1
|
Finn RN, Cerdà J. Genetic adaptations for the oceanic success of fish eggs. Trends Genet 2024; 40:540-554. [PMID: 38395683 DOI: 10.1016/j.tig.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/25/2024]
Abstract
Genetic adaptations of organisms living in extreme environments are fundamental to our understanding of where life can evolve. Water is the single limiting parameter in this regard, yet when released in the oceans, the single-celled eggs of marine bony fishes (teleosts) have no means of acquiring it. They are strongly hyposmotic to seawater and lack osmoregulatory systems. Paradoxically, modern teleosts successfully release vast quantities of eggs in the extreme saline environment and recorded the most explosive radiation in vertebrate history. Here, we highlight key genetic adaptations that evolved to solve this paradox by filling the pre-ovulated eggs with water. The degree of water acquisition is uniquely prevalent to marine teleosts, permitting the survival and oceanic dispersal of their eggs.
Collapse
Affiliation(s)
- Roderick Nigel Finn
- Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway; Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, (Cerdanyola del Vallès), Spain.
| | - Joan Cerdà
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, (Cerdanyola del Vallès), Spain; Institute of Marine Sciences, Spanish National Research Council (CSIC), 08003 Barcelona, Spain.
| |
Collapse
|
2
|
Pouliquen DL. The biophysics of water in cell biology: perspectives on a keystone for both marine sciences and cancer research. Front Cell Dev Biol 2024; 12:1403037. [PMID: 38803391 PMCID: PMC11128620 DOI: 10.3389/fcell.2024.1403037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
The biophysics of water, has been debated over more than a century. Although its importance is still underestimated, significant breakthroughs occurred in recent years. The influence of protein condensation on water availability control was documented, new findings on water-transport proteins emerged, and the way water molecules rearrange to minimize free energy at interfaces was deciphered, influencing membrane thermodynamics. The state of knowledge continued to progress in the field of deep-sea marine biology, highlighting unknown effects of high hydrostatic pressure and/or temperature on interactions between proteins and ligands in extreme environments, and membrane structure adaptations. The role of osmolytes in protein stability control under stress is also discussed here in relation to fish egg hydration/buoyancy. The complexity of water movements within the cell is updated, all these findings leading to a better view of their impact on many cellular processes. The way water flow and osmotic gradients generated by ion transport work together to produce the driving force behind cell migration is also relevant to both marine biology and cancer research. Additional common points concern water dynamic changes during the neoplastic transformation of cells and tissues, or embryo development. This could improve imaging techniques, early cancer diagnosis, and understanding of the molecular and physiological basis of buoyancy for many marine species.
Collapse
Affiliation(s)
- Daniel L. Pouliquen
- Inserm, CNRS, CRCINA, Nantes Université, University of Angers, Angers, France
| |
Collapse
|
3
|
Ferré A, Chauvigné F, Zapater C, Finn RN, Cerdà J. Aquaporin splice variation differentially modulates channel function during marine teleost egg hydration. PLoS One 2023; 18:e0294814. [PMID: 38011134 PMCID: PMC10681232 DOI: 10.1371/journal.pone.0294814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
Aquaporin-mediated oocyte hydration is a developmentally regulated adaptive mechanism that co-occurs with meiosis resumption in marine teleosts. It provides the early embryos with vital water until osmoregulatory systems develop, and in the majority of marine teleosts causes their eggs to float. Recent studies have shown that the subdomains of two water channels (Aqp1ab1 and Aqp1ab2) encoded in a teleost-specific aquaporin-1 cluster (TSA1C) co-evolved with duplicated Ywhaz-like (14-3-3ζ-like) binding proteins to differentially control their membrane trafficking for maximal egg hydration. Here, we report that in species that encode the full TSA1C, in-frame intronic splice variants of Aqp1ab1 result in truncated proteins that cause dominant-negative inhibition of the canonical channel trafficking to the plasma membrane. The inhibition likely occurs through hetero-oligomerization and retention in the endoplasmic reticulum (ER) and ultimate degradation. Conversely, in species that only encode the Aqp1ab2 channel we found an in-frame intronic splice variant that results in an intact protein with an extended extracellular loop E, and an out-of frame intronic splice variant with exon readthrough that results in a truncated protein. Both isoforms cause dominant-negative enhancement of the degradation pathway. However, the extended and truncated Aqp1ab2-type variants can also partially escape from the ER to reach the oocyte plasma membrane, where they dominantly-negatively inhibit water flux. The ovarian follicular expression ratios of the Aqp1ab2 isoforms in relation to the canonical channel are lowest during oocyte hydration, but subsequently highest when the canonical channel is recycled, thus leaving the eggs endowed with >90% water. These findings suggest that the expression of inhibitory isoforms of Aqp1ab1 and Aqp1ab2 may represent a new regulatory mechanism through which the cell-surface expression and the activity of the canonical channels can be physiologically modulated during oocyte hydration in marine teleosts.
