1
|
Wagemans J, Holtappels D, Vainio E, Rabiey M, Marzachì C, Herrero S, Ravanbakhsh M, Tebbe CC, Ogliastro M, Ayllón MA, Turina M. Going Viral: Virus-Based Biological Control Agents for Plant Protection. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:21-42. [PMID: 35300520 DOI: 10.1146/annurev-phyto-021621-114208] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The most economically important biotic stresses in crop production are caused by fungi, oomycetes, insects, viruses, and bacteria. Often chemical control is still the most commonly used method to manage them. However, the development of resistance in the different pathogens/pests, the putative damage on the natural ecosystem, the toxic residues in the field, and, thus, the contamination of the environment have stimulated the search for saferalternatives such as the use of biological control agents (BCAs). Among BCAs, viruses, a major driver for controlling host populations and evolution, are somewhat underused, mostly because of regulatory hurdles that make the cost of registration of such host-specific BCAs not affordable in comparison with the limited potential market. Here, we provide a comprehensive overview of the state of the art of virus-based BCAs against fungi, bacteria, viruses, and insects, with a specific focus on new approaches that rely on not only the direct biocidal virus component but also the complex ecological interactions between viruses and their hosts that do not necessarily result in direct damage to the host.
Collapse
Affiliation(s)
| | | | - Eeva Vainio
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Mojgan Rabiey
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Cristina Marzachì
- Istituto per la Protezione Sostenibile delle Piante, CNR, Torino, Italy;
| | - Salvador Herrero
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | | | - Christoph C Tebbe
- Thünen Institute of Biodiversity, Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig, Germany
| | | | - María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
- Departamento Biotecnología-Biología Vegetal, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Massimo Turina
- Istituto per la Protezione Sostenibile delle Piante, CNR, Torino, Italy;
| |
Collapse
|
2
|
Czékus Z, Iqbal N, Pollák B, Martics A, Ördög A, Poór P. Role of ethylene and light in chitosan-induced local and systemic defence responses of tomato plants. JOURNAL OF PLANT PHYSIOLOGY 2021; 263:153461. [PMID: 34217837 DOI: 10.1016/j.jplph.2021.153461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Plant defence responses can be triggered by the application of elicitors for example chitosan (β-1,4-linked glucosamine; CHT). It is well-known that CHT induces rapid, local production of reactive oxygen species (ROS) and nitric oxide (NO) resulting in fast stomatal closure. Systemic defence responses are based primarily on phytohormones such as ethylene (ET) and salicylic acid (SA), moreover on the expression of hormone-mediated defence genes and proteins. At the same time, these responses can be dependent also on external factors, such as light but its role was less-investigated. Based on our result in intact tomato plants (Solanum lycopersicum L.), CHT treatment not only induced significant ET emission and stomatal closure locally but also promoted significant production of superoxide which was also detectable in the distal, systemic leaves. However, these changes in ET and superoxide accumulation were detected only in wild type (WT) plants kept in light and were inhibited under darkness as well as in ET receptor Never ripe (Nr) mutants suggesting pivotal importance of ET and light in inducing resistance both locally and systemically upon CHT. Interestingly, CHT-induced NO production was mostly independent of ET or light. At the same time, expression of Pathogenesis-related 3 (PR3) was increased locally in both genotypes in the light and in WT leaves under darkness. This was also observed in distal leaves of WT plants. The CHT-induced endoplasmic reticulum (ER) stress, as well as unfolded protein response (UPR) were examined for the first time, via analysis of the lumenal binding protein (BiP). Whereas local expression of BiP was not dependent on the availability of light or ET, systemically it was mediated by ET.
