1
|
Drago L, Pennati A, Rothbächer U, Ashita R, Hashimoto S, Saito R, Fujiwara S, Ballarin L. Stress granule-related genes during embryogenesis of an invertebrate chordate. Front Cell Dev Biol 2024; 12:1414759. [PMID: 39149517 PMCID: PMC11324471 DOI: 10.3389/fcell.2024.1414759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/20/2024] [Indexed: 08/17/2024] Open
Abstract
Controlling global protein synthesis through the assembly of stress granules represents a strategy adopted by eukaryotic cells to face various stress conditions. TIA 1-related nucleolysin (TIAR), tristetraprolin (TTP), and Ras-GTPase-activating protein SH3-domain-binding protein (G3BP) are key components of stress granules, allowing the regulation of mRNA stability, and thus controlling not only stress responses but also cell proliferation and differentiation. In this study, we aimed at investigating the roles of tiar, ttp, and g3bp during embryogenesis of the solitary ascidian Ciona robusta under both physiological and stress conditions. We carried out CRISPR/Cas9 to evaluate the effects of gene knockout on normal embryonic development, and gene reporter assay to study the time and tissue specificity of gene transcription, together with whole-mount in situ hybridization and quantitative real time PCR. To induce acute stress conditions, we used iron and cadmium as "essential" and "non-essential" metals, respectively. Our results highlight, for the first time, the importance of tiar, ttp, and g3bp in controlling the development of mesendodermal tissue derivatives during embryogenesis of an invertebrate chordate.
Collapse
Affiliation(s)
- Laura Drago
- Department of Biology, University of Padova, Padua, Italy
| | | | - Ute Rothbächer
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
| | - Ryuji Ashita
- Department of Chemistry and Biotechnology, University of Kochi, Kochi, Japan
| | - Seika Hashimoto
- Department of Chemistry and Biotechnology, University of Kochi, Kochi, Japan
| | - Ryota Saito
- Department of Chemistry and Biotechnology, University of Kochi, Kochi, Japan
| | - Shigeki Fujiwara
- Department of Chemistry and Biotechnology, University of Kochi, Kochi, Japan
| | | |
Collapse
|
2
|
Lin B, Shi W, Lu Q, Shito TT, Yu H, Dong B. Establishment of a developmental atlas and transgenetic tools in the ascidian Styela clava. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:435-454. [PMID: 38045543 PMCID: PMC10689645 DOI: 10.1007/s42995-023-00200-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/28/2023] [Indexed: 12/05/2023]
Abstract
The ascidian Styela clava is an ecologically important species that is distributed along coastal regions worldwide. It has a long history as a model animal for evolutionary and developmental biology research owing to its phylogenetic position between vertebrates and invertebrates, and its classical mosaic expression patterns. However, the standard developmental atlas and protocols and tools for molecular manipulation of this organism are inadequate. In this study, we established a standard developmental table and provided a web-based digital image resource for S. clava embryogenesis at each developmental stage from fertilized eggs to hatching larvae by utilizing confocal laser microscopy and 3D reconstruction images. It takes around 10 h for fertilized eggs to develop into swimming larvae and 20-30 min to complete the tail regression processes at the metamorphic stage. We observed that the notochord cells in S. clava embryos did not produce an extracellular lumen like Ciona robusta, but showed polarized elongation behaviors, providing us an ideal comparative model to study tissue morphogenesis. In addition, we established a chemical-washing procedure to remove the chorion easily from the fertilized eggs. Based on the dechorionation technique, we further realized transgenic manipulation by electroporation and successfully applied tissue-specific fluorescent labeling in S. clava embryos. Our work provides a standard imaging atlas and powerful genetic tools for investigating embryogenesis and evolution using S. clava as a model organism. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00200-2.