Collapse
Affiliation(s)
- Alba Ferré
- Institute of Agrifood Research and Technology (IRTA)-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - François Chauvigné
- Institute of Marine Sciences, Spanish National Research Council (CSIC), Barcelona, Spain
| | - Cinta Zapater
- Institute of Aquaculture Torre de la Sal, Spanish National Research Council (CSIC), Castellón, Spain
| | - Roderick Nigel Finn
- Institute of Agrifood Research and Technology (IRTA)-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Joan Cerdà
- Institute of Agrifood Research and Technology (IRTA)-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Ferré A, Chauvigné F, Gozdowska M, Kulczykowska E, Finn RN, Cerdà J. Neurohypophysial and paracrine vasopressinergic signaling regulates aquaporin trafficking to hydrate marine teleost oocytes. Front Endocrinol (Lausanne) 2023; 14:1222724. [PMID: 37635977 PMCID: PMC10454913 DOI: 10.3389/fendo.2023.1222724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
The dual aquaporin (Aqp1ab1/Aqp1ab2)-mediated hydration of marine teleost eggs, which occurs during oocyte meiosis resumption (maturation), is considered a key adaptation underpinning their evolutionary success in the oceans. However, the endocrine signals controlling this mechanism are almost unknown. Here, we investigated whether the nonapeptides arginine vasopressin (Avp, formerly vasotocin) and oxytocin (Oxt, formerly isotocin) are involved in marine teleost oocyte hydration using the gilthead seabream (Sparus aurata) as a model. We show that concomitant with an increased systemic production of Avp and Oxt, the nonapeptides are also produced and accumulated locally in the ovarian follicles during oocyte maturation and hydration. Functional characterization of representative Avp and Oxt receptor subtypes indicates that Avpr1aa and Oxtrb, expressed in the postvitellogenic oocyte, activate phospholipase C and protein kinase C pathways, while Avpr2aa, which is highly expressed in the oocyte and in the follicular theca and granulosa cells, activates the cAMP-protein kinase A (PKA) cascade. Using ex vivo, in vitro and mutagenesis approaches, we determined that Avpr2aa plays a major role in the PKA-mediated phosphorylation of the aquaporin subdomains driving membrane insertion of Aqp1ab2 in the theca and granulosa cells, and of Aqp1ab1 and Aqp1ab2 in the distal and proximal regions of the oocyte microvilli, respectively. The data further indicate that luteinizing hormone, which surges during oocyte maturation, induces the synthesis of Avp in the granulosa cells via progestin production and the nuclear progestin receptor. Collectively, our data suggest that both the neurohypophysial and paracrine vasopressinergic systems integrate to differentially regulate the trafficking of the Aqp1ab-type paralogs via a common Avp-Avpr2aa-PKA pathway to avoid competitive occupancy of the same plasma membrane space and maximize water influx during oocyte hydration.
