL10 CGI hypomethylation was associated with a significantly shorter overall survival of patients with GC (P=0.041). Similar results were identified for patients with GC who did not have smoking history (P=0.037) or a family history of cancer (P=0.049). The results from this study demonstrated that IL10 CGI hypomethylation may be considered as a potential biomarker for the diagnosis and prognosis of patients with GC in the Chinese population.
Collapse
Affiliation(s)
- Junjian Tang
- Department of Vascular Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, P.R. China.,Department of Vascular Surgery, Taihu Hospital, Wuxi, Jiangsu 214004, P.R. China
| | - Ranran Pan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Lele Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215200, P.R. China
| | - Qinghua Ma
- Department of Preventive Health, The Third People's Hospital of Xiangcheng District, Suzhou, Jiangsu 215134, P.R. China
| | - Xiuru Ying
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jun Zhao
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Haibin Zhao
- Department of Pathology, Taihu Hospital, Wuxi, Jiangsu 214004, P.R. China
| | - Li Miao
- Department of Pediatrics, Xuzhou Medical University Affiliated Hospital of Lianyungang, Xuzhou, Jiangsu 222002, P.R. China
| | - Yue Xu
- Department of Cell Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215007, P.R. China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jinzhi Wang
- Department of Cell Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215007, P.R. China
| |
Collapse
|
11
|
Gao C, Zhuang J, Li H, Liu C, Zhou C, Liu L, Feng F, Sun C. Gene signatures of 6-methyladenine regulators in women with lung adenocarcinoma and development of a risk scoring system: a retrospective study using the cancer genome atlas database. Aging (Albany NY) 2021; 13:3957-3968. [PMID: 33428597 PMCID: PMC7906130 DOI: 10.18632/aging.202364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/23/2020] [Indexed: 01/22/2023]
Abstract
Although the emergence of new treatments has improved the prognosis of women with lung adenocarcinoma (LUAD), the emergence of drug resistance limits their clinical efficacy. Therefore, there is an urgent need to identify new targets and develop a risk scoring system to evaluate the prognosis of patients. 6-methyladenine (M6A), as the most common methyl modification in RNA modification, its clinicopathological features, diagnosis and prognostic value in lung cancer, especially in LUAD remain to be discussed. We analyzed the clinical and sequencing data of the female LUAD cohort from The Cancer Genome Atlas (TCGA), evaluated the expression profiles of 16 M6A regulation-related genes in the cohort and the relationships between genetic changes and clinical characteristics, developed an M6A-related risk scoring system using Cox analysis. Finally, the copy number variations (CNVs) of the related genes in the samples were analyzed and verified using the cBioPortal platform. Compared with other clinical factors, this risk scoring system showed a higher predictive sensitivity and specificity. The M6A-related risk scoring system developed in this study may help to improve the screening of female patients at high risk of LUAD and provides important theoretical bioinformatics support for evaluating the prognosis of such patients.
Collapse
Affiliation(s)
- Chundi Gao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, PR China
| | - Jing Zhuang
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, Shandong, PR China
| | - Huayao Li
- College of Basic Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, PR China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, PR China
| | - Chao Zhou
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, Shandong, PR China
| | - Lijuan Liu
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, Shandong, PR China
| | - Fubin Feng
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, Shandong, PR China
| | - Changgang Sun
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, Shandong, PR China.,Cancer and Immunology Institute, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| |
Collapse
|
12
|
Chen R, Chen Y, Zhao W, Fang C, Zhou W, Yang X, Ji M. The Role of Methyltransferase NSD2 as a Potential Oncogene in Human Solid Tumors. Onco Targets Ther 2020; 13:6837-6846. [PMID: 32764971 PMCID: PMC7367929 DOI: 10.2147/ott.s259873] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/10/2020] [Indexed: 12/23/2022] Open
Abstract
Malignant solid tumors are the leading cause of death in humans, and epigenetic regulation plays a significant role in studying the mechanism of human solid tumors. Recently, histone lysine methylation has been demonstrated to be involved in the development of human solid tumors due to its epigenetic stability and some other advantages. The 90-kb protein methyltransferase nuclear receptor SET domain-containing 2 (NSD2) is a member of nuclear receptor SET domain-containing (NSD) protein lysine methyltransferase (KMT) family, which can cause epigenomic aberrations via altering the methylation states. Studies have shown that NSD2 is frequently over-expressed in multiple types of aggressive solid tumors, including breast cancer, renal cancer, prostate cancer, cervical cancer, and osteosarcoma, and such up-regulation has been linked to poor prognosis and recurrence. Further studies have identified that over-expression of NSD2 promotes cell proliferation, migration, invasion, and epithelial–mesenchymal transformation (EMT), suggesting its potential oncogenic role in solid tumors. Moreover, Gene Expression Profiling Interactive Analysis (GEPIA) was searched for validation of prognostic value of NSD2 in human solid tumors. However, the underlying specific mechanism remains unclear. In our present work, we summarized the latest advances in NSD2 expression and clinical applications in solid tumors, and our findings provided valuable insights into the targeted therapeutic regimens of solid tumors.