Collapse
Affiliation(s)
- Boyan Lin
- Fang Zongxi Center, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Wenjie Shi
- Fang Zongxi Center, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Qiongxuan Lu
- Fang Zongxi Center, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Takumi T. Shito
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, 223-8522 Japan
| | - Haiyan Yu
- Fang Zongxi Center, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Bo Dong
- Fang Zongxi Center, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Laoshan Laboratory, Qingdao, 266237 China
- MoE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
3
|
Chung J, Newman-Smith E, Kourakis MJ, Miao Y, Borba C, Medina J, Laurent T, Gallean B, Faure E, Smith WC. A single oscillating proto-hypothalamic neuron gates taxis behavior in the primitive chordate Ciona. Curr Biol 2023; 33:3360-3370.e4. [PMID: 37490920 PMCID: PMC10528541 DOI: 10.1016/j.cub.2023.06.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/05/2023] [Accepted: 06/29/2023] [Indexed: 07/27/2023]
Abstract
Ciona larvae display a number of behaviors, including negative phototaxis. In negative phototaxis, the larvae first perform short spontaneous rhythmic casting swims. As larvae are cast in a light field, their photoreceptors are directionally shaded by an associated pigment cell, providing a phototactic cue. This then evokes an extended negative taxis swim. We report here that the larval forebrain of Ciona has a previously uncharacterized single slow-oscillating inhibitory neuron (neuron cor-assBVIN78) that projects to the midbrain, where it targets key interneurons of the phototaxis circuit known as the photoreceptor relay neurons. The anatomical location, gene expression, and oscillation of cor-assBVIN78 suggest homology to oscillating neurons of the vertebrate hypothalamus. Ablation of cor-assBVIN78 results in larvae showing extended phototaxis-like swims, even in the absence of phototactic cues. These results indicate that cor-assBVIN78 has a gating activity on phototaxis by projecting temporally oscillating inhibition to the photoreceptor relay neurons. However, in intact larvae, the frequency of cor-assBVIN78 oscillation does not match that of the rhythmic spontaneous swims, indicating that the troughs in oscillations do not themselves initiate swims but rather that cor-assBVIN78 may modulate the phototaxis circuit by filtering out low-level inputs while restricting them temporally to the troughs in inhibition.
Collapse
Affiliation(s)
- Janeva Chung
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Erin Newman-Smith
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Matthew J Kourakis
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Yishen Miao
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Cezar Borba
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Juan Medina
- College of Creative Studies, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Tao Laurent
- Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Benjamin Gallean
- Centre de Recherche de Biologie cellulaire de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Emmanuel Faure
- Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - William C Smith
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
4
|
Chung J, Newman-Smith E, Kourakis MJ, Miao Y, Borba C, Medina J, Laurent T, Gallean B, Faure E, Smith WC. A single oscillating proto-hypothalamic neuron gates taxis behavior in the primitive chordate Ciona. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538092. [PMID: 37162881 PMCID: PMC10168268 DOI: 10.1101/2023.04.24.538092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Ciona larvae display a number of behaviors, including negative phototaxis. In negative phototaxis, the larvae first perform short spontaneous rhythmic casting swims. As larvae cast in a light field, their photoreceptors are directionally shaded by an associated pigment cell, providing a phototactic cue. This then evokes an extended negative taxis swim. We report here that the larval forebrain of Ciona has a previously uncharacterized single slow-oscillating inhibitory neuron (neuron cor-assBVIN78 ) that projects to the midbrain, where it targets key interneurons of the phototaxis circuit known as the photoreceptor relay neurons . The anatomical location, gene expression and oscillation of cor-assBVIN78 suggest homology to oscillating neurons of the vertebrate hypothalamus. Ablation of cor-assBVIN78 results in larvae showing extended phototaxis-like swims, but which occur in the absence of phototactic cues. These results indicate that cor-assBVIN78 has a gating activity on phototaxis by projecting temporally-oscillating inhibition to the photoreceptor relay neurons. However, in intact larvae the frequency of cor-assBVIN78 oscillation does not match that of the rhythmic spontaneous swims, indicating that the troughs in oscillations do not themselves initiate swims, but rather that cor-assBVIN78 may modulate the phototaxis circuit by filtering out low level inputs while restricting them temporally to the troughs in inhibition.
