1
|
Prostate cancer management with lifestyle intervention: From knowledge graph to Chatbot. CLINICAL AND TRANSLATIONAL DISCOVERY 2022. [DOI: 10.1002/ctd2.29] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
2
|
Databases, Knowledgebases, and Software Tools for Virus Informatics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1368:1-19. [DOI: 10.1007/978-981-16-8969-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
He H, Shi M, Lin Y, Zhan C, Wu R, Bi C, Liu X, Ren S, Shen B. HFBD: a biomarker knowledge database for heart failure heterogeneity and personalized applications. Bioinformatics 2021; 37:4534-4539. [PMID: 34164644 DOI: 10.1093/bioinformatics/btab470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/08/2021] [Accepted: 06/22/2021] [Indexed: 02/05/2023] Open
Abstract
MOTIVATION Heart failure (HF) is a cardiovascular disease with a high incidence around the world. Accumulating studies have focused on the identification of biomarkers for HF precision medicine. To understand the HF heterogeneity and provide biomarker information for the personalized diagnosis and treatment of HF, a knowledge database collecting the distributed and multiple-level biomarker information is necessary. RESULTS In this study, the HF biomarker knowledge database (HFBD) was established by manually collecting the data and knowledge from literature in PubMed. HFBD contains 2618 records and 868 HF biomarkers (731 single and 137 combined) extracted from 1237 original articles. The biomarkers were classified into proteins, RNAs, DNAs, and the others at molecular, image, cellular and physiological levels. The biomarkers were annotated with biological, clinical and article information as well as the experimental methods used for the biomarker discovery. With its user-friendly interface, this knowledge database provides a unique resource for the systematic understanding of HF heterogeneity and personalized diagnosis and treatment of HF in the era of precision medicine. AVAILABILITY The platform is openly available at http://sysbio.org.cn/HFBD/.
Collapse
Affiliation(s)
- Hongxin He
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, Sichuan, China.,Center for Systems Biology, Soochow University, Suzhou 215006, China
| | - Manhong Shi
- Center for Systems Biology, Soochow University, Suzhou 215006, China.,College of Information and Network Engineering, Anhui Science and Technology University, Fengyang, Anhui, 233100, China
| | - Yuxin Lin
- Center for Systems Biology, Soochow University, Suzhou 215006, China
| | - Chaoying Zhan
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, Sichuan, China
| | - Rongrong Wu
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, Sichuan, China
| | - Cheng Bi
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, Sichuan, China.,Center for Systems Biology, Soochow University, Suzhou 215006, China
| | - Xingyun Liu
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, Sichuan, China
| | - Shumin Ren
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, Sichuan, China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, Sichuan, China
| |
Collapse
|
4
|
Bi C, Zhou S, Liu X, Zhu Y, Yu J, Zhang X, Shi M, Wu R, He H, Zhan C, Lin Y, Shen B. NDDRF: a risk factor knowledgebase for personalized prevention of neurodegenerative diseases. J Adv Res 2021; 40:223-231. [PMID: 36100329 PMCID: PMC9481935 DOI: 10.1016/j.jare.2021.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/01/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
A risk factor knowledgebase (NDDRF) is built for neurodegenerative diseases (NDDs). NDDRF collects the risk factors associated with diagnosis and prevention of NDDs. NDDRF is helpful to the systematic understanding of the heterogeneous NDDs NDDRF provides knowledge for personalized diagnosis and prevention of NDDs. NDDRF can be used to the future explainable artificial intelligent modeling.
Introduction Neurodegenerative diseases (NDDs) are a series of chronic diseases, which are associated with progressive loss of neuronal structure or function. The complex etiologies of the NDDs remain unclear, thus the prevention and early diagnosis of NDDs are critical to reducing the mortality and morbidity of these diseases. Objectives To provide a systematic understanding of the heterogeneity of the risk factors associated with different NDDs (pan-neurodegenerative diseases or pan-NDDs), the knowledgebase is established to facilitate the personalized and knowledge-guided diagnosis, prevention and prediction of NDDs. Methods Before data collection, the medical, life science and informatics experts as well as the potential users of the database were consulted and discussed for the scope of data and the classification of risk factors. The PubMed database was used as the resource of the data and knowledge extraction. Risk factors of NDDs were manually collected from literature published between 1975 and 2020. Results The comprehensive risk factors database for NDDs (NDDRF) was established including 998 single or combined risk factors, 2293 records and 1071 articles relevant to the 14 most common NDDs. The single risk factors are classified into 3 categories, i.e. epidemiological factors (469), genetic factors (324) and biochemical factors (153). Among all the factors, 179 factors are positive and protective, while 880 factors have negative influence for NDDs. The knowledgebase is available at http://sysbio.org.cn/NDDRF/. Conclusion NDDRF provides the structured information and knowledge resource on risk factors of NDDs. It could benefit the future systematic and personalized investigation of pan-NDDs genesis and progression. Meanwhile it may be used for the future explainable artificial intelligence modeling for smart diagnosis and prevention of NDDs.