Collapse
Affiliation(s)
- Rui Chen
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, People's Republic of China
| | - Yan Chen
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, People's Republic of China
| | - Weiqing Zhao
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, People's Republic of China
| | - Cheng Fang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, People's Republic of China
| | - Wenjie Zhou
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, People's Republic of China
| | - Xin Yang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, People's Republic of China
| | - Mei Ji
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, People's Republic of China
| |
Collapse
|
13
|
Zhuang Z, Chen L, Mao Y, Zheng Q, Li H, Huang Y, Hu Z, Jin Y. Diagnostic, progressive and prognostic performance of m 6A methylation RNA regulators in lung adenocarcinoma. Int J Biol Sci 2020; 16:1785-1797. [PMID: 32398949 PMCID: PMC7211177 DOI: 10.7150/ijbs.39046] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 03/05/2020] [Indexed: 12/14/2022] Open
Abstract
Background: N6-methyladenosine (m6A) RNA methylation is dynamically and reversibly regulated by methyl-transferases ("writers"), binding proteins ("readers"), and demethylases ("erasers"). The m6A is restored to adenosine and thus to achieve demethylation modification. The abnormality of m6A epigenetic modification in cancer has been increasingly attended. However, we are rarely aware of its diagnostic, progressive and prognostic performance in lung adenocarcinoma (LUAD). Methods and Results: The expression of 13 widely reported m6A RNA regulators in LUAD and normal samples were systematically analyzed. There were 12 m6A RNA methylation genes displaying aberrant expressions, and an 11-gene diagnostic score model was finally built (Diagnostic score =0.033*KIAA1429+0.116*HNRNPC+0.115*RBM15-0.067* METTL3-0.048*ZC3H13-0.221*WTAP+0.213*YTHDF1-0.132*YTHDC1-0.135* FTO+0.078*YTHDF2+0.014*ALKBH5). Receiver operating characteristic (ROC) analysis was performed to demonstrate superiority of the diagnostic score model (Area under the curve (AUC) was 0.996 of training cohort, P<0.0001; AUC was 0.971 of one validation cohort-GSE75037, P<0.0001; AUC was 0.878 of another validation cohort-GSE63459, P<0.0001). In both training and validation cohorts, YTHDC2 was associated with tumor stage (P<0.01), while HNRNPC was up expressed in progressed tumor (P<0.05). Besides, WTAP, RBM15, KIAA1429, YTHDF1, and YTHDF2 were all up expressed for TP53 mutation. Furthermore, using least absolute shrinkage and selection operator (lasso) regression analysis, a ten-gene risk score model was built. Risk score=0.169*ALKBH5-0.159*FTO+0.581*HNRNPC-0.348* YTHDF2-0.265*YTHDF1-0.123*YTHDC2+0.434*RBM15+0.143*KIAA1429-0.200*WTAP-0.310*METTL3. There existed correlation between the risk score and TNM stage (P<0.01), lymph node stage (P<0.05), gender (P<0.05), living status (P<0.001). Univariate and multivariate Cox regression analyses of relevant clinicopathological characters and the risk score revealed risk score was an independent risk factor of lung adenocarcinoma (HR: 2.181, 95%CI (1.594-2.984), P<0.001). Finally, a nomogram was built to facilitate clinicians to predict outcome. Conclusions: m6A epigenetic modification took part in the progression, and provided auxiliary diagnosis and prognosis of LUAD.