Collapse
Affiliation(s)
- Janeva Chung
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA 93106
| | - Erin Newman-Smith
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA 93106
| | - Matthew J. Kourakis
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA 93106
| | - Yishen Miao
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA 93106
| | - Cezar Borba
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA 93106
| | - Juan Medina
- College of Creative Studies, University of California Santa Barbara, Santa Barbara, CA, USA 93106
| | - Tao Laurent
- Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier, Université de Montpellier,CNRS, Montpellier, France
| | - Benjamin Gallean
- Centre de Recherche de Biologie cellulaire de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Emmanuel Faure
- Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier, Université de Montpellier,CNRS, Montpellier, France
| | - William C Smith
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA 93106
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA 93106
| |
Collapse
|
5
|
Improved Genome Editing in the Ascidian Ciona with CRISPR/Cas9 and TALEN. Methods Mol Biol 2023; 2637:375-388. [PMID: 36773161 DOI: 10.1007/978-1-0716-3016-7_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The ascidian Ciona intestinalis type A (or Ciona robusta) is an important organism for elucidating the mechanisms that make the chordate body plan. CRISPR/Cas9 and TAL effector nuclease (TALEN) are widely used to quickly address genetic functions in Ciona. Our previously reported method of CRISPR/Cas9-mediated mutagenesis in this animal has inferior mutation rates compared to those of TALENs. We here describe an updated way to effectively mutate genes with CRISPR/Cas9 in Ciona. Although the construction of TALENs is much more laborious than that of CRISPR/Cas9, this technique is useful for tissue-specific knockouts that are not easy even by the optimized CRISPR/Cas9 method.
Collapse
|
6
|
Sakamoto A, Hozumi A, Shiraishi A, Satake H, Horie T, Sasakura Y. The
TRP
channel
PKD2
is involved in sensing the mechanical stimulus of adhesion for initiating metamorphosis in the chordate
Ciona. Dev Growth Differ 2022; 64:395-408. [DOI: 10.1111/dgd.12801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Aya Sakamoto
- Shimoda Marine Research Center University of Tsukuba, Shimoda Shizuoka Japan
| | - Akiko Hozumi
- Shimoda Marine Research Center University of Tsukuba, Shimoda Shizuoka Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences Kyoto Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences Kyoto Japan
| | - Takeo Horie
- Shimoda Marine Research Center University of Tsukuba, Shimoda Shizuoka Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center University of Tsukuba, Shimoda Shizuoka Japan
| |
Collapse
|
7
|
Krasovec G, Hozumi A, Yoshida T, Obita T, Hamada M, Shiraishi A, Satake H, Horie T, Mori H, Sasakura Y. d-Serine controls epidermal vesicle release via NMDA receptor, allowing tissue migration during the metamorphosis of the chordate Ciona. SCIENCE ADVANCES 2022; 8:eabn3264. [PMID: 35275721 PMCID: PMC8916719 DOI: 10.1126/sciadv.abn3264] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/20/2022] [Indexed: 05/26/2023]
Abstract
d-Serine, a free amino acid synthesized by serine racemase, is a coagonist of N-methyl-d-aspartate-type glutamate receptor (NMDAR). d-Serine in the mammalian central nervous system modulates glutamatergic transmission. Functions of d-serine in mammalian peripheral tissues such as skin have also been described. However, d-serine's functions in nonmammals are unclear. Here, we characterized d-serine-dependent vesicle release from the epidermis during metamorphosis of the tunicate Ciona. d-Serine leads to the formation of a pocket that facilitates the arrival of migrating tissue during tail regression. NMDAR is the receptor of d-serine in the formation of the epidermal pocket. The epidermal pocket is formed by the release of epidermal vesicles' content mediated by d-serine/NMDAR. This mechanism is similar to observations of keratinocyte vesicle exocytosis in mammalian skin. Our findings provide a better understanding of the maintenance of epidermal homeostasis in animals and contribute to further evolutionary perspectives of d-amino acid function among metazoans.
