Minhas R, Paterek A, Łapiński M, Bazała M, Korzh V, Winata CL. A novel conserved enhancer at zebrafish zic3 and zic6 loci drives neural expression.
Dev Dyn 2019;
248:837-849. [PMID:
31194899 PMCID:
PMC6771876 DOI:
10.1002/dvdy.69]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/28/2019] [Accepted: 06/07/2019] [Indexed: 01/15/2023] Open
Abstract
Background
Identifying enhancers and deciphering their putative roles represent a major step to better understand the mechanism of metazoan gene regulation, development, and the role of regulatory elements in disease. Comparative genomics and transgenic assays have been used with some success to identify critical regions that are involved in regulating the spatiotemporal expression of genes during embryogenesis.
Results
We identified two novel tetrapod‐teleost conserved noncoding elements within the vicinity of the zic3 and zic6 loci in the zebrafish genome and demonstrated their ability to drive tissue‐specific expression in a transgenic zebrafish assay. The syntenic analysis and robust green fluorescent expression in the developing habenula in the stable transgenic line were correlated with known sites of endogenous zic3 and zic6 expression.
Conclusion
This transgenic line that expresses green fluorescent protein in the habenula is a valuable resource for studying a specific population of cells in the zebrafish central nervous system. Our observations indicate that a genomic sequence that is conserved between humans and zebrafish acts as an enhancer that likely controls zic3 and zic6 expression.
Identified a novel enhancer near zebrafish zic3/zic6 locus.
The novel enhancer drives tissue‐specific expression in the habenula.
Zebrafish transgenic line generated in this study can be a useful resource for studying development of habenula.
Collapse