1
|
Preventive aerobic training preserves sympathovagal function and improves DNA repair capacity of peripheral blood mononuclear cells in rats with cardiomyopathy. Sci Rep 2022; 12:6422. [PMID: 35440673 PMCID: PMC9018832 DOI: 10.1038/s41598-022-09361-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/03/2022] [Indexed: 11/09/2022] Open
Abstract
To evaluate the effect of preventive aerobic exercise training on sympathovagal function, cardiac function, and DNA repair capacity in a preclinical model of doxorubicin (DOX)-induced cardiomyopathy. Forty male Wistar-Kyoto rats were allocated into four groups (n = 10/group): D (DOX-treated) and C (controls) remained sedentary, and DT (DOX-trained) and CT (control-trained) performed aerobic training 4 days/week, during 4 weeks before exposure to DOX (4 mg/kg/week during 4 weeks) or saline solution. We evaluated cardiac function (echocardiography), hemodynamic and sympathovagal modulation (artery-femoral cannulation), cardiac troponin T levels, and DNA repair capacity (comet assay). Exercise training preserved ejection fraction (D: − 14.44% vs. DT: − 1.05%, p < 0.001), fractional shortening (D: − 8.96% vs. DT: − 0.27%, p = 0.025) and troponin T levels (D: 6.4 ± 3.6 vs. DT: 2.8 ± 1.7 ng/mL, p = 0.010). DOX increased heart rate variability (C: 27.7 ± 7.9 vs. D: 7.5 ± 2.2 ms2, p < 0.001) and induced sympathovagal dysfunction (LF/HF, C: 0.37 ± 0.15 vs. D: 0.15 ± 0.15, p = 0.036) through exacerbation of sympathetic function (LF, C: 0.22 ± 0.01 vs. D: 0.48 ± 0.24 Hz, p = 0.019). Peripheral mononuclear blood cells of DT animals presented lower residual DNA damage (D: 43.4 ± 8.4% vs. DT: 26 ± 3.4%, p = 0.003 after 1 h). Cardioprotective effects of preventive aerobic exercise training are mediated by preservation of sympathovagal function and improvement of DNA repair capacity of peripheral blood mononuclear cells.
Collapse
|
2
|
Yan Z, Zeng N, Li J, Liao T, Ni G. Cardiac Effects of Treadmill Running at Different Intensities in a Rat Model. Front Physiol 2021; 12:774681. [PMID: 34912240 PMCID: PMC8667026 DOI: 10.3389/fphys.2021.774681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/09/2021] [Indexed: 02/05/2023] Open
Abstract
Purpose: In this study, we investigated the effect of treadmill exercise training on cardiac hypertrophy, collagen deposition, echo parameters and serum levels of cardiac troponin I (cTnI) in rats, and how they differ with various exercise intensities, hence exploring potential signal transduction. Methods: Male Sprague-Dawley rats were randomly divided into sedentary (SED), low-intensity running (LIR), medium-intensity running (MIR), and high-intensity running (HIR) groups. Each exercise group had 3 subgroups that were sacrificed for cardiac tissue analyses at 1, 4, and 8 weeks, respectively, and all rats participated in a daily 1 h treadmill routine 5 days per week. Echocardiographic measurements were performed 24 h after the last exercise session. Additionally, myocardium samples and blood were collected for histological and biochemical examinations. Changes in the extracellular signal-regulated kinases 1/2 (ERK1/2) signal pathway were detected by Western blotting. Results: After a week of running, ventricular myocyte size and the phosphorylation of ERK1/2 increased in the HIR group, while left ventricular (LV) diastolic diameter values and LV relative wall thickness increased in the LIR and MIR groups. In addition, we observed heart enlargement, cTnI decrease, and ERK1/2 signal activation in each of the exercise groups after 4 weeks of running. However, the HIR group displayed substantial rupture and increased fibrosis in myocardial tissue. In addition, compared with the LIR and MIR groups, 8 weeks of HIR resulted in structural damage, fiber deposition, and increased cTnI. However, there was no difference in the activation of ERK1/2 signaling between the exercise and SED groups. Conclusion: The effect of running on cardiac hypertrophy was intensity dependent. In contrast to LIR and MIR, the cardiac hypertrophy induced by 8 weeks of HIR was characterized by potential cardiomyocyte injury, which increased the risk of pathological development. Furthermore, the ERK signaling pathway was mainly involved in the compensatory hypertrophy process of the myocardium in the early stage of exercise and was positively correlated with exercise load. However, long-term exercise may attenuate ERK signaling activation.
