1
|
Kobayashi T, Takahashi M, Ohta S, Hoshino Y, Yamada K, Jirintai S, Primadharsini PP, Nagashima S, Murata K, Okamoto H. Production and Characterization of Self-Assembled Virus-like Particles Comprising Capsid Proteins from Genotypes 3 and 4 Hepatitis E Virus (HEV) and Rabbit HEV Expressed in Escherichia coli. Viruses 2024; 16:1400. [PMID: 39339876 PMCID: PMC11437457 DOI: 10.3390/v16091400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
The zoonotic transmission of hepatitis E virus (HEV) genotypes 3 (HEV-3) and 4 (HEV-4), and rabbit HEV (HEV-3ra) has been documented. Vaccination against HEV infection depends on the capsid (open reading frame 2, ORF2) protein, which is highly immunogenic and elicits effective virus-neutralizing antibodies. Escherichia coli (E. coli) is utilized as an effective system for producing HEV-like particles (VLPs). However, research on the production of ORF2 proteins from these HEV genotypes in E. coli to form VLPs has been modest. In this study, we constructed 21 recombinant plasmids expressing various N-terminally and C-terminally truncated HEV ORF2 proteins for HEV-3, HEV-3ra, and HEV-4 in E. coli. We successfully obtained nine HEV-3, two HEV-3ra, and ten HEV-4 ORF2 proteins, which were primarily localized in inclusion bodies. These proteins were solubilized in 4 M urea, filtered, and subjected to gel filtration. Results revealed that six HEV-3, one HEV-3ra, and two HEV-4 truncated proteins could assemble into VLPs. The purified VLPs displayed molecular weights ranging from 27.1 to 63.4 kDa and demonstrated high purity (74.7-95.3%), as assessed by bioanalyzer, with yields of 13.9-89.6 mg per 100 mL of TB medium. Immunoelectron microscopy confirmed the origin of these VLPs from HEV ORF2. Antigenicity testing indicated that these VLPs possess characteristic HEV antigenicity. Evaluation of immunogenicity in Balb/cAJcl mice revealed robust anti-HEV IgG responses, highlighting the potential of these VLPs as immunogens. These findings suggest that the generated HEV VLPs of different genotypes could serve as valuable tools for HEV research and vaccine development.
Collapse
Affiliation(s)
- Tominari Kobayashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Tochigi, Japan; (T.K.); (M.T.); (P.P.P.); (S.N.); (K.M.)
| | - Masaharu Takahashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Tochigi, Japan; (T.K.); (M.T.); (P.P.P.); (S.N.); (K.M.)
| | - Satoshi Ohta
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Tochigi, Japan;
| | - Yu Hoshino
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Tochigi, Japan; (T.K.); (M.T.); (P.P.P.); (S.N.); (K.M.)
| | - Kentaro Yamada
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Tochigi, Japan; (T.K.); (M.T.); (P.P.P.); (S.N.); (K.M.)
| | - Suljid Jirintai
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Tochigi, Japan; (T.K.); (M.T.); (P.P.P.); (S.N.); (K.M.)
| | - Putu Prathiwi Primadharsini
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Tochigi, Japan; (T.K.); (M.T.); (P.P.P.); (S.N.); (K.M.)
| | - Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Tochigi, Japan; (T.K.); (M.T.); (P.P.P.); (S.N.); (K.M.)
| | - Kazumoto Murata
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Tochigi, Japan; (T.K.); (M.T.); (P.P.P.); (S.N.); (K.M.)
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Tochigi, Japan; (T.K.); (M.T.); (P.P.P.); (S.N.); (K.M.)
| |
Collapse
|
2
|
Yaseen MM, Abuharfeil NM, Darmani H. The role of IL-1β during human immunodeficiency virus type 1 infection. Rev Med Virol 2023; 33:e2400. [PMID: 36209388 DOI: 10.1002/rmv.2400] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 01/28/2023]
Abstract
Interleukin (IL)-1β is a key innate cytokine that is essential for immune activation and promoting the inflammatory process. However, abnormal elevation in IL-1β levels has been associated with unwanted clinical outcomes. IL-1β is the most extensively studied cytokine among the IL-1 family of cytokines and its role in pathology is well established. During the course of human immunodeficiency virus type 1 (HIV-1) infection, the level of this proinflammatory cytokine is increased in different anatomical compartments, particularly in lymphatic tissues, and this elevation is associated with disease progression. The aim of this review is to address the pathological roles play by IL-1β in the light of enhancing HIV-1 replication, driving immune cell depletion, and chronic immune activation. The role of IL-1β in HIV-1 transmission (sexually or vertically 'from mother-to-child') will also be discussed. Additionally, the impact of the available antiretroviral therapy regimens on the levels of IL-1β in HIV-1 treated patients is also discussed. Finally, we will provide a glance on how IL-1β could be targeted as a therapeutic strategy.