Collapse
Affiliation(s)
- Zhizhi Zhuang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Liping Chen
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Yuting Mao
- Second clinical college of medicine, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Qun Zheng
- Department of Rheumatology and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Huiying Li
- Department of Respiratory medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yueyue Huang
- Department of Hematology and Medical Oncology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Zijing Hu
- College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yi Jin
- Department of Rheumatology and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| |
Collapse
|
14
|
Drake TM, Søreide K. Cancer epigenetics in solid organ tumours: A primer for surgical oncologists. Eur J Surg Oncol 2019; 45:736-746. [PMID: 30745135 DOI: 10.1016/j.ejso.2019.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/29/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer is initiated through both genetic and epigenetic alterations. The end-effect of such changes to the DNA machinery is a set of uncontrolled mechanisms of cell division, invasion and, eventually, metastasis. Epigenetic changes are now increasingly appreciated as an essential driver to the cancer phenotype. The epigenetic regulation of cancer is complex and not yet fully understood, but application of epigenetics to clinical practice and in cancer research has the potential to improve cancer care. Epigenetics changes do not cause changes in the DNA base-pairs (and, hence, does not alter the genetic code per se) but rather occur through methylation of DNA, by histone modifications, and, through changes to chromatin structure to alter genetic expression. Epigenetic regulators are characterized as writers, readers or erasers by their mechanisms of action. The human epigenome is influenced from cradle to grave, with internal and external life-time exposure influencing the epigenetic marks that may act as modifiers or drivers of carcinogenesis. Preventive and public health strategies may follow from better understanding of the life-time influence of the epigenome. Epigenetics may be used to define risk, to investigate mechanisms of carcinogenesis, to identify biomarkers, and to identify novel therapeutic options. Epigenetic alterations are found across many solid cancers and are increasingly making clinical impact to cancer management. Novel epigenetic drugs may be used for a more tailored and specific response to treatment of cancers. We present a primer on epigenetics for surgical oncologists with examples from colorectal cancer, breast cancer, pancreatic cancer and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Thomas M Drake
- Department of Clinical Surgery, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Kjetil Søreide
- Department of Clinical Surgery, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, UK; Gastrointestinal Translational Research Unit, Laboratory for Molecular Biology, Stavanger University Hospital, Stavanger, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway.
| |
Collapse
|
15
|
Menter DG, Davis JS, Broom BM, Overman MJ, Morris J, Kopetz S. Back to the Colorectal Cancer Consensus Molecular Subtype Future. Curr Gastroenterol Rep 2019; 21:5. [PMID: 30701321 PMCID: PMC6622456 DOI: 10.1007/s11894-019-0674-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW This review seeks to provide an informed prospective on the advances in molecular profiling and analysis of colorectal cancer (CRC). The goal is to provide a historical context and current summary on how advances in gene and protein sequencing technology along with computer capabilities led to our current bioinformatic advances in the field. RECENT FINDINGS An explosion of knowledge has occurred regarding genetic, epigenetic, and biochemical alterations associated with the evolution of colorectal cancer. This has led to the realization that CRC is a heterogeneous disease with molecular alterations often dictating natural history, response to treatment, and outcome. The consensus molecular subtypes (CMS) classification classifies CRC into four molecular subtypes with distinct biological characteristics, which may form the basis for clinical stratification and subtype-based targeted intervention. This review summarizes new developments of a field moving "Back to the Future." CRC molecular subtyping will better identify key subtype specific therapeutic targets and responses to therapy.
Collapse
Affiliation(s)
- David G Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard--Unit 0426, Houston, TX, 77030, USA.