Collapse
Affiliation(s)
- Zhipeng Yan
- Department of Rehabilitation Medicine, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ni Zeng
- Department of Rehabilitation Medicine, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Jieting Li
- Department of Rehabilitation Medicine, Fuzhou Second Affiliated Hospital, Xiamen University, Fuzhou, China
| | - Tao Liao
- Department of Rehabilitation Medicine, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Guoxin Ni
- Department of Rehabilitation Medicine, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- *Correspondence: Guoxin Ni,
| |
Collapse
|
3
|
Penna C, Alloatti G, Crisafulli A. Mechanisms Involved in Cardioprotection Induced by Physical Exercise. Antioxid Redox Signal 2020; 32:1115-1134. [PMID: 31892282 DOI: 10.1089/ars.2019.8009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significance: Regular exercise training can reduce myocardial damage caused by acute ischemia/reperfusion (I/R). Exercise can reproduce the phenomenon of ischemic preconditioning, due to the capacity of brief periods of ischemia to reduce myocardial damage caused by acute I/R. In addition, exercise may also activate the multiple kinase cascade responsible for cardioprotection even in the absence of ischemia. Recent Advances: Animal and human studies highlighted the fact that, besides to reduce risk factors related to cardiovascular disease, the beneficial effects of exercise are also due to its ability to induce conditioning of the heart. Exercise behaves as a physiological stress that triggers beneficial adaptive cellular responses, inducing a protective phenotype in the heart. The factors contributing to the exercise-induced heart preconditioning include stimulation of the anti-radical defense system and nitric oxide production, opioids, myokines, and adenosine-5'-triphosphate (ATP) dependent potassium channels. They appear to be also involved in the protective effect exerted by exercise against cardiotoxicity related to chemotherapy. Critical Issues and Future Directions: Although several experimental evidences on the protective effect of exercise have been obtained, the mechanisms underlying this phenomenon have not yet been fully clarified. Further studies are warranted to define precise exercise prescriptions in patients at risk of myocardial infarction or undergoing chemotherapy.
Collapse
Affiliation(s)
- Claudia Penna
- National Institute for Cardiovascular Research (INRC), Bologna, Italy.,Department of Clinical and Biological Sciences, University of Turin, Torino, Italy
| | | | - Antonio Crisafulli
- Department of Medical Sciences and Public Health, Sports Physiology Lab., University of Cagliari, Cagliari, Italy
| |
Collapse
|
4
|
Abstract
Data from observational studies indicate that both physical activity as well as exercise (ie, structured physical activity) is associated with reductions in the risk of recurrence and cancer mortality after a diagnosis of certain forms of cancer. Emerging evidence from preclinical studies indicates that physical activity/exercise paradigms regulate intratumoral vascular maturity and perfusion, hypoxia, and metabolism and augments the antitumor immune response. Such responses may, in turn, enhance response to standard anticancer treatments. For instance, exercise improves efficacy of chemotherapeutic agents, and there is rationale to believe that it will also improve radiotherapy response. This review overviews the current preclinical as well as clinical evidence supporting exercise modulation of therapeutic response and postulated biological mechanisms underpinning such effects. We also examine the implications for tumor response to radiation, chemotherapy, and immunotherapy.
Collapse
Affiliation(s)
- Kathleen A Ashcraft
- Departments of Radiation Oncology, Duke University School of Medicine, Durham, NC
| | | | - Lee W Jones
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.; Weill Cornell Medical College, New York, NY
| | - Mark W Dewhirst
- Departments of Radiation Oncology, Duke University School of Medicine, Durham, NC..