Collapse
Affiliation(s)
- Mahmoud M Yaseen
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Nizar M Abuharfeil
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Homa Darmani
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
3
|
Seroprevalence Study of Anti-HEV IgG among Different Adult Populations in Corsica, France, 2019. Microorganisms 2019; 7:microorganisms7100460. [PMID: 31623185 PMCID: PMC6843757 DOI: 10.3390/microorganisms7100460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/19/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) is a major cause of acute hepatitis worldwide. In France, hyperendemic areas including Corsica have an anti-HEV Immunoglobulin G (IgG) prevalence higher than 50%. The aim of this study was to determine the seroprevalence of anti-HEV IgG in three adult populations in Corsica and the risk factors associated with antibody detection. Between 2017 and 2019, a total of 930 individuals, including 467 blood donors, 393 students or university staff members and 70 patients from general practice, were tested for the presence of anti-HEV IgG using the Wantai HEV IgG enzyme immunoassay kit and filled a questionnaire. The association between seropositivity and potential risk factors was tested with univariate and multivariate analyses. Out of the 930 samples, 52.3% (486/930) were seropositive—54.4% (254/467) among blood donors, 47.6% (187/393) among university students and 64.3% (45/70) among patients of general practice. Three main risk factors were identified: (i) skinning and butchering (Adjusted Odds Ratio aOR = 2.76, 95% confidence interval [95% CI] [1.51–5.37]; p-value < 10−3), (ii) consumption of a local pork live raw sausage (fittonu) (aOR = 1.95 95% CI [1.45–2.64]; p-value = 10−5), and (iii) increasing age (p-value = 0.003). Seropositivity rates between the different populations were homogeneous after age stratification. This cross-sectional study indicates a high anti-HEV IgG seroprevalence in the Corsican adult population, not significantly different between women and men and increasing with age. This serosurvey also showed homogeneity regarding the exposure to HEV among three different types of populations. Finally, we confirmed the endemicity of Corsica with respect to HEV and identified a strong association between consumption of figatellu/fittonu and the practice of skinning and butchering with the detection of anti-HEV IgG.
Collapse
|
4
|
Mejido DCP, de Oliveira JM, Gaspar AMC, Gardinali NR, Bottino FDO, de Carvalho LG, Lopes dos Santos DR, Kevorkian YB, Xavier LL, Moran J, Pelajo-Machado M, Marchevsky RS, Pinto MA. Evidences of HEV genotype 3 persistence and reactivity in liver parenchyma from experimentally infected cynomolgus monkeys (Macaca fascicularis). PLoS One 2019; 14:e0218472. [PMID: 31211801 PMCID: PMC6581283 DOI: 10.1371/journal.pone.0218472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
Hepatitis E virus genotype 3 (HEV-3) is an emerging zoonotic pathogen, responsible for sporadic cases of acute hepatitis E worldwide. Primate models have proven to be an essential tool for the study of HEV pathogenesis. Here we describe the outcomes of HEV infection in Macaca fascicularis (cynomolgus) inoculated experimentally with genotype 3. Eight adult cynomolgus macaques were inoculated intravenously with HEV-3 viral particles isolated from swine and human samples. Liver, spleen, duodenum, gallbladder and bile were sequential assessed up to the end-point of this study, 67 days post-inoculation (dpi). Our previously published findings showed that biochemical parameters return gradually to baseline levels at 55 dpi, whereas anti-HEV IgM and HEV RNA become undetectable in the serum and feces of all animals, indicating a non-viremic phase of recovery. Nevertheless, at a later stage during convalescence (67 dpi), the presence of HEV-3 RNA and antigen persist in central organs, even after peripheral viral clearance. Our results show that two cynomolgus inoculated with swine HEV-3 (animals I3 and O1) presented persistence of HEV RNA low titers in liver, gallbladder and bile. At this same stage of infection, HEV antigen (HEV Ag) could be detected in all infected animals, predominantly in non-reactive Kupffer cells (CD68+iNOS-) and sinusoidal lining cells. Simultaneously, CD4+, CD3+CD4+, and CD3+CD8+ immune cells were identified in hepatic sinusoids and small inflammatory clusters of lobular mononuclear cells, at the end-point of this study. Inability of HEV clearance in humans can result in chronic hepatitis, liver cirrhosis, with subsequent liver failure requiring transplantation. The results of our study support the persistence of HEV-3 during convalescence at 67 dpi, with active immune response in NHP. We alert to the inherent risk of viral transmission through liver transplantation, even in the absence of clinical and biochemical signs of acute infection. Thus, besides checking conventional serological markers of HEV infection, we strongly recommend HEV-3 RNA and antigen detection in liver explants as public health measure to prevent donor-recipient transmission and spread of hepatitis E.
