1
|
Miao L, Dai X, Song H, Backes AR, Song H. A new index for quantifying the ornamentational complexity of animals with shells. Ecol Evol 2022; 12:e9247. [PMID: 36035271 PMCID: PMC9412138 DOI: 10.1002/ece3.9247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/03/2022] [Accepted: 07/29/2022] [Indexed: 11/11/2022] Open
Abstract
Morphological complexity reflects the biological structure of an organism and is closely linked to its associated functions and phylogenetics. In animals with shells, ornamentation is an important characteristic of morphological complexity, and it has various functions. However, because of the variations in type, shape, density, and strength of ornamentation, a universal quantitative measure of morphological complexity for shelled animals is lacking. We propose an ornamentation index (OI) derived from 3D scanning technology and a virtual model for quantifying ornamentation complexity. This index is designed to measure the extent of folding associated with ornamentation, regardless of shape and size. Ornamentation indices were measured for 15 ammonite specimens from the Permian to Cretaceous, 2 modern bivalves, 2 gastropods from the Pliocene to the present, and a modern echinoid. Compared with other measurements, such as the fractal dimension, rugosity, and surface-volume ratio, the OI displayed superiority in quantifying ornamentational complexity. The present study demonstrates that the OI is suitable for accurately characterizing and quantifying ornamentation complexity, regardless of shape and size. Therefore, the OI is potentially useful for comparing the ornamentational complexity of various organisms and can be exploited to provide further insight into the evolution of conchs. Ultimately, the OI can enhance our understanding of morphological evolution of shelled organisms, for example, whether shell ornaments simplify under ocean acidification or extinction, and how predation pressure is reflected in ornamentation complexity.
Collapse
Affiliation(s)
- Luyi Miao
- State Key Laboratory of Biogeology & Environmental Geology, School of Earth SciencesChina University of GeosciencesWuhanChina
| | - Xu Dai
- State Key Laboratory of Biogeology & Environmental Geology, School of Earth SciencesChina University of GeosciencesWuhanChina
| | - Hanchen Song
- State Key Laboratory of Biogeology & Environmental Geology, School of Earth SciencesChina University of GeosciencesWuhanChina
| | | | - Haijun Song
- State Key Laboratory of Biogeology & Environmental Geology, School of Earth SciencesChina University of GeosciencesWuhanChina
| |
Collapse
|
3
|
Hoffmann R, Slattery JS, Kruta I, Linzmeier BJ, Lemanis RE, Mironenko A, Goolaerts S, De Baets K, Peterman DJ, Klug C. Recent advances in heteromorph ammonoid palaeobiology. Biol Rev Camb Philos Soc 2021; 96:576-610. [PMID: 33438316 DOI: 10.1111/brv.12669] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 01/02/2023]
Abstract
Heteromorphs are ammonoids forming a conch with detached whorls (open coiling) or non-planispiral coiling. Such aberrant forms appeared convergently four times within this extinct group of cephalopods. Since Wiedmann's seminal paper in this journal, the palaeobiology of heteromorphs has advanced substantially. Combining direct evidence from their fossil record, indirect insights from phylogenetic bracketing, and physical as well as virtual models, we reach an improved understanding of heteromorph ammonoid palaeobiology. Their anatomy, buoyancy, locomotion, predators, diet, palaeoecology, and extinction are discussed. Based on phylogenetic bracketing with nautiloids and coleoids, heteromorphs like other ammonoids had 10 arms, a well-developed brain, lens eyes, a buccal mass with a radula and a smaller upper as well as a larger lower jaw, and ammonia in their soft tissue. Heteromorphs likely lacked arm suckers, hooks, tentacles, a hood, and an ink sac. All Cretaceous heteromorphs share an aptychus-type lower jaw with a lamellar calcitic covering. Differences in radular tooth morphology and size in heteromorphs suggest a microphagous diet. Stomach contents of heteromorphs comprise planktic crustaceans, gastropods, and crinoids, suggesting a zooplanktic diet. Forms with a U-shaped body chamber (ancylocone) are regarded as suspension feeders, whereas orthoconic forms additionally might have consumed benthic prey. Heteromorphs could achieve near-neutral buoyancy regardless of conch shape or ontogeny. Orthoconic heteromorphs likely had a vertical orientation, whereas ancylocone heteromorphs had a near-horizontal aperture pointing upwards. Heteromorphs with a U-shaped body chamber are more stable hydrodynamically than modern Nautilus and were unable substantially to modify their orientation by active locomotion, i.e. they had no or limited access to benthic prey at adulthood. Pathologies reported for heteromorphs were likely inflicted by crustaceans, fish, marine reptiles, and other cephalopods. Pathologies on Ptychoceras corroborates an external shell and rejects the