Collapse
Affiliation(s)
- Cheng Bi
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610212, Sichuan, China; Center for Systems Biology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Shengrong Zhou
- Center for Systems Biology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Xingyun Liu
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610212, Sichuan, China; Center for Systems Biology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Yu Zhu
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610212, Sichuan, China; Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jia Yu
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610212, Sichuan, China; School of Clinical Medicine, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xueli Zhang
- Center for Systems Biology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Manhong Shi
- Center for Systems Biology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Rongrong Wu
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610212, Sichuan, China; Center for Systems Biology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Hongxin He
- Center for Systems Biology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Chaoying Zhan
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610212, Sichuan, China; Center for Systems Biology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Yuxin Lin
- Center for Systems Biology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610212, Sichuan, China.
| |
Collapse
|
5
|
Shen L, Bai J, Wang J, Shen B. The fourth scientific discovery paradigm for precision medicine and healthcare: Challenges ahead. PRECISION CLINICAL MEDICINE 2021; 4:80-84. [PMID: 35694156 PMCID: PMC8982559 DOI: 10.1093/pcmedi/pbab007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 02/05/2023] Open
Abstract
With the progression of modern information techniques, such as next generation sequencing (NGS), Internet of Everything (IoE) based smart sensors, and artificial intelligence algorithms, data-intensive research and applications are emerging as the fourth paradigm for scientific discovery. However, we face many challenges to practical application of this paradigm. In this article, 10 challenges to data-intensive discovery and applications in precision medicine and healthcare are summarized and the future perspectives on next generation medicine are discussed.
Collapse
Affiliation(s)
- Li Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinwei Bai
- Library of West-China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiao Wang
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Lin Y, Zhao X, Miao Z, Ling Z, Wei X, Pu J, Hou J, Shen B. Data-driven translational prostate cancer research: from biomarker discovery to clinical decision. J Transl Med 2020; 18:119. [PMID: 32143723 PMCID: PMC7060655 DOI: 10.1186/s12967-020-02281-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023] Open
Abstract
Prostate cancer (PCa) is a common malignant tumor with increasing incidence and high heterogeneity among males worldwide. In the era of big data and artificial intelligence, the paradigm of biomarker discovery is shifting from traditional experimental and small data-based identification toward big data-driven and systems-level screening. Complex interactions between genetic factors and environmental effects provide opportunities for systems modeling of PCa genesis and evolution. We hereby review the current research frontiers in informatics for PCa clinical translation. First, the heterogeneity and complexity in PCa development and clinical theranostics are introduced to raise the concern for PCa systems biology studies. Then biomarkers and risk factors ranging from molecular alternations to clinical phenotype and lifestyle changes are explicated for PCa personalized management. Methodologies and applications for multi-dimensional data integration and computational modeling are discussed. The future perspectives and challenges for PCa systems medicine and holistic healthcare are finally provided.
Collapse
Affiliation(s)
- Yuxin Lin
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Xiaojun Zhao
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Zhijun Miao
- Department of Urology, Suzhou Dushuhu Public Hospital, Suzhou, 215123, China
| | - Zhixin Ling
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Xuedong Wei
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jinxian Pu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Bairong Shen
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Yang Y, Xu C, Liu X, Xu C, Zhang Y, Shen L, Vihinen M, Shen B. NDDVD: an integrated and manually curated Neurodegenerative Diseases Variation Database. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:4922736. [PMID: 29688368 PMCID: PMC5841369 DOI: 10.1093/database/bay018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/31/2018] [Indexed: 12/21/2022]
Abstract
Neurodegenerative diseases (NDDs) are associated with genetic variations including point substitutions, copy number alterations, insertions and deletions. At present, a few genetic variation repositories for some individual NDDs have been created, however, these databases are needed to be integrated and expanded to all the NDDs for systems biological investigation. We here build a relational database termed as NDDVD to integrate all the variations of NDDs using Leiden Open Variation Database (LOVD) platform. The items in the NDDVD are collected manually from PubMed or extracted from the existed variation databases. The cross-disease database includes over 6374 genetic variations of 289 genes associated with 37 different NDDs. The patterns, conservations and biological functions for variations in different NDDs are statistically compared and a user-friendly interface is provided for NDDVD at: http://bioinf.suda.edu.cn/NDDvarbase/LOVDv.3.0. URL: http://bioinf.suda.edu.cn/NDDvarbase/LOVDv.3.0
Collapse
Affiliation(s)
- Yang Yang
- Center for Systems Biology, Soochow University, No1. Shizi Street, Suzhou, Jiangsu 215006, China.,School of Computer Science and Technology, Soochow University, No1. Shizi Street, Suzhou, Jiangsu 215006, China.,Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden and
| | - Chen Xu
- Center for Systems Biology, Soochow University, No1. Shizi Street, Suzhou, Jiangsu 215006, China
| | - Xingyun Liu
- Center for Systems Biology, Soochow University, No1. Shizi Street, Suzhou, Jiangsu 215006, China
| | - Chao Xu
- Center for Systems Biology, Soochow University, No1. Shizi Street, Suzhou, Jiangsu 215006, China
| | - Yuanyuan Zhang
- Center for Systems Biology, Soochow University, No1. Shizi Street, Suzhou, Jiangsu 215006, China
| | - Li Shen
- Center for Systems Biology, Soochow University, No1. Shizi Street, Suzhou, Jiangsu 215006, China.,Department of Genetics and Systems Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Mauno Vihinen
- Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden and
| | - Bairong Shen
- Center for Systems Biology, Soochow University, No1. Shizi Street, Suzhou, Jiangsu 215006, China
| |
Collapse
|