Collapse
Affiliation(s)
- Diana Chaves Pereira Mejido
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brasil
| | - Jaqueline Mendes de Oliveira
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brasil
| | - Ana Maria Coimbra Gaspar
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brasil
| | - Noemi Rovaris Gardinali
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brasil
| | - Fernanda de Oliveira Bottino
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brasil
| | | | - Debora Regina Lopes dos Santos
- Departament of Veterinary Microbiology and Immunology, Federal Rural University of Rio De Janeiro, Rio de Janeiro, Brasil
| | - Yohan Brito Kevorkian
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brasil
| | - Leandro Layter Xavier
- Laboratory of Morphometry, Institute of Biology, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brasil
| | - Julio Moran
- Laboratory of Pathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brasil
| | | | - Renato Sergio Marchevsky
- Laboratory of Control of Neurovirulence, Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
| | - Marcelo Alves Pinto
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brasil
- * E-mail:
| |
Collapse
|
5
|
Savarin C, Bergmann CC. Fine Tuning the Cytokine Storm by IFN and IL-10 Following Neurotropic Coronavirus Encephalomyelitis. Front Immunol 2018; 9:3022. [PMID: 30619363 PMCID: PMC6306494 DOI: 10.3389/fimmu.2018.03022] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022] Open
Abstract
The central nervous system (CNS) is vulnerable to several viral infections including herpes viruses, arboviruses and HIV to name a few. While a rapid and effective immune response is essential to limit viral spread and mortality, this anti-viral response needs to be tightly regulated in order to limit immune mediated tissue damage. This balance between effective virus control with limited pathology is especially important due to the highly specialized functions and limited regenerative capacity of neurons, which can be targets of direct virus cytolysis or bystander damage. CNS infection with the neurotropic strain of mouse hepatitis virus (MHV) induces an acute encephalomyelitis associated with focal areas of demyelination, which is sustained during viral persistence. Both innate and adaptive immune cells work in coordination to control virus replication. While type I interferons are essential to limit virus spread associated with early mortality, perforin, and interferon-γ promote further virus clearance in astrocytes/microglia and oligodendrocytes, respectively. Effective control of virus replication is nonetheless associated with tissue damage, characterized by demyelinating lesions. Interestingly, the anti-inflammatory cytokine IL-10 limits expansion of tissue lesions during chronic infection without affecting viral persistence. Thus, effective coordination of pro- and anti-inflammatory cytokines is essential during MHV induced encephalomyelitis in order to protect the host against viral infection at a limited cost.
Collapse
Affiliation(s)
- Carine Savarin
- Department of Neuroscience, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH, United States
| | - Cornelia C Bergmann
- Department of Neuroscience, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH, United States
| |
Collapse
|
6
|
Zhou YH. Be cautious in comparing the seroprevalence of hepatitis E detected at different years in different countries. Liver Int 2018; 38:2340. [PMID: 29851276 DOI: 10.1111/liv.13895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- Yi-Hua Zhou
- Departments of Laboratory Medicine and Infectious Diseases, Nanjing Drum Tower Hospital and Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, China
| |
Collapse
|