Collapse
Affiliation(s)
- Alba Ferré
- Institute of Agrifood Research and Technology (IRTA)-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - François Chauvigné
- Institute of Marine Sciences, Spanish National Research Council (CSIC), Barcelona, Spain
| | - Magdalena Gozdowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Ewa Kulczykowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Roderick Nigel Finn
- Institute of Agrifood Research and Technology (IRTA)-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Joan Cerdà
- Institute of Agrifood Research and Technology (IRTA)-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Nynca J, Słowińska M, Wiśniewska J, Jastrzębski J, Dobosz S, Ciereszko A. Ovarian transcriptome analysis of diploid and triploid rainbow trout revealed new pathways related to gonadal development and fertility. Animal 2022; 16:100594. [PMID: 35870268 DOI: 10.1016/j.animal.2022.100594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
Triploidisation represents several advantages (e.g. sterility) and therefore is routinely applied in aquaculture of several commercially important fish species, including rainbow trout. The comparative transcriptomic analysis of ovaries of triploid (3N) and diploid (2N) female rainbow trout revealed a total of 9 075 differentially expressed genes (DEGs; 4 105 genes upregulated in 2N and 4 970 genes upregulated in 3N ovaries, respectively). Identified clusters for DEGs upregulated in 3N and 2N ovaries were different, including carbohydrate and lipid metabolic process and transport, protein modification, signalling (related to folliculogenesis) and response to stimulus for DEGs upregulated in 2N, and developmental process, signalling (related to apoptosis, cellular senescence and adherence junctions) and regulation of RNA metabolic process for DEGs upregulated in 3N. The enrichment of processes involved in carbohydrate and lipid metabolism in 2N ovaries indicated high metabolism of ovarian tissue and the energy reservoir generation indispensable during the earliest stages of development. Our results highlight the importance of oocyte hydration along with oestrogen, insulin, leptin, fibroblast growth factor, and Notch signalling and pathways related to the regulation of cyclic adenosine monophosphate (cAMP) levels in proper oocyte meiotic maturation prior to ovulation in 2N ovaries. Conversely, triploidisation may lead to an increase in ovarian cellular senescence and apoptosis, which in turn can result in abnormal gonadal morphology and fibrosis. The downregulation of genes responsible for the precise regulation of meiosis and proper chromosome segregation during meiosis probably affects meiotic maturation via irregular meiotic division of chromosomes. The induction of triploidy of the rainbow trout genome resulted in enhanced expression of male-specific genes, genes responsible for re-establishing the transcriptional balance after genome reorganisation and genes involved in regulatory mechanisms, including gene silencing and DNA methylation. To the best of our knowledge, this is the first genome-wide investigation providing in-depth comprehensive and comparative gene expression patterns in the ovary from 2N and 3N rainbow trout females helping in elucidating the molecular mechanisms leading to impaired gonadal development and sterility of female triploids.
Collapse
Affiliation(s)
- J Nynca
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| | - M Słowińska
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - J Wiśniewska
- Department of Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - J Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - S Dobosz
- Inland Fisheries Institute, Department of Salmonid Research, Żukowo, Poland
| | - A Ciereszko
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
6
|
Drechsel V, Schneebauer G, Fiechtner B, Cutler CP, Pelster B. Aquaporin expression and cholesterol content in eel swimbladder tissue. JOURNAL OF FISH BIOLOGY 2022; 100:609-618. [PMID: 34882794 PMCID: PMC9302985 DOI: 10.1111/jfb.14973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 05/08/2023]
Abstract
Leakiness of the swimbladder wall of teleost fishes must be prevented to avoid diffusional loss of gases out of the swimbladder. Guanine incrustation as well as high concentrations of cholesterol in swimbladder membranes in midwater and deep-sea fish has been connected to a reduced gas permeability of the swimbladder wall. On the contrary, the swimbladder is filled by diffusion of gases, mainly oxygen and CO2 , from the blood and the gas gland cells into the swimbladder lumen. In swimbladder tissue of the zebrafish and the Japanese eel, aquaporin mRNA has been detected, and the aquaporin protein has been considered important for the diffusion of water, which may accidentally be gulped by physostome fish when taking an air breath. In the present study, the expression of two aquaporin 1 genes (Aqp1aa and Aqp1ab) in the swimbladder tissue of the European eel, a functional physoclist fish, was assessed using immunohistochemistry, and the expression of both genes was detected in endothelial cells of swimbladder capillaries as well as in basolateral membranes of gas gland cells. In addition, Aqp1ab was present in apical membranes of swimbladder gas gland cells. The authors also found high concentrations of cholesterol in these membranes, which were several fold higher than in muscle tissue membranes. In yellow eels the cholesterol concentration exceeded the concentration detected in silver eel swimbladder membranes. The authors suggest that aquaporin 1 in swimbladder gas gland cells and endothelial cells facilitates CO2 diffusion into the blood, enhancing the switch-on of the Root effect, which is essential for the secretion of oxygen into the swimbladder. It may also facilitate CO2 diffusion into the swimbladder lumen along the partial gradient established by CO2 production in gas gland cells. Cholesterol has been shown to reduce the gas permeability of membranes and thus could contribute to the gas tightness of swimbladder membranes, which is essential to avoid diffusional loss of gas out of the swimbladder.