| |
Collapse
|
5
|
Krzesiak A, Cognard C, Sebille S, Carré G, Bosquet L, Delpech N. High-intensity intermittent training is as effective as moderate continuous training, and not deleterious, in cardiomyocyte remodeling of hypertensive rats. J Appl Physiol (1985) 2019; 126:903-915. [PMID: 30702976 DOI: 10.1152/japplphysiol.00131.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Exercise training offers possible nonpharmacological therapy for cardiovascular diseases including hypertension. High-intensity intermittent exercise (HIIE) training has been shown to have as much or even more beneficial cardiovascular effect in patients with cardiovascular diseases than moderate-intensity continuous exercise (CMIE) training. The aim of this study was to investigate the effects of the two types of training on cardiac remodeling of spontaneously hypertensive rats (SHR) induced by hypertension. Eight-week-old male SHR and normotensive Wistar-Kyoto rats (WKY) were divided into four groups: normotensive and hypertensive control (WKY and SHR-C) and hypertensive trained with CMIE (SHR-T CMIE) or HIIE (SHR-T HIIE). After 8 wk of training or inactivity, maximal running speed (MRS), arterial pressure, and heart weight were all assessed. CMIE or HIIE protocols not only increased final MRS and left ventricular weight/body weight ratio but also reduced mean arterial pressure compared with sedentary group. Then, left ventricular tissue was enzymatically dissociated, and isolated cardiomyocytes were used to highlight the changes induced by physical activity at morphological, mechanical, and molecular levels. Both types of training induced restoration of transverse tubule regularity, decrease in spark site density, and reduction in half-relaxation time of calcium transients. HIIE training, in particular, decreased spark amplitude and width, and increased cardiomyocyte contractility and the expression of sarco(endo)plasmic reticulum Ca2+-ATPase and phospholamban phosphorylated on serine 16. NEW & NOTEWORTHY High-intensity intermittent exercise training induces beneficial remodeling of the left ventricular cardiomyocytes of spontaneously hypertensive rats at the morphological, mechanical, and molecular levels. Results also confirm, at the cellular level, that this type of training, as it appears not to be deleterious, could be applied in rehabilitation of hypertensive patients.
Collapse
Affiliation(s)
- A Krzesiak
- Equipe Transferts Ioniques et Rythmicité Cellulaire, Laboratory Signalisation et Transports Ioniques Membranaires, Université de Poitiers, EA 7349, Faculté des Sciences Fondamentales et Appliquées , Poitiers , France.,Laboratoire Mobilité, Vieillissement, and Exercice, EA 6314, Université de Poitiers, Faculté des Sciences du Sport , Poitiers , France
| | - C Cognard
- Equipe Transferts Ioniques et Rythmicité Cellulaire, Laboratory Signalisation et Transports Ioniques Membranaires, Université de Poitiers, EA 7349, Faculté des Sciences Fondamentales et Appliquées , Poitiers , France
| | - S Sebille
- Equipe Transferts Ioniques et Rythmicité Cellulaire, Laboratory Signalisation et Transports Ioniques Membranaires, Université de Poitiers, EA 7349, Faculté des Sciences Fondamentales et Appliquées , Poitiers , France
| | - G Carré
- Equipe Transferts Ioniques et Rythmicité Cellulaire, Laboratory Signalisation et Transports Ioniques Membranaires, Université de Poitiers, EA 7349, Faculté des Sciences Fondamentales et Appliquées , Poitiers , France
| | - L Bosquet
- Laboratoire Mobilité, Vieillissement, and Exercice, EA 6314, Université de Poitiers, Faculté des Sciences du Sport , Poitiers , France
| | - N Delpech
- Laboratoire Mobilité, Vieillissement, and Exercice, EA 6314, Université de Poitiers, Faculté des Sciences du Sport , Poitiers , France
| |
Collapse
|
6
|
Ryffel CP, Eser P, Trachsel LD, Brugger N, Wilhelm M. Age at start of endurance training is associated with patterns of left ventricular hypertrophy in middle-aged runners. Int J Cardiol 2018; 267:133-138. [PMID: 29957253 DOI: 10.1016/j.ijcard.2018.04.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/06/2018] [Accepted: 04/23/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Left ventricular hypertrophy (LVH) is a physiological adaptation to long-term endurance training. We investigated the impact of age at start of endurance training on LV geometry in a cohort of male, middle-aged, non-elite endurance athletes. METHODS A total of 121 healthy, normotensive, Caucasian participants of a 10-mile race were recruited and assessed with an echocardiogram and a comprehensive interview. Athletes were classified based on patterns of LVH. RESULTS Thirty-five athletes (31%) had LVH. Athletes with eccentric LVH (16%) were significantly younger at start of endurance training compared to athletes with concentric LVH (15%, 14 ± 5 years vs. 31 ± 8 years; P < 0.001). Although the yearly volume of endurance training was comparable between athletes with eccentric and concentric LVH, athletes with eccentric LVH had shorter race times. All athletes with an increased LV end diastolic volume index (LVEDVI; ≥74 ml/m2) started endurance training before or at age 25. CONCLUSIONS In our cohort of non-elite middle-aged runners, eccentric LVH was found only in athletes with an early start of endurance training. In case of a mature starting age, endurance training may, contrary to what is commonly assumed, also lead to concentric LVH. The consideration of endurance training starting age may lead to a better understanding of morphological adaptations of the heart.
Collapse
Affiliation(s)
- Christoph P Ryffel
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland
| | - Prisca Eser
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland
| | - Lukas D Trachsel
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland
| | - Nicolas Brugger
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland
| | - Matthias Wilhelm
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland.
| |
Collapse
|