1
|
Ahmed T. Biomaterial-based in vitro 3D modeling of glioblastoma multiforme. CANCER PATHOGENESIS AND THERAPY 2023; 1:177-194. [PMID: 38327839 PMCID: PMC10846340 DOI: 10.1016/j.cpt.2023.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 02/09/2024]
Abstract
Adult-onset brain cancers, such as glioblastomas, are particularly lethal. People with glioblastoma multiforme (GBM) do not anticipate living for more than 15 months if there is no cure. The results of conventional treatments over the past 20 years have been underwhelming. Tumor aggressiveness, location, and lack of systemic therapies that can penetrate the blood-brain barrier are all contributing factors. For GBM treatments that appear promising in preclinical studies, there is a considerable rate of failure in phase I and II clinical trials. Unfortunately, access becomes impossible due to the intricate architecture of tumors. In vitro, bioengineered cancer models are currently being used by researchers to study disease development, test novel therapies, and advance specialized medications. Many different techniques for creating in vitro systems have arisen over the past few decades due to developments in cellular and tissue engineering. Later-stage research may yield better results if in vitro models that resemble brain tissue and the blood-brain barrier are used. With the use of 3D preclinical models made available by biomaterials, researchers have discovered that it is possible to overcome these limitations. Innovative in vitro models for the treatment of GBM are possible using biomaterials and novel drug carriers. This review discusses the benefits and drawbacks of 3D in vitro glioblastoma modeling systems.
Collapse
Affiliation(s)
- Tanvir Ahmed
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| |
Collapse
|
2
|
Alginate-Based Hydrogels and Scaffolds for Biomedical Applications. Mar Drugs 2023; 21:md21030177. [PMID: 36976226 PMCID: PMC10055882 DOI: 10.3390/md21030177] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Alginate is a natural polymer of marine origin and, due to its exceptional properties, has great importance as an essential component for the preparation of hydrogels and scaffolds for biomedical applications. The design of biologically interactive hydrogels and scaffolds with advanced, expected and required properties are one of the key issues for successful outcomes in the healing of injured tissues. This review paper presents the multifunctional biomedical applications of alginate-based hydrogels and scaffolds in selected areas, highlighting the key effect of alginate and its influence on the essential properties of the selected biomedical applications. The first part covers scientific achievements for alginate in dermal tissue regeneration, drug delivery systems, cancer treatment, and antimicrobials. The second part is dedicated to our scientific results obtained for the research opus of hydrogel materials for scaffolds based on alginate in synergy with different materials (polymers and bioactive agents). Alginate has proved to be an exceptional polymer for combining with other naturally occurring and synthetic polymers, as well as loading bioactive therapeutic agents to achieve dermal, controlled drug delivery, cancer treatment, and antimicrobial purposes. Our research was based on combinations of alginate with gelatin, 2-hydroxyethyl methacrylate, apatite, graphene oxide and iron(III) oxide, as well as curcumin and resveratrol as bioactive agents. Important features of the prepared scaffolds, such as morphology, porosity, absorption capacity, hydrophilicity, mechanical properties, in vitro degradation, and in vitro and in vivo biocompatibility, have shown favorable properties for the aforementioned applications, and alginate has been an important link in achieving these properties. Alginate, as a component of these systems, proved to be an indispensable factor and played an excellent “role” in the optimal adjustment of the tested properties. This study provides valuable data and information for researchers and demonstrates the importance of the role of alginate as a biomaterial in the design of hydrogels and scaffolds that are powerful medical “tools” for biomedical applications.
Collapse
|
3
|
Kulkarni N, Rao P, Jadhav GS, Kulkarni B, Kanakavalli N, Kirad S, Salunke S, Tanpure V, Sahu B. Emerging Role of Injectable Dipeptide Hydrogels in Biomedical Applications. ACS OMEGA 2023; 8:3551-3570. [PMID: 36743055 PMCID: PMC9893456 DOI: 10.1021/acsomega.2c05601] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023]
Abstract
Owing to their properties such as biocompatibility, tunable mechanical properties, permeability toward oxygen, nutrients, and the ability to hold a significant amount of water, hydrogels have wide applications in biomedical research. They have been engaged in drug delivery systems, 3D cell culture, imaging, and extracellular matrix (ECM) mimetics. Injectable hydrogels represent a major subset of hydrogels possessing advantages of site-specific conformation with minimal invasive techniques. It preserves the inherent properties of drug/biomolecules and is devoid of any side effects associated with surgery. Various polymeric materials utilized in developing injectable hydrogels are associated with the limitations of toxicity, immunogenicity, tedious manufacturing processes, and lack of easy synthetic tunability. Peptides are an important class of biomaterials that have interesting properties such as biocompatibility, stimuli responsiveness, shear thinning, self-healing, and biosignaling. They lack immunogenicity and toxicity. Therefore, numerous peptide-based injectable hydrogels have been explored in the past, and a few of them have reached the market. In recent years, minimalistic dipeptides have shown their ability to form stable hydrogels through cooperative noncovalent interactions. In addition to inherent properties of lengthy peptide-based injectable hydrogels, dipeptides have the unique advantages of low production cost, high synthetic accessibility, and higher stability. Given the instances of expanding significance of injectable peptide hydrogels in biomedical research and an emerging recent trend of dipeptide-based injectable hydrogels, a timely review on dipeptide-based injectable hydrogels shall highlight various aspects of this interesting class of biomaterials. This concise review that focuses on the dipeptide injectable hydrogel may stimulate the current trends of research on this class of biomaterial to translate its significance as interesting products for biomedical applications.