| | - Jennifer S Davis
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bradley M Broom
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael J Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard--Unit 0426, Houston, TX, 77030, USA
| | - Jeffrey Morris
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard--Unit 0426, Houston, TX, 77030, USA
| |
Collapse
|
16
|
Campos NA, da Cunha MSB, Arruda SF. Tucum-do-cerrado (Bactris setosa Mart.) modulates oxidative stress, inflammation, and apoptosis-related proteins in rats treated with azoxymethane. PLoS One 2018; 13:e0206670. [PMID: 30427888 PMCID: PMC6235309 DOI: 10.1371/journal.pone.0206670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/17/2018] [Indexed: 01/25/2023] Open
Abstract
Oxidative and inflammatory responses play an important role in the development and prevention of cancer, with both responses being modulated by phytochemical compounds. This study investigated the chemopreventive effect of tucum-do-cerrado fruit in rats treated with azoxymethane. Wistar rats were treated for 12 weeks with: a control diet (CT); a control diet + AOM (CT/DR); a control diet + 15% tucum-do-cerrado (TU); or a control diet + 15% tucum-do-cerrado + AOM (TU/DR). The association of tucum-do-cerrado and AOM (TU/DR) increased glutathione-S-transferase activity, decreased MDA levels, increased levels of COX2, TNFα and BAX, and decreased Bcl2/Bax ratio, compared to the CT/DR group. Carbonyl levels, IL-1β and IL-6 mRNA levels, and aberrant crypt foci showed no difference between the treatments. In conclusion, tucum-do-cerrado reduced lipid oxidative damage, induced a pro-inflammatory effect, and promoted a pro-apoptotic “environment” in rats treated with AOM; however no changes in aberrant crypts were observed.
Collapse
Affiliation(s)
- Natália A. Campos
- Postgraduate Program in Human Nutrition, Faculty of Health Sciences, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, Brazil
- * E-mail:
| | - Marcela S. B. da Cunha
- Postgraduate Program in Human Nutrition, Faculty of Health Sciences, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, Brazil
- Biological and Health Sciences Center, Campus Reitor Edgard Santos, Universidade Federal do Oeste da Bahia, Barreiras, Bahia, Brazil
| | - Sandra F. Arruda
- Postgraduate Program in Human Nutrition, Faculty of Health Sciences, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, Brazil
- Department of Nutrition, Faculty of Health Sciences; Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| |
Collapse
|
17
|
Palchetti S, Digiacomo L, Pozzi D, Zenezini Chiozzi R, Capriotti AL, Laganà A, Coppola R, Caputo D, Sharifzadeh M, Mahmoudi M, Caracciolo G. Effect of Glucose on Liposome-Plasma Protein Interactions: Relevance for the Physiological Response of Clinically Approved Liposomal Formulations. ACTA ACUST UNITED AC 2018; 3:e1800221. [DOI: 10.1002/adbi.201800221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/16/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Sara Palchetti
- Department of Molecular Medicine; “Sapienza” University of Rome; Viale Regina Elena 291 00161 Rome Italy
| | - Luca Digiacomo
- Department of Molecular Medicine; “Sapienza” University of Rome; Viale Regina Elena 291 00161 Rome Italy
| | - Daniela Pozzi
- Department of Molecular Medicine; “Sapienza” University of Rome; Viale Regina Elena 291 00161 Rome Italy
| | | | - Anna Laura Capriotti
- Department of Chemistry; Sapienza University of Rome; P.le Aldo Moro 5 00185 Rome Italy
| | - Aldo Laganà
- Department of Chemistry; Sapienza University of Rome; P.le Aldo Moro 5 00185 Rome Italy
| | - Roberto Coppola
- Department of Surgery; University Campus Bio-Medico di Roma; Via Alvaro del Portillo 200 00128 Rome Italy
| | - Damiano Caputo
- Department of Surgery; University Campus Bio-Medico di Roma; Via Alvaro del Portillo 200 00128 Rome Italy
| | - Mohammad Sharifzadeh
- Department of Pharmaceutics; Tehran University of Medical Sciences; Tehran 1941718637 Iran
| | - Morteza Mahmoudi
- Department of Anesthesiology; Brigham and Women's Hospital; Harvard Medical School; Boston MA 02115 USA
| | - Giulio Caracciolo
- Department of Molecular Medicine; “Sapienza” University of Rome; Viale Regina Elena 291 00161 Rome Italy
| |
Collapse
|
18
|
Abstract
Advancement in the understanding of lung tumor biology enables continued refinement of lung cancer classification, reflected in the recently introduced 2015 World Health Organization classification of lung cancer. In small biopsy or cytology specimens, special emphasis is placed on separating adenocarcinomas from the other lung cancers to effectively select tumors for targeted molecular testing. In resection specimens, adenocarcinomas are further classified based on architectural pattern to delineate tissue types of prognostic significance. Neuroendocrine tumors are divided into typical carcinoid, atypical carcinoid, small cell carcinoma, and large cell neuroendocrine carcinoma based on a combination of features, especially tumor cell proliferation rate.