Collapse
Affiliation(s)
- Zalán Czékus
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép Fasor 52, Hungary; Doctoral School of Biology, University of Szeged, Szeged, Hungary.
| | - Nadeem Iqbal
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép Fasor 52, Hungary; Doctoral School of Environmental Sciences, University of Szeged, Szeged, Hungary.
| | - Boglárka Pollák
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép Fasor 52, Hungary.
| | - Atina Martics
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép Fasor 52, Hungary.
| | - Attila Ördög
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép Fasor 52, Hungary.
| | - Péter Poór
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép Fasor 52, Hungary.
| |
Collapse
|
3
|
Wang Z, Zhu W, Chen F, Yue L, Ding Y, Xu H, Rasmann S, Xiao Z. Nanosilicon enhances maize resistance against oriental armyworm (Mythimna separata) by activating the biosynthesis of chemical defenses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146378. [PMID: 33725595 DOI: 10.1016/j.scitotenv.2021.146378] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/23/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Silicon, in its nanoscale form, has shown plant-promoting and insecticidal properties. To date, however, we lack mechanistic evidence for how nanoscale silicon influences the regulation of plant chemical defenses against herbivore attacks. To address this gap, we compared the effect of Si nanodots (NDs) and sodium silicate, a conventional silicate fertilizer, on maize (Zea mays L.) chemical defenses against the oriental armyworm (Mythimna separata, Walker) caterpillars. We found that Si NDs and sodium silicate additions, at the dose of 50 mg/L, significantly inhibited the growth of caterpillars by 53.5% and 34.2%, respectively. This increased plant resistance was associated with a 44.2% increase in the production of chlorogenic acid, as well as the expression of PAL, C4H, 4CL, C3H and HCT, core genes involved in the biosynthesis of chlorogenic acid, by 1.7, 2.4, 1.9, 1.8 and 4.5 folds, respectively. Particularly, in the presence of M. separata, physiological changes in maize plants treated with 50 mg/L Si NDs, including changes in shoot biomass, leaf nutrients (e.g., K, P, Si), and chemical defense compounds (e.g., chlorogenic acid, total phenolics), were higher than those of plants added with equivalent concentrations of conventional silicate fertilizer. Taken together, our findings indicate that Si, in nanoscale form, could replace synthetic pesticides, and be implemented for a more effective and ecologically-sound management of insect pests in maize crop farming.
Collapse
Affiliation(s)
- Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wenqing Zhu
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Ying Ding
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Hao Xu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Sergio Rasmann
- Institute of Biology, University of Neuchâtel, Rue-Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Zhenggao Xiao
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
4
|
Verma ML, Kumar P, Sharma D, Verma AD, Jana AK. Advances in Nanobiotechnology with Special Reference to Plant Systems. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-12496-0_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
5
|
Antimicrobial Silver Nanoparticles: Future of Nanomaterials. NANOTECHNOLOGY IN THE LIFE SCIENCES 2019. [DOI: 10.1007/978-3-030-16534-5_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Gupta N, Upadhyaya CP, Singh A, Abd-Elsalam KA, Prasad R. Applications of Silver Nanoparticles in Plant Protection. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-3-319-91161-8_9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
|
8
|
Positive Impacts of Nanoparticles in Plant Resistance against Different Stimuli. NANOTECHNOLOGY IN THE LIFE SCIENCES 2018. [DOI: 10.1007/978-3-319-91161-8_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Nanoantimicrobials for Plant Pathogens Control: Potential Applications and Mechanistic Aspects. NANOTECHNOLOGY IN THE LIFE SCIENCES 2018. [DOI: 10.1007/978-3-319-91161-8_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Al-Dhabaan FA, Mostafa M, Almoammar H, Abd-Elsalam KA. Chitosan-Based Nanostructures in Plant Protection Applications. NANOTECHNOLOGY IN THE LIFE SCIENCES 2018:351-384. [DOI: 10.1007/978-3-319-91161-8_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
11
|
Mostafa M, Amal-Asran, Almoammar H, Abd-Elsalam KA. Nanoantimicrobials Mechanism of Action. NANOTECHNOLOGY IN THE LIFE SCIENCES 2018:281-322. [DOI: 10.1007/978-3-319-91161-8_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
12
|
Nanoparticle-Based Plant Disease Management: Tools for Sustainable Agriculture. NANOTECHNOLOGY IN THE LIFE SCIENCES 2018. [DOI: 10.1007/978-3-319-91161-8_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Mohamed MA, Hashim AF, Alghuthaymi MA, Abd-Elsalam KA. Nano-carbon: Plant Growth Promotion and Protection. NANOTECHNOLOGY IN THE LIFE SCIENCES 2018. [DOI: 10.1007/978-3-319-91161-8_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|