Collapse
Affiliation(s)
- Neeraj Kulkarni
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
| | - Prajakta Rao
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
- Quality
Operations, Novartis Healthcare Pvt. Ltd., Knowledge City, Raidurg, Hyderabad 500081, Telangana, India
| | - Govinda Shivaji Jadhav
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
| | - Bhakti Kulkarni
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
- Springer
Nature Technology and Publishing Solutions, Hadapsar, Pune 411013, Maharashtra, India
| | - Nagaraju Kanakavalli
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
- Aragen
Life Sciences Pvt, Ltd., Madhapur, Hyderabad 500076, Telangana, India
| | - Shivani Kirad
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
| | - Sujit Salunke
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
| | - Vrushali Tanpure
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
| | - Bichismita Sahu
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
| |
Collapse
|
4
|
Godugu C, Pasari LP, Khurana A, Anchi P, Saifi MA, Bansod SP, Annaldas S. Crocin, an active constituent of
Crocus sativus
ameliorates cerulein induced pancreatic inflammation and oxidative stress. Phytother Res 2019; 34:825-835. [DOI: 10.1002/ptr.6564] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 10/08/2019] [Accepted: 11/06/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Chandraiah Godugu
- Department of Regulatory ToxicologyNational Institute of Pharmaceutical Education and Research Balanagar, Hyderabad Telangana India
| | - Lakshmi P. Pasari
- Department of Regulatory ToxicologyNational Institute of Pharmaceutical Education and Research Balanagar, Hyderabad Telangana India
| | - Amit Khurana
- Department of Regulatory ToxicologyNational Institute of Pharmaceutical Education and Research Balanagar, Hyderabad Telangana India
| | - Pratibha Anchi
- Department of Regulatory ToxicologyNational Institute of Pharmaceutical Education and Research Balanagar, Hyderabad Telangana India
| | - Mohd A. Saifi
- Department of Regulatory ToxicologyNational Institute of Pharmaceutical Education and Research Balanagar, Hyderabad Telangana India
| | - Sapana P. Bansod
- Department of Regulatory ToxicologyNational Institute of Pharmaceutical Education and Research Balanagar, Hyderabad Telangana India
| | - Shivaraju Annaldas
- Department of Regulatory ToxicologyNational Institute of Pharmaceutical Education and Research Balanagar, Hyderabad Telangana India
| |
Collapse
|
5
|
Godugu C, Kumari P, Khurana A. Nanoyttria attenuates isoproterenol-induced cardiac injury. Nanomedicine (Lond) 2018; 13:2961-2980. [DOI: 10.2217/nnm-2018-0223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: The present study was designed to probe the cardioprotective effects of nanoyttria (NY). Materials & methods: NY was characterized using various techniques. Isoproterenol (ISO)-induced cardiotoxicity challenged mice were treated with NY for 28 days at two doses (0.4 and 4 mg/kg, intraperitoneally). Results: NY demonstrated free radical scavenging activity as shown by a 2,2-diphenyl-1-picrylhydrazyl assay. NY treatment showed alleviation of ISO-induced cardiotoxicity as evident from the reduction in biochemical parameters. The expression of proinflammatory cytokines (IL-1β, IL-6 and TNF-α) showed significant decrease upon NY treatment. Histopathology and ECG showed protection in histoarchitecture and rhythm of heart, respectively. Reduction in hydroxyproline and TGF-β1 expression indicated antifibrotic activity. Conclusion: We report for the first time that NY ameliorates ISO-induced cardiac remodeling.
Collapse
Affiliation(s)
- Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Balanagar, Hyderabad, Telangana State, PIN-500037, India
| | - Preeti Kumari
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Balanagar, Hyderabad, Telangana State, PIN-500037, India
| | - Amit Khurana
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Balanagar, Hyderabad, Telangana State, PIN-500037, India
| |
Collapse
|
6
|
Khurana A, Tekula S, Godugu C. Nanoceria suppresses multiple low doses of streptozotocin-induced Type 1 diabetes by inhibition of Nrf2/NF-κB pathway and reduction of apoptosis. Nanomedicine (Lond) 2018; 13:1905-1922. [DOI: 10.2217/nnm-2018-0085] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: The present study was designed to probe the antidiabetic effects of nanoceria (NC) in Type 1 diabetes (T1DM). Materials & methods: NC was characterized using scanning electron microscopy, Fourier transform IR, powder x-ray diffraction and zeta sizer. Multiple low doses of streptozotocin (40 mg/kg, intraperitoneally, five consecutive days) induced Type 1 diabetic Swiss mice were treated with NC at two doses (0.2 and 2 mg/kg, ip.). Results: NC treatment significantly reduced glucose levels and diabetogenesis to 50% (4/8 animals) at 0.2 mg/kg and 37.5% (3/8 animals) at 2.0 mg/kg doses. Cytokines (IL-6 and TNF-α; p < 0.048 at 2 mg/kg) and p65-NF-κB expression were diminished by NC treatment whereas the Nrf2 expression was enhanced by NC intervention indicating the role of modulation of NF-κB/Nrf2 pathway. NC exhibited promising superoxide dismutase 1 mimetic and anti-apoptotic activity. Conclusion: Considered together, our data establishes the antidiabetic potential of NC which may become a novel strategy to combat T1DM in the near future.
Collapse
Affiliation(s)
- Amit Khurana
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Balanagar, Hyderabad, Telangana State, India
| | - Sravani Tekula
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Balanagar, Hyderabad, Telangana State, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Balanagar, Hyderabad, Telangana State, India
| |
Collapse
|