endocochleate hypothesis. Devonian, Triassic, and Jurassic heteromorphs had a preference for deep-subtidal to offshore facies but are rare in shallow-subtidal, slope, and bathyal facies. Early Cretaceous heteromorphs preferred deep-subtidal to bathyal facies. Late Cretaceous heteromorphs are common in shallow-subtidal to offshore facies. Oxygen isotope data suggest rapid growth and a demersal habitat for adult Discoscaphites and Baculites. A benthic embryonic stage, planktic hatchlings, and a habitat change after one whorl is proposed for Hoploscaphites. Carbon isotope data indicate that some Baculites lived throughout their lives at cold seeps. Adaptation to a planktic life habit potentially drove selection towards smaller hatchlings, implying high fecundity and an ecological role of the hatchlings as micro- and mesoplankton. The Chicxulub impact at the Cretaceous/Paleogene (K/Pg) boundary 66 million years ago is the likely trigger for the extinction of ammonoids. Ammonoids likely persisted after this event for 40-500 thousand years and are exclusively represented by heteromorphs. The ammonoid extinction is linked to their small hatchling sizes, planktotrophic diets, and higher metabolic rates than in nautilids, which survived the K/Pg mass extinction event.
Collapse
Affiliation(s)
- René Hoffmann
- Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum, Bochum, 44801, Germany
| | - Joshua S Slattery
- School of Geosciences, University of South Florida, 4202 East Fowler Ave., NES 107, Tampa, FL, 33620, U.S.A
| | - Isabelle Kruta
- CR2P - Centre de Recherche en Paléntologie - Paris, UMR 7207, Sorbonne Université-MNHN-CNRS, 4 place Jussieu, case 104, Paris, 75005, France
| | - Benjamin J Linzmeier
- Department of Geoscience, University of Wisconsin - Madison, Madison, WI, 53706, U.S.A
| | - Robert E Lemanis
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, 01307, Germany
| | | | - Stijn Goolaerts
- OD Earth & History of Life, and Scientific Service Heritage, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, Brussels, B-1000, Belgium
| | - Kenneth De Baets
- GeoZentrum Nordbayern, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - David J Peterman
- Department of Earth and Environmental Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, U.S.A
| | - Christian Klug
- Paläontologisches Institut und Museum, Universität Zürich, Karl-Schmid-Strasse 4, Zürich, 8006, Switzerland
| |
Collapse
|
4
|
Jattiot R, Fara E, Brayard A, Urdy S, Goudemand N. Learning from beautiful monsters: phylogenetic and morphogenetic implications of left-right asymmetry in ammonoid shells. BMC Evol Biol 2019; 19:210. [PMID: 31722660 PMCID: PMC6854895 DOI: 10.1186/s12862-019-1538-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/28/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Many pathologies that modify the shell geometry and ornamentation of ammonoids are known from the fossil record. Since they may reflect the developmental response of the organism to a perturbation (usually a sublethal injury), their study is essential for exploring the developmental mechanisms of these extinct animals. Ammonoid pathologies are also useful to assess the value of some morphological characters used in taxonomy, as well as to improve phylogenetic reconstructions and evolutionary scenarios. RESULTS We report on the discovery of an enigmatic pathological middle Toarcian (Lower Jurassic) ammonoid specimen from southern France, characterized by a pronounced left-right asymmetry in both ornamentation and suture lines. For each side independently, the taxonomic interpretations of ornamentation and suture lines are congruent, suggesting a Hildoceras semipolitum species assignment for the left side and a Brodieia primaria species assignment for the right side. The former exhibits a lateral groove whereas the second displays sinuous ribs. This specimen, together with the few analogous cases reported in the literature, lead us to erect a new forma-type pathology herein called "forma janusa" for specimens displaying a left-right asymmetry in the absence of any clear evidence of injury or parasitism, whereby the two sides match with the regular morphology of two distinct, known species. CONCLUSIONS Since "forma janusa" specimens reflect the underlying developmental plasticity of the ammonoid taxa, we hypothesize that such specimens may also indicate unsuspected phylogenetic closeness between the two displayed taxa and may even reveal a direct ancestor-descendant relationship. This hypothesis is not, as yet, contradicted by the stratigraphical data at hand: in all studied cases the two distinct taxa correspond to contemporaneous or sub-contemporaneous taxa. More generally, the newly described specimen suggests that a hitherto unidentified developmental link may exist between sinuous ribs and lateral grooves. Overall, we recommend an integrative approach for revisiting aberrant individuals that illustrate the intricate links among shell morphogenesis, developmental plasticity and phylogeny.