Collapse
Affiliation(s)
- Victoria Drechsel
- Institute of ZoologyUniversity of InnsbruckInnsbruckAustria
- Center for Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
| | - Gabriel Schneebauer
- Institute of ZoologyUniversity of InnsbruckInnsbruckAustria
- Center for Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
| | - Birgit Fiechtner
- Institute of ZoologyUniversity of InnsbruckInnsbruckAustria
- Center for Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
| | | | - Bernd Pelster
- Institute of ZoologyUniversity of InnsbruckInnsbruckAustria
- Center for Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
7
|
Aquaporins and Animal Gamete Cryopreservation: Advances and Future Challenges. Animals (Basel) 2022; 12:ani12030359. [PMID: 35158682 PMCID: PMC8833750 DOI: 10.3390/ani12030359] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Cryopreservation is the method for the long-term preservation of gametes and embryos. In recent years, intensive research has focused on improving cryopreservation protocols for the determination of optimal freezing conditions and cryoprotective agents’ concentration for each cell type. The optimal cryopreservation protocol comprises the adequate balance between the freezing rate and the correct concentration of cryoprotective agents to achieve controlled cellular dehydration and minimal intracellular ice formation. Osmoregulation is, therefore, central in cryobiology. Water and some solutes can cross the plasma membrane, whereas facilitating transport takes a great part in intracellular/extracellular fluid homeostasis. Cells express water channels known as aquaporins that facilitate the transport of water and small uncharged solutes on their plasma membrane, including some cryoprotective agents. This review explores the expression and the function of aquaporins in gametes and embryos. In addition, the putative role of aquaporins for cryopreservation procedures is discussed. Abstract Cryopreservation is globally used as a method for long-term preservation, although freeze-thawing procedures may strongly impair the gamete function. The correct cryopreservation procedure is characterized by the balance between freezing rate and cryoprotective agents (CPAs), which minimizes cellular dehydration and intracellular ice formation. For this purpose, osmoregulation is a central process in cryopreservation. During cryopreservation, water and small solutes, including penetrating cryoprotective agents, cross the plasma membrane. Aquaporins (AQPs) constitute a family of channel proteins responsible for the transport of water, small solutes, and certain gases across biological membranes. Thirteen homologs of AQPs (AQP0-12) have been described. AQPs are widely distributed throughout the male and female reproductive systems, including the sperm and oocyte membrane. The composition of the male and female gamete membrane is of special interest for assisted reproductive techniques (ART), including cryopreservation. In this review, we detail the mechanisms involved in gamete cryopreservation, including the most used techniques and CPAs. In addition, the expression and function of AQPs in the male and female gametes are explored, highlighting the potential protective role of AQPs against damage induced during cryopreservation.