Collapse
Affiliation(s)
- Min Zheng
- Department of Pathology, Jersey Shore University Medical Center, 1945 Route 33, Neptune, NJ 07753, USA.
| |
Collapse
|
19
|
Abstract
Urothelial carcinoma of the bladder is one of the most common malignancies in the industrialized world, mainly caused by smoking and occupational exposure to chemicals. The favorable prognosis of early stage bladder cancer underscores the importance of early detection for the treatment of this disease. The high recurrence rate of this malignancy also highlights the need for close post-diagnosis monitoring of bladder cancer patients. As for other malignancies, aberrant DNA methylation has been shown to play a crucial role in the initiation and progression of bladder cancer, and thus holds great promise as a diagnostic and prognostic biological marker. Here, we describe a protocol for a versatile DNA methylation enrichment method, the Methylated CpG Island Recovery Assay (MIRA), which enables analysis of the DNA methylation status in individual genes or across the entire genome. MIRA is based on the ability of the methyl-binding domain (MBD) proteins, the MBD2B/MBD3L1 complex, to specifically bind methylated CpG dinucleotides. This easy-to-perform method can be used to analyze the methylome of bladder cancer or urothelial cells shed in the urine to elucidate the evolution of bladder carcinogenesis and/or identify epigenetic signatures of chemicals known to cause this malignancy.
Collapse
Affiliation(s)
- Stella Tommasi
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA, 90033, USA.
| | - Ahmad Besaratinia
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA, 90033, USA
| |
Collapse
|
20
|
Donovan MG, Selmin OI, Doetschman TC, Romagnolo DF. Mediterranean Diet: Prevention of Colorectal Cancer. Front Nutr 2017; 4:59. [PMID: 29259973 PMCID: PMC5723389 DOI: 10.3389/fnut.2017.00059] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/20/2017] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer diagnosis and the second and third leading cause of cancer mortality in men and women, respectively. However, the majority of CRC cases are the result of sporadic tumorigenesis via the adenoma–carcinoma sequence. This process can take up to 20 years, suggesting an important window of opportunity exists for prevention such as switching toward healthier dietary patterns. The Mediterranean diet (MD) is a dietary pattern associated with various health benefits including protection against cardiovascular disease, diabetes, obesity, and various cancers. In this article, we review publications available in the PubMed database within the last 10 years that report on the impact of a MD eating pattern on prevention of CRC. To assist the reader with interpretation of the results and discussion, we first introduce indexes and scoring systems commonly used to experimentally determine adherence to a MD, followed by a brief introduction of the influence of the MD pattern on inflammatory bowel disease, which predisposes to CRC. Finally, we discuss key biological mechanisms through which specific bioactive food components commonly present in the MD are proposed to prevent or delay the development of CRC. We close with a discussion of future research frontiers in CRC prevention with particular reference to the role of epigenetic mechanisms and microbiome related to the MD eating pattern.