Collapse
Affiliation(s)
- Gabriel Krasovec
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
- Center for Chromosome Biology, National University of Ireland Galway, Galway, Ireland
| | - Akiko Hozumi
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Tomoyuki Yoshida
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Takayuki Obita
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Mayuko Hamada
- Ushimado Marine Institute, Okayama University, Okayama, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Osaka, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Osaka, Japan
| | - Takeo Horie
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| |
Collapse
|
8
|
Shimai K, Veeman M. Quantitative Dissection of the Proximal Ciona brachyury Enhancer. Front Cell Dev Biol 2022; 9:804032. [PMID: 35127721 PMCID: PMC8814421 DOI: 10.3389/fcell.2021.804032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
A major goal in biology is to understand the rules by which cis-regulatory sequences control spatially and temporally precise expression patterns. Here we present a systematic dissection of the proximal enhancer for the notochord-specific transcription factor brachyury in the ascidian chordate Ciona. The study uses a quantitative image-based reporter assay that incorporates a dual-reporter strategy to control for variable electroporation efficiency. We identified and mutated multiple predicted transcription factor binding sites of interest based on statistical matches to the JASPAR binding motif database. Most sites (Zic, Ets, FoxA, RBPJ) were selected based on prior knowledge of cell fate specification in both the primary and secondary notochord. We also mutated predicted Brachyury sites to investigate potential autoregulation as well as Fos/Jun (AP1) sites that had very strong matches to JASPAR. Our goal was to quantitatively define the relative importance of these different sites, to explore the importance of predicted high-affinity versus low-affinity motifs, and to attempt to design mutant enhancers that were specifically expressed in only the primary or secondary notochord lineages. We found that the mutation of all predicted high-affinity sites for Zic, FoxA or Ets led to quantifiably distinct effects. The FoxA construct caused a severe loss of reporter expression whereas the Ets construct had little effect. A strong Ets phenotype was only seen when much lower-scoring binding sites were also mutated. This supports the enhancer suboptimization hypothesis proposed by Farley and Levine but suggests that it may only apply to some but not all transcription factor families. We quantified reporter expression separately in the two notochord lineages with the expectation that Ets mutations and RBPJ mutations would have distinct effects given that primary notochord is induced by Ets-mediated FGF signaling whereas secondary notochord is induced by RBPJ/Su(H)-mediated Notch/Delta signaling. We found, however, that ETS mutations affected primary and secondary notochord expression relatively equally and that RBPJ mutations were only moderately more severe in their effect on secondary versus primary notochord. Our results point to the promise of quantitative reporter assays for understanding cis-regulatory logic but also highlight the challenge of arbitrary statistical thresholds for predicting potentially important sites.
Collapse
|
9
|
Smith HM, Khairallah SM, Nguyen AH, Newman-Smith E, Smith WC. Misregulation of cell adhesion molecules in the Ciona neural tube closure mutant bugeye. Dev Biol 2021; 480:14-24. [PMID: 34407458 DOI: 10.1016/j.ydbio.2021.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/16/2021] [Accepted: 08/10/2021] [Indexed: 11/18/2022]
Abstract
Neural tube closure (NTC) is a complex multi-step morphogenetic process that transforms the flat neural plate found on the surface of the post-gastrulation embryo into the hollow and subsurface central nervous system (CNS). Errors in this process underlie some of the most prevalent human birth defects, and occur in about 1 out of every 1000 births. Previously, we discovered a mutant in the basal chordate Ciona savignyi (named bugeye) that revealed a novel role for a T-Type Calcium Channel (Cav3) in this process. Moreover, the requirement for CAV3s in Xenopus NTC suggests a conserved function among the chordates. Loss of CAV3 leads to defects restricted to anterior NTC, with the brain apparently fully developed, but protruding from the head. Here we report first on a new Cav3 mutant in the related species C. robusta. RNAseq analysis of both C. robusta and C. savignyi bugeye mutants reveals misregulation of a number of transcripts including ones that are involved in cell-cell recognition and adhesion. Two in particular, Selectin and Fibronectin leucine-rich repeat transmembrane, which are aberrantly upregulated in the mutant, are expressed in the closing neural tube, and when disrupted by CRISPR gene editing lead to the open brain phenotype displayed in bugeye mutants. We speculate that these molecules play a transient role in tissue separation and adhesion during NTC and failure to downregulate them leads to an open neural tube.
Collapse
Affiliation(s)
- Haley M Smith
- Department of Molecular, Cellular and Developmental Biology, USA
| | | | - Ann Hong Nguyen
- Department of Molecular, Cellular and Developmental Biology, USA
| | | | - William C Smith
- Department of Molecular, Cellular and Developmental Biology, USA; Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
10
|
Lowe EK, Racioppi C, Peyriéras N, Ristoratore F, Christiaen L, Swalla BJ, Stolfi A. A cis-regulatory change underlying the motor neuron-specific loss of Ebf expression in immotile tunicate larvae. Evol Dev 2021; 23:72-85. [PMID: 33355999 PMCID: PMC7920938 DOI: 10.1111/ede.12364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 10/23/2020] [Accepted: 12/06/2020] [Indexed: 11/26/2022]
Abstract
Many species in the tunicate family Molgulidae have independently lost their swimming larval form and instead develop as tailless, immotile larvae. These larvae do not develop structures that are essential for swimming such as the notochord, otolith, and tail muscles. However, little is known about neural development in these nonswimming larvae. Here, we studied the patterning of the Motor Ganglion (MG) of Molgula occulta, a nonswimming species. We found that spatial patterns of MG neuron regulators in this species are conserved, compared with species with swimming larvae, suggesting that the gene networks regulating their expression are intact despite the loss of swimming. However, expression of the key motor neuron regulatory gene Ebf (Collier/Olf/EBF) was reduced in the developing MG of M. occulta when compared with molgulid species with swimming larvae. This was corroborated by measuring allele-specific expression of Ebf in hybrid embryos from crosses of M. occulta with the swimming species M. oculata. Heterologous reporter construct assays in the model tunicate species Ciona robusta revealed a specific cis-regulatory sequence change that reduces expression of Ebf in the MG, but not in other cells. Taken together, these data suggest that MG neurons are still specified in M. occulta larvae, but their differentiation might be impaired due to reduction of Ebf expression levels.