Collapse
|
8
|
Catalán-García M, Chauvigné F, Stavang JA, Nilsen F, Cerdà J, Finn RN. Lineage-level divergence of copepod glycerol transporters and the emergence of isoform-specific trafficking regulation. Commun Biol 2021; 4:643. [PMID: 34059783 PMCID: PMC8167128 DOI: 10.1038/s42003-021-01921-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/26/2021] [Indexed: 02/04/2023] Open
Abstract
Transmembrane conductance of small uncharged solutes such as glycerol typically occurs through aquaglyceroporins (Glps), which are commonly encoded by multiple genes in metazoan organisms. To date, however, little is known concerning the evolution of Glps in Crustacea or what forces might underly such apparent gene redundancy. Here, we show that Glp evolution in Crustacea is highly divergent, ranging from single copy genes in species of pedunculate barnacles, tadpole shrimps, isopods, amphipods and decapods to up to 10 copies in diplostracan water fleas although with monophyletic origins in each lineage. By contrast the evolution of Glps in Copepoda appears to be polyphyletic, with surprisingly high rates of gene duplication occurring in a genera- and species-specific manner. Based upon functional experiments on the Glps from a parasitic copepod (Lepeophtheirus salmonis), we show that such lineage-level gene duplication and splice variation is coupled with a high rate of neofunctionalization. In the case of L. salmonis, splice variation of a given gene resulted in tissue- or sex-specific expression of the channels, with each variant evolving unique sites for protein kinase C (PKC)- or protein kinase A (PKA)-regulation of intracellular membrane trafficking. The combined data sets thus reveal that mutations favouring a high fidelity control of intracellular trafficking regulation can be a selection force for the evolution and retention of multiple Glps in copepods.
Collapse
Affiliation(s)
- Marc Catalán-García
- Department of Biological Sciences, Bergen High Technology Centre, University of Bergen, Bergen, Norway
- IRTA-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain
| | - François Chauvigné
- IRTA-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain
| | - Jon Anders Stavang
- Department of Biological Sciences, Bergen High Technology Centre, University of Bergen, Bergen, Norway
| | - Frank Nilsen
- Department of Biological Sciences, Bergen High Technology Centre, University of Bergen, Bergen, Norway
| | - Joan Cerdà
- IRTA-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain.
| | - Roderick Nigel Finn
- Department of Biological Sciences, Bergen High Technology Centre, University of Bergen, Bergen, Norway.
- IRTA-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain.
| |
Collapse
|
9
|
The Xenopus Oocyte as an Expression System for Functional Analyses of Fish Aquaporins. Methods Mol Biol 2021. [PMID: 33606219 DOI: 10.1007/978-1-0716-0970-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Aquaporins are membrane proteins present in all organisms that selectively transport water and small, uncharged solutes across biological membranes along an osmotic gradient. Recent gene editing technologies in zebrafish (Danio rerio) have started to uncover the physiological functions of the aquaporins in teleosts, but these approaches require methods to establish the effects of specific mutations on channel function. The oocytes of the South African frog Xenopus laevis are widely used for the expression of bacterial, plant, and animal aquaporins, and this heterologous system has contributed to numerous discoveries in aquaporin biology. This chapter focuses on techniques used for oocyte preparation and aquaporin expression and gives an overview of specific methods to determine water and solute permeability of the channels and their intracellular trafficking in oocytes.