Collapse
Affiliation(s)
- Micah G Donovan
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
| | - Ornella I Selmin
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States.,University of Arizona Cancer Center, Tucson, AZ, United States
| | - Tom C Doetschman
- University of Arizona Cancer Center, Tucson, AZ, United States.,Department of Molecular and Cellular Medicine, University of Arizona, Tucson, AZ, United States
| | - Donato F Romagnolo
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States.,University of Arizona Cancer Center, Tucson, AZ, United States
| |
Collapse
|
21
|
Hu H, Chen X, Wang C, Jiang Y, Li J, Ying X, Yang Y, Li B, Zhou C, Zhong J, Wu D, Ying J, Duan S. The role of TFPI2 hypermethylation in the detection of gastric and colorectal cancer. Oncotarget 2017; 8:84054-84065. [PMID: 29137404 PMCID: PMC5663576 DOI: 10.18632/oncotarget.21097] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 08/28/2017] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal cancer is a prevalent disease with high morbidity and mortality. Tissue factor pathway inhibitor 2 (TFPI2) gene could protect the extracellular matrix of cancer cells from degradation and tumor invasion. The goal of our study was to estimate the diagnostic value of TFPI2 hypermethylation in gastric cancer (GC) and colorectal cancer (CRC). TFPI2 methylation was measured by quantitative methylation-specific polymerase chain reaction (qMSP) method in 114 GC and 80 CRC tissues and their paired non-tumor tissues. Our results showed that TFPI2 methylation was significantly higher in tumor tissues (GC: 29.940% vs. 12.785%, P < 0.001; CRC: 26.930% vs. 5.420%, P < 0.001). The methylation level of TFPI2 in colorectal tumor tissues was significantly higher than that in colorectal normal tissues (26.930% versus 0.002%, P < 0.00001). In GC, TFPI2 hypermethylation yielded an area under the curve (AUC) of 0.762 (95% CI: 0.696–0.828) with a sensitivity of 68% and a specificity of 83%. In CRC, TFPI2 hypermethylation yielded an AUC of 0.759 (95% CI: 0.685–0.834) with a sensitivity of 61% and a specificity of 84%. Similarly, TCGA data also supported TFPI2 hypermethylation was a promising diagnostic marker for GC and CRC. Moreover, the dual-luciferase reporter assay showed TFPI2 fragment could upregulate gene expression (fold change = 5, P = 0.005). Data mining further indicated that TFPI2 expression in CRC cell lines was significantly increased after 5’-AZA-deoxycytidine treatment (fold change > 1.37). In conclusion, TFPI2 hypermethylation might be a promising diagnostic biomarker for GC and CRC.
Collapse
Affiliation(s)
- Haochang Hu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaoying Chen
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Cheng Wang
- Department of Medical Oncology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Zhejiang 312000, China
| | - Yuting Jiang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jingjing Li
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Xiuru Ying
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yong Yang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Bin Li
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Cong Zhou
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jie Zhong
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Dongping Wu
- Department of Medical Oncology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Zhejiang 312000, China
| | - Jieer Ying
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
22
|
DNA Methylation Events as Markers for Diagnosis and Management of Acute Myeloid Leukemia and Myelodysplastic Syndrome. DISEASE MARKERS 2017; 2017:5472893. [PMID: 29038614 PMCID: PMC5606093 DOI: 10.1155/2017/5472893] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/17/2017] [Accepted: 07/30/2017] [Indexed: 01/18/2023]
Abstract
During the onset and progression of hematological malignancies, many changes occur in cellular epigenome, such as hypo- or hypermethylation of CpG islands in promoter regions. DNA methylation is an epigenetic modification that regulates gene expression and is a key event for tumorigenesis. The continuous search for biomarkers that signal early disease, indicate prognosis, and act as therapeutic targets has led to studies investigating the role of DNA in cancer onset and progression. This review focuses on DNA methylation changes as potential biomarkers for diagnosis, prognosis, response to treatment, and early toxicity in acute myeloid leukemia and myelodysplastic syndrome. Here, we report that distinct changes in DNA methylation may alter gene function and drive malignant cellular transformation during several stages of leukemogenesis. Most of these modifications occur at an early stage of disease and may predict myeloid/lymphoid transformation or response to therapy, which justifies its use as a biomarker for disease onset and progression. Methylation patterns, or its dynamic change during treatment, may also be used as markers for patient stratification, disease prognosis, and response to treatment. Further investigations of methylation modifications as therapeutic biomarkers, which may correlate with therapeutic response and/or predict treatment toxicity, are still warranted.