Collapse
Affiliation(s)
- Romain Jattiot
- Biogéosciences, UMR 6282, CNRS, Université Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000 Dijon, France
| | - Emmanuel Fara
- Biogéosciences, UMR 6282, CNRS, Université Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000 Dijon, France
| | - Arnaud Brayard
- Biogéosciences, UMR 6282, CNRS, Université Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000 Dijon, France
| | - Séverine Urdy
- Univ. Lyon, ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut de Génomique Fonctionnelle de Lyon, UMR 5242, 46 allée d’Italie, F-69364 Lyon Cedex 07, France
| | - Nicolas Goudemand
- Univ. Lyon, ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut de Génomique Fonctionnelle de Lyon, UMR 5242, 46 allée d’Italie, F-69364 Lyon Cedex 07, France
| |
Collapse
|
5
|
Webster NB, Palmer AR. Connecting pattern to process: Growth of spiral shell sculpture in the gastropod Nucella ostrina (Muricidae: Ocenebrinae). Evol Dev 2018; 20:160-171. [PMID: 30175901 DOI: 10.1111/ede.12265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Shell morphology is a well-suited and underused system to examine the development of novel forms. The three-dimensional structure produced (the shell) is separate from the largely two-dimensional tissue that secretes it (the mantle), allowing us to disentangle the pattern from the process. Despite knowing a great deal about the mechanics of shell secretion (process), and the variety of shell shapes that exist (pattern), no effort has been made to understand how the mantle changes to produce different shell shapes. We investigated this question in the dimorphic snail Nucella ostrina, which exhibits both smooth and ribbed shells to determine how ribs are formed by the mantle. Rib thickenings are produced only in the outer calcitic shell layer and secreted by the distal Outer Mantle Epithelium (OME) with increased acid phosphatase activity. The evenly thick inner aragonitic layers are secreted by the proximal OME which expresses acid phosphatase. Here we show that locally thicker ribs in N. ostrina are produced by changing the dimensions of the distal OME: elongation in the direction of growth and increased cell height. This should increase the amount of shell material secreted, producing locally thicker shell (ribs). Preliminary evidence suggests this mechanism may be widespread in gastropods.
Collapse
Affiliation(s)
- Nicole B Webster
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
| | - A Richard Palmer
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
| |
Collapse
|
6
|
Caromel AGM, Schmidt DN, Rayfield EJ. Ontogenetic constraints on foraminiferal test construction. Evol Dev 2017; 19:157-168. [PMID: 28463472 DOI: 10.1111/ede.12224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Developmental processes represent one of the main constraints on the generation of adult form. Determining how constructional and energetic demands operate throughout growth is es-sential to understanding fundamental growth rules and trade-offs that define the framework within which new species originate. In organisms producing spiral shells, coiling patterns can inform on the constructional constraints acting throughout development that dictated the diversification of forms within a group. Here, we use Synchrotron radiation X-Ray tomographic microscopy (SRXTM) reconstructions of eight planktic foraminifera repre-sentative of the major morphotypic groups to determine disparity of coiling patterns by measuring Raupian parameters. The results show that foraminifera are a morphologically highly conservative group, exploiting a limited range of poten-tial coiling patterns. Very similar coiling patterns during early ontogeny, regardless of species, point toward strong constraints in early ontogeny and to common develop-mental processes acting across all morphogroups. Dispersion and lateral displacement of taxa in morphospace are limited to the adult stage. Accretion with low translation down the coiling axis in juveniles may maximize lateral growth and metabolic efficiency in light of costly calcification. Increased translation in the adult stages allows growth to accommo-date new chamber shapes, mediated by changes in aperture location and the site of accretion over ontogeny. These constructional constraints, and the accretion of a small number of discrete chambers, limit the potential for novel forms within the foraminifera compared to other groups of coiling organisms and may explain the repeated evolution of similar morphotypes throughout the evolutionary history of the group.
Collapse
Affiliation(s)
- Aude G M Caromel
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Bristol, United Kingdom
| | - Daniela N Schmidt
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Bristol, United Kingdom
| | - Emily J Rayfield
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Bristol, United Kingdom
| |
Collapse
|