Collapse
|
10
|
Unravelling the Complex Duplication History of Deuterostome Glycerol Transporters. Cells 2020; 9:cells9071663. [PMID: 32664262 PMCID: PMC7408487 DOI: 10.3390/cells9071663] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022] Open
Abstract
Transmembrane glycerol transport is an ancient biophysical property that evolved in selected subfamilies of water channel (aquaporin) proteins. Here, we conducted broad level genome (>550) and transcriptome (>300) analyses to unravel the duplication history of the glycerol-transporting channels (glps) in Deuterostomia. We found that tandem duplication (TD) was the major mechanism of gene expansion in echinoderms and hemichordates, which, together with whole genome duplications (WGD) in the chordate lineage, continued to shape the genomic repertoires in craniates. Molecular phylogenies indicated that aqp3-like and aqp13-like channels were the probable stem subfamilies in craniates, with WGD generating aqp9 and aqp10 in gnathostomes but aqp7 arising through TD in Osteichthyes. We uncovered separate examples of gene translocations, gene conversion, and concerted evolution in humans, teleosts, and starfishes, with DNA transposons the likely drivers of gene rearrangements in paleotetraploid salmonids. Currently, gene copy numbers and BLAST are poor predictors of orthologous relationships due to asymmetric glp gene evolution in the different lineages. Such asymmetries can impact estimations of divergence times by millions of years. Experimental investigations of the salmonid channels demonstrated that approximately half of the 20 ancestral paralogs are functional, with neofunctionalization occurring at the transcriptional level rather than the protein transport properties. The combined findings resolve the origins and diversification of glps over >800 million years old and thus form the novel basis for proposing a pandeuterostome glp gene nomenclature.
Collapse
|
11
|
Kannan A, Panneerselvam A, Mariajoseph-Antony LF, Loganathan C, Prahalathan C. Role of Aquaporins in Spermatogenesis and Testicular Steroidogenesis. J Membr Biol 2020; 253:109-114. [DOI: 10.1007/s00232-020-00114-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/14/2020] [Indexed: 01/25/2023]
|
12
|
Chauvigné F, Yilmaz O, Ferré A, Fjelldal PG, Finn RN, Cerdà J. The vertebrate Aqp14 water channel is a neuropeptide-regulated polytransporter. Commun Biol 2019; 2:462. [PMID: 31840107 PMCID: PMC6906440 DOI: 10.1038/s42003-019-0713-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022] Open
Abstract
Water channels (aquaporins) were originally discovered in mammals with fourteen subfamilies now identified (AQP0-13). Here we show that a functional Aqp14 subfamily phylogenetically related to AQP4-type channels exists in all vertebrate lineages except hagfishes and eutherian mammals. In contrast to the water-selective classical aquaporins, which have four aromatic-arginine constriction residues, Aqp14 proteins present five non-aromatic constriction residues and facilitate the permeation of water, urea, ammonia, H2O2 and glycerol. Immunocytochemical assays suggest that Aqp14 channels play important osmoregulatory roles in piscine seawater adaptation. Our data indicate that Aqp14 intracellular trafficking is tightly regulated by the vasotocinergic/isotocinergic neuropeptide and receptor systems, whereby protein kinase C and A transduction pathways phosphorylate highly conserved C-terminal residues to control channel plasma membrane insertion. The neuropeptide regulation of Aqp14 channels thus predates the vasotocin/vasopressin regulation of AQP2-5-6 orthologs observed in tetrapods. These findings demonstrate that vertebrate Aqp14 channels represent an ancient subfamily of neuropeptide-regulated polytransporters.