Collapse
|
23
|
Makhathini KB, Abboussi O, Stein DJ, Mabandla MV, Daniels WM. Repetitive stress leads to impaired cognitive function that is associated with DNA hypomethylation, reduced BDNF and a dysregulated HPA axis. Int J Dev Neurosci 2017; 60:63-69. [DOI: 10.1016/j.ijdevneu.2017.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 03/13/2017] [Accepted: 04/11/2017] [Indexed: 11/28/2022] Open
Affiliation(s)
- Khayelihle B. Makhathini
- Department of Human PhysiologyCollege of Health Sciences, University of KwaZulu‐ NatalDurbanSouth Africa
| | - Oualid Abboussi
- Department of Human PhysiologyCollege of Health Sciences, University of KwaZulu‐ NatalDurbanSouth Africa
| | - Dan J. Stein
- Department of PsychiatryUniversity of Cape TownCape TownSouth Africa
| | - Musa V. Mabandla
- Department of Human PhysiologyCollege of Health Sciences, University of KwaZulu‐ NatalDurbanSouth Africa
| | | |
Collapse
|
24
|
|
25
|
Chen SY, Zhang RG, Duan GC. Pathogenic mechanisms of the oncoprotein CagA in H. pylori-induced gastric cancer (Review). Oncol Rep 2016; 36:3087-3094. [PMID: 27748858 DOI: 10.3892/or.2016.5145] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/16/2016] [Indexed: 11/06/2022] Open
Abstract
Infection with Helicobacter pylori is the strongest risk factor for the development of chronic gastritis, gastric ulcer and gastric carcinoma. The majority of the H. pylori-infected population remains asymptomatic, and only 1% of individuals may progress to gastric cancer. The clinical outcomes caused by H. pylori infection are considered to be associated with bacterial virulence, genetic polymorphism of hosts as well as environmental factors. Most H. pylori strains possess a cytotoxin-associated gene (cag) pathogenicity island (cagPAI), encoding a 120-140 kDa CagA protein, which is the most important bacterial oncoprotein. CagA is translocated into host cells via T4SS system and affects the expression of signaling proteins in a phosphorylation-dependent and independent manner. Thus, this review summarizes the results of relevant studies, discusses the pathogenesis of CagA-mediated gastric cancer.
Collapse
Affiliation(s)
- Shuai-Yin Chen
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Rong-Guang Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Guang-Cai Duan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
26
|
García-Tobilla P, Solórzano SR, Salido-Guadarrama I, González-Covarrubias V, Morales-Montor G, Díaz-Otañez CE, Rodríguez-Dorantes M. SFRP1 repression in prostate cancer is triggered by two different epigenetic mechanisms. Gene 2016; 593:292-301. [PMID: 27570179 DOI: 10.1016/j.gene.2016.08.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/03/2016] [Accepted: 08/18/2016] [Indexed: 12/21/2022]
Abstract
Worldwide, prostate cancer (PCa) is the second cause of death from malignant tumors among men. Establishment of aberrant epigenetic modifications, such as histone post-translational modifications (PTMs) and DNA methylation (DNAme) produce alterations of gene expression that are common in PCa. Genes of the SFRP family are tumor suppressor genes that are frequently silenced by DNA hypermethylation in many cancer types. The SFRP family is composed of 5 members (SFRP1-5) that modulate the WNT pathway, which is aberrantly activated in PCa. The expression of SFRP genes in PCa and their regulation by DNAme has been controversial. Our objective was to determine the gene expression pattern of the SFRP family in prostatic cell lines and fresh frozen tissues from normal prostates (NP), benign prostatic hyperplasia (BPH) and prostate cancer (PCa), by qRT-PCR, and their DNAme status by MSP and bisulfite sequencing. In prostatic cancer cell lines, the 5 SFRPs showed significantly decreased expression levels compared to a control normal prostatic cell line (p<0.0001). In agreement, SFRP1 and SFRP5 genes showed decreased expression levels in CaP fresh frozen tissues compared to NP (p<0.01), while a similar trend was observed for SFRP2. Conversely, increased levels of SFRP4 expression were found in PCa compared to BPH (p<0.01). Moreover, SFRP2, SFRP3, and SFRP5 showed DNA hypermethylation in PCa cell lines. Interestingly, we observed DNA hypermethylation at the promoter of SFRP1 in the PC3 cell line, but not in LNCaP. However, in the LNCaP cell line we found an aberrant gain of the repressive histone posttranslational modification Histone H3 lysine 27 trimethylation (H3K27me3). In conclusion, decreased expression by DNA hypermethylation of SFRP5 is a common feature of PCa, while decreased expression of SFRP1 can be due to DNA hypermethylation, but sometimes an aberrant gain of the histone mark H3K27me3 is observed instead.
Collapse
Affiliation(s)
- Pilar García-Tobilla
- Oncogenomics Laboratory, The National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Susana R Solórzano
- Oncogenomics Laboratory, The National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Iván Salido-Guadarrama
- Oncogenomics Laboratory, The National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | | | | | | | | |
Collapse
|