Collapse
Affiliation(s)
- Elijah K. Lowe
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Station Biologique de Roscoff, Roscoff, France
| | - Claudia Racioppi
- Station Biologique de Roscoff, Roscoff, France
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
| | - Nadine Peyriéras
- Station Biologique de Roscoff, Roscoff, France
- UPS3611 Complex Systems Institute Paris Ile-de-France (ISC-PIF), CNRS, Paris, France
- USR3695 BioEmergences, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Filomena Ristoratore
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Lionel Christiaen
- Station Biologique de Roscoff, Roscoff, France
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
| | - Billie J. Swalla
- Station Biologique de Roscoff, Roscoff, France
- Department of Biology, University of Washington, Seattle, WA, USA
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Station Biologique de Roscoff, Roscoff, France
| |
Collapse
|
11
|
Yamaji S, Hozumi A, Matsunobu S, Sasakura Y. Orchestration of the distinct morphogenetic movements in different tissues drives tail regression during ascidian metamorphosis. Dev Biol 2020; 465:66-78. [PMID: 32697971 DOI: 10.1016/j.ydbio.2020.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 11/26/2022]
Abstract
Metamorphosis is the dramatic conversion of an animal body from larva to adult. In ascidians, tadpole-shaped, swimming larvae become sessile juveniles by losing their tail during metamorphosis. This study investigated the cellular and molecular mechanisms underlying this metamorphic event called tail regression, in the model ascidian Ciona. The ascidian tail consists of internal organs such as muscle, notochord, nerve cord, and the outer epidermal layer surrounding them. We found that the epidermis and internal organs show different regression strategies. Epidermal cells are shortened along the anterior-posterior axis and gather at the posterior region. The epidermal mass is then invaginated into the trunk by apical constriction. The internal tissues, by contrast, enter into the trunk by forming coils. During coiling, notches are introduced into the muscle cells, which likely reduces their rigidness to promote coiling. Actin filament is the major component necessary for the regression events in both the epidermis and internal tissues. The shortening and invagination of the epidermis depend on the phosphorylation of the myosin regulatory light chain (mrlc) regulated by rho-kinase (ROCK). The coiling of internal tissues does not require ROCK-dependent phosphorylation of mrlc, and they can complete coiling without epidermis, although epidermis can facilitate the coiling of internal tissues. We conclude that tail regression in ascidians consists of active morphogenetic movements in which each tissue's independent mechanism is orchestrated with the others to complete this event within the available time window.
Collapse
Affiliation(s)
- Sota Yamaji
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, 415-0025, Japan
| | - Akiko Hozumi
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, 415-0025, Japan
| | - Shohei Matsunobu
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, 415-0025, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, 415-0025, Japan.
| |
Collapse
|
12
|
Li YF, Cheng YL, Chen K, Cheng ZY, Zhu X, C R Cardoso J, Liang X, Zhu YT, Power DM, Yang JL. Thyroid hormone receptor: A new player in epinephrine-induced larval metamorphosis of the hard-shelled mussel. Gen Comp Endocrinol 2020; 287:113347. [PMID: 31794730 DOI: 10.1016/j.ygcen.2019.113347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/14/2019] [Accepted: 11/27/2019] [Indexed: 01/31/2023]
Abstract
Many marine invertebrate larvae undergo a dramatic morphological and physiological transition from a planktonic larva to a benthic juvenile. The mechanisms of this metamorphosis in bivalves are mainly unknown. The recent identification in bivalves of a thyroid hormone receptor (TR) gene raises the possibility that as occurs in vertebrate metamorphosis, TRs regulate this developmental process. An evolutionary study of TR receptors revealed they are ubiquitous in the molluscs. Knock-down of the TR gene in pediveliger larvae of the hard-shelled mussel, Mytilus coruscus (Mc), using electroporation of siRNA significantly (p < 0.01) reduced TR gene expression. TR gene knock-down decreased pediveliger larval metamorphosis by 54% and was associated with a significant (p < 0.01) reduction in viability compared to control larvae. The TR in the hard-shelled mussel appears to be an essential regulatory factor for the successful epinephrine-induced metamorphosis of the pediveliger larvae to post-larvae. It is hypothesised that the knock-down of TR by siRNA transfection affects the "competence" of pediveliger larvae for the metamorphic transition by reducing their ability to respond to the inducer. The involvement of TR in the epinephrine-induced metamorphosis of a mollusc, the hard-shelled mussel, suggests the role of TR in this process probably emerged early during evolution.