Collapse
Affiliation(s)
- François Chauvigné
- IRTA-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, (Cerdanyola del Vallès) Spain
| | - Ozlem Yilmaz
- Department of Biological Sciences, Bergen High Technology Centre, University of Bergen, 5020 Bergen, Norway
| | - Alba Ferré
- IRTA-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, (Cerdanyola del Vallès) Spain
| | - Per Gunnar Fjelldal
- Institute of Marine Research, Matre Aquaculture Research Station, 5984 Matredal, Norway
| | - Roderick Nigel Finn
- IRTA-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, (Cerdanyola del Vallès) Spain
- Department of Biological Sciences, Bergen High Technology Centre, University of Bergen, 5020 Bergen, Norway
| | - Joan Cerdà
- IRTA-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, (Cerdanyola del Vallès) Spain
| |
Collapse
|
13
|
Carnevali O, Maradonna F, Sagrati A, Candelma M, Lombardo F, Pignalosa P, Bonfanti E, Nocillado J, Palma P, Gioacchini G, Elizur A. Insights on the seasonal variations of reproductive features in the Eastern Atlantic Bluefin Tuna. Gen Comp Endocrinol 2019; 282:113216. [PMID: 31278920 DOI: 10.1016/j.ygcen.2019.113216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023]
Abstract
The Atlantic Bluefin Tuna (ABFT, Thunnus thynnus) is one of the most intensely exploited fisheries resources in the world. In spite of the years of studies on ABFT, basic aspects of its reproductive biology remain uncertain. To gain insight regarding the seasonal changes of the reproductive characteristics of the eastern stock of ABFT, blood and tissue samples were collected from mature specimens caught in the Mediterranean basin during the reproductive (May-June) and non-reproductive season (Oct-Nov). Histological analysis of the gonads of May-June samples indicated that there were females which were actively spawning (contained post-ovulatory follicles) and females that were not actively spawning that had previtellogenic and fully vitellogenic oocytes. In males, testis were at early or late stage of spermatogenesis during the reproductive season. In Oct-Nov, ovaries contained mostly previtellogenic oocytes as well as β and α atretic follicles while the testis predominantly contained spermatogonia and few cysts with spermatocytes and spermatozoa. Gonadosomatic index (GSI) in females was highest among the actively spawning individuals while in males GSI was higher in early and late spermatogenic individuals compared to those that were spent. Plasma sex steroids levels varied with the reproductive season. In females, estradiol (E2), was higher in May-June while testosterone (T) and progesterone (P) did not vary. In males, E2 and T were higher in May-June while P levels were similar at the two sampling points. Circulating follicle stimulating hormone (FSH) was higher in Oct-Nov than in May-June both in males and females. Vitellogenin (VTG) was detected in plasma from both males and females during the reproductive season with levels in females significantly higher than in males. VTG was undetected in Oct-Nov samples. Since choriogenesis is an important event during follicle growth, the expression of three genes involved in vitelline envelope formation and hardening was measured and results showed significantly higher levels in ovaries in fish caught in May-June with respect to those sampled in Oct-Nov. In addition, a set of genes encoding for ion channels that are responsible for oocyte hydration and buoyancy, as well as sperm viability, were characterized at the two time points, and these were found to be more highly expressed in females during the reproductive season. Finally, the expression level of three mRNAs encoding for different lipid-binding proteins was analyzed with significantly higher levels detected in males, suggesting sex-specific expression. Our findings provide additional information on the reproductive biology of ABFT, particularly on biomarkers for the assessment of the state of maturation of the gonad, highlighting gender-specific signals and seasonal differences.
Collapse
Affiliation(s)
- Oliana Carnevali
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Francesca Maradonna
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Andrea Sagrati
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Michela Candelma
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Francesco Lombardo
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | | | - Erica Bonfanti
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; Genecology Research Centre, University of the Sunshine Coast, Qld, Australia
| | - Josephine Nocillado
- Genecology Research Centre, University of the Sunshine Coast, Qld, Australia
| | - Peter Palma
- Genecology Research Centre, University of the Sunshine Coast, Qld, Australia; Aquaculture Department, Southeast Asian Fisheries Development Center, 5021 Tigbauan, Iloilo, Philippines
| | - Giorgia Gioacchini
