1
|
The Consistency of Yields and Chemical Composition of HTL Bio-Oils from Lignins Produced by Different Preprocessing Technologies. ENERGIES 2022. [DOI: 10.3390/en15134707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
This work evaluates the effect of feedstock type and composition on the conversion of lignin to liquid by solvolysis with formic acid as hydrogen donor (LtL), by analyzing the yields and molecular composition of the liquid products and interpreting them in terms of both the type and the preprocessing of the lignocellulosic biomass using chemometric data analysis. Lignin samples of different types and purities from softwood, hardwood, and grasses (rice straw and corn stover) have been converted to bio-oil, and the molecular composition analyzed and quantified using GC-MS. LtL solvolysis was found to be a robust method for lignin conversion in terms of converting all samples into bio-oils rich in phenolic compounds regardless of the purity of the lignin sample. The bio-oil yields ranged from 24–94 wt.% relative to lignin input and could be modelled well as a function of the elemental composition of the feedstock. On a molecular basis, the softwood-derived bio-oil contained the most guaiacol-derivatives, and syringol was correlated to hardwood. However, the connection between compounds in the bio-oil and lignin origin was less pronounced than the effects of the methods for biomass fractionation, showing that the pretreatment of the biomass dominates both the yield and molecular composition of the bio-oil and must be addressed as a primary concern when utilization of lignin in a biorefinery is planned.
Collapse
|
2
|
Raj V, Raorane CJ, Lee JH, Lee J. Appraisal of Chitosan-Gum Arabic-Coated Bipolymeric Nanocarriers for Efficient Dye Removal and Eradication of the Plant Pathogen Botrytis cinerea. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47354-47370. [PMID: 34596375 DOI: 10.1021/acsami.1c12617] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The treatment of textile wastewater comprising many dyes as contaminants endures an essential task for environmental remediation. In addition, combating antifungal multidrug resistance (MDR) is an intimidating task, specifically owing to the limited options of alternative drugs with multitarget drug mechanisms. Incorporating natural polymeric biomaterials for drug delivery provides desirable properties for drug molecules, effectively eradicating MDR fungal growth. The current study fabricated the bipolymeric drug delivery system using chitosan-gum arabic-coated liposome 5ID nanoparticles (CS-GA-5ID-LP-NPs). This study focused on improving the solubility and sustained release profile of 5I-1H-indole (5ID). These NPs were characterized and tested mechanically as a dye adsorbent as well as their antifungal potencies against the plant pathogen, Botrytis cinerea. CS-GA-5ID-LP-NPs showed 71.23% congo red dye removal compared to crystal violet and phenol red from water and effectively had an antifungal effect on B. cinerea at 25 μg/mL MIC concentrations. The mechanism of the inhibition of B. cinerea via CS-GA-5ID-LP-NPs was attributed to stabilized microtubule polymerization in silico and in vitro. This study opens a new avenue for designing polymeric NPs as adsorbents and antifungal agents for environmental and agriculture remediation.
Collapse
Affiliation(s)
- Vinit Raj
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
3
|
Riyadi FA, Tahir AA, Yusof N, Sabri NSA, Noor MJMM, Akhir FNMD, Othman N, Zakaria Z, Hara H. Enzymatic and genetic characterization of lignin depolymerization by Streptomyces sp. S6 isolated from a tropical environment. Sci Rep 2020; 10:7813. [PMID: 32385385 PMCID: PMC7210275 DOI: 10.1038/s41598-020-64817-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 04/23/2020] [Indexed: 11/13/2022] Open
Abstract
The conversion of lignocellulosic biomass into bioethanol or biochemical products requires a crucial pretreatment process to breakdown the recalcitrant lignin structure. This research focuses on the isolation and characterization of a lignin-degrading bacterial strain from a decaying oil palm empty fruit bunch (OPEFB). The isolated strain, identified as Streptomyces sp. S6, grew in a minimal medium with Kraft lignin (KL) as the sole carbon source. Several known ligninolytic enzyme assays were performed, and lignin peroxidase (LiP), laccase (Lac), dye-decolorizing peroxidase (DyP) and aryl-alcohol oxidase (AAO) activities were detected. A 55.3% reduction in the molecular weight (Mw) of KL was observed after 7 days of incubation with Streptomyces sp. S6 based on gel-permeation chromatography (GPC). Gas chromatography-mass spectrometry (GC-MS) also successfully highlighted the production of lignin-derived aromatic compounds, such as 3-methyl-butanoic acid, guaiacol derivatives, and 4,6-dimethyl-dodecane, after treatment of KL with strain S6. Finally, draft genome analysis of Streptomyces sp. S6 also revealed the presence of strong lignin degradation machinery and identified various candidate genes responsible for lignin depolymerization, as well as for the mineralization of the lower molecular weight compounds, confirming the lignin degradation capability of the bacterial strain.
Collapse
Affiliation(s)
- Fatimah Azizah Riyadi
- Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Analhuda Abdullah Tahir
- Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Nurtasbiyah Yusof
- Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Nurul Syazwani Ahmad Sabri
- Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Megat Johari Megat Mohd Noor
- Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Fazrena Nadia M D Akhir
- Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Nor'azizi Othman
- Department of Mechanical Precision Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Zuriati Zakaria
- Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Hirofumi Hara
- Department of Chemical Process Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| |
Collapse
|