Collapse
Affiliation(s)
- Yi-Feng Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yu-Lan Cheng
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Ke Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Zhi-Yang Cheng
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Xin Zhu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Xiao Liang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - You-Ting Zhu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Deborah M Power
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; Comparative Endocrinology and Integrative Biology, Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal.
| | - Jin-Long Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
13
|
Tajima Y, Hozumi A, Yoshida K, Treen N, Sakuma T, Yamamoto T, Sasakura Y. Hox13 is essential for formation of a sensory organ at the terminal end of the sperm duct in Ciona. Dev Biol 2019; 458:120-131. [PMID: 31682808 DOI: 10.1016/j.ydbio.2019.10.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023]
Abstract
Species-specific traits are thought to have been acquired by natural selection. Transcription factors play central roles in the evolution of species-specific traits. Hox genes encode a set of conserved transcription factors essential for establishing the anterior-posterior body axis of animals. Changes in the expression or function of Hox genes can lead to the diversification of animal-body plans. The tunicate ascidian Ciona intestinalis Type A has an orange-colored structure at the sperm duct terminus. This orange-pigmented organ (OPO) is the characteristic that can distinguish this ascidian from other closely related species. The OPO is formed by the accumulation of orange-pigmented cells (OPCs) that are present throughout the adult body. We show that Hox13 is essential for formation of the OPO. Hox13 is expressed in the epithelium of the sperm duct and neurons surrounding the terminal openings for sperm ejection, while OPCs themselves do not express this gene. OPCs are mobile cells that can move through the body vasculature by pseudopodia, suggesting that the OPO is formed by the accumulation of OPCs guided by Hox13-positive cells. Another ascidian species, Ciona savignyi, does not have an OPO. Like Hox13 of C. intestinalis, Hox13 of C. savignyi is expressed at the terminus of its sperm duct; however, its expression domain is limited to the circular area around the openings. The genetic changes responsible for the acquisition or loss of OPO are likely to occur in the expression pattern of Hox13.
Collapse
Affiliation(s)
- Yukako Tajima
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, 415-0025, Japan
| | - Akiko Hozumi
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, 415-0025, Japan
| | - Keita Yoshida
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, 415-0025, Japan
| | - Nicholas Treen
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, 415-0025, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, 415-0025, Japan.
| |
Collapse
|
14
|
Ericson CF, Eisenstein F, Medeiros JM, Malter KE, Cavalcanti GS, Zeller RW, Newman DK, Pilhofer M, Shikuma NJ. A contractile injection system stimulates tubeworm metamorphosis by translocating a proteinaceous effector. eLife 2019; 8:46845. [PMID: 31526475 PMCID: PMC6748791 DOI: 10.7554/elife.46845] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/05/2019] [Indexed: 12/25/2022] Open
Abstract
The swimming larvae of many marine animals identify a location on the sea floor to undergo metamorphosis based on the presence of specific bacteria. Although this microbe–animal interaction is critical for the life cycles of diverse marine animals, what types of biochemical cues from bacteria that induce metamorphosis has been a mystery. Metamorphosis of larvae of the tubeworm Hydroides elegans is induced by arrays of phage tail-like contractile injection systems, which are released by the bacterium Pseudoalteromonas luteoviolacea. Here we identify the novel effector protein Mif1. By cryo-electron tomography imaging and functional assays, we observe Mif1 as cargo inside the tube lumen of the contractile injection system and show that the mif1 gene is required for inducing metamorphosis. Purified Mif1 is sufficient for triggering metamorphosis when electroporated into tubeworm larvae. Our