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Abigail Elizur
- Genecology Research Centre, University of the Sunshine Coast, Qld, Australia
| |
Collapse
|
14
|
Chauvigné F, Parhi J, Ducat C, Ollé J, Finn RN, Cerdà J. The cellular localization and redistribution of multiple aquaporin paralogs in the spermatic duct epithelium of a maturing marine teleost. J Anat 2018; 233:177-192. [PMID: 29806093 DOI: 10.1111/joa.12829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2018] [Indexed: 12/15/2022] Open
Abstract
Aquaporin-mediated fluid transport in the mammalian efferent duct and epididymis is believed to play a role in sperm maturation and concentration. In fish, such as the marine teleost gilthead seabream (Sparus aurata), the control of fluid homeostasis in the spermatic duct seems also to be crucial for male fertility, but no information exists on the expression and distribution of aquaporins. In this study, reverse transcriptase-polymerase chain reaction and immunoblotting analyses, employing available and newly raised paralog-specific antibodies for seabream aquaporins, indicate that up to nine functional aquaporins, Aqp0a, -1aa, -1ab, -3a, -4a, -7, -8bb, -9b and -10b, are expressed in the spermatic duct. Immunolocalization of the channels in the resting spermatic duct reveals that Aqp0a, -1aa, -4a, -7 and -10b are expressed in the monolayered luminal epithelium, Aqp8b and -9b in smooth muscle fibers, and Aqp1ab and -3a in different interstitial lamina cells. In the epithelial cells, Aqp0a and -1aa are localized in the short apical microvilli, and Aqp4a and -10b show apical and basolateral staining, whereas Aqp7 is solely detected in vesicular compartments. Upon spermiation, an elongation of the epithelial cells sterocilia, as well as the folding of the epithelium, is observed. At this stage, single- and double-immunostaining, using two aquaporin paralogs or the Na+ /K+ -ATPase membrane marker, indicate that Aqp1ab, -3a, -7, -8bb and -9b staining remains unchanged, whereas in epithelial cells Aqp1aa translation is supressed, Aqp4a internalizes, and Aqp0a and -10b accumulate in the apical, lateral and basal plasma membrane. These findings uncover a cell type- and region-specific distribution of multiple aquaporins in the piscine spermatic duct, which shares conserved features of the mammalian system. The data therefore suggest that aquaporins may play different roles in the regulation of fluid homeostasis and sperm maturation in the male reproductive tract of fish.
Collapse
Affiliation(s)
- François Chauvigné
- Group of Comparative Molecular Physiology, IRTA-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Janmejay Parhi
- Fish Genetics and Reproduction Department, College of Fisheries, Central Agricultural University, Lembucherra, Tripura, India
| | - Carla Ducat
- Group of Comparative Molecular Physiology, IRTA-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Judith Ollé
- Group of Comparative Molecular Physiology, IRTA-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Roderick Nigel Finn
- Group of Comparative Molecular Physiology, IRTA-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Department of Biological Sciences, Bergen High Technology Centre, University of Bergen, Bergen, Norway
| | - Joan Cerdà
- Group of Comparative Molecular Physiology, IRTA-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
15
|
Yeste M, Morató R, Rodríguez-Gil JE, Bonet S, Prieto-Martínez N. Aquaporins in the male reproductive tract and sperm: Functional implications and cryobiology. Reprod Domest Anim 2017; 52 Suppl 4:12-27. [DOI: 10.1111/rda.13082] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- M Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm); Unit of Cell Biology; Department of Biology; Institute of Food and Agricultural Technology; Faculty of Sciences; University of Girona; Girona Spain
| | - R Morató
- Biotechnology of Animal and Human Reproduction (TechnoSperm); Unit of Cell Biology; Department of Biology; Institute of Food and Agricultural Technology; Faculty of Sciences; University of Girona; Girona Spain
- Unit of Animal Reproduction; Department of Animal Medicine and Surgery; Faculty of Veterinary Medicine; Autonomous University of Barcelona; Bellaterra (Cerdanyola del Vallès) Barcelona Spain
| | - JE Rodríguez-Gil
- Unit of Animal Reproduction; Department of Animal Medicine and Surgery; Faculty of Veterinary Medicine; Autonomous University of Barcelona; Bellaterra (Cerdanyola del Vallès) Barcelona Spain
| | - S Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm); Unit of Cell Biology; Department of Biology; Institute of Food and Agricultural Technology; Faculty of Sciences; University of Girona; Girona Spain
| | - N Prieto-Martínez
- Biotechnology of Animal and Human Reproduction (TechnoSperm); Unit of Cell Biology; Department of Biology; Institute of Food and Agricultural Technology; Faculty of Sciences; University of Girona; Girona Spain
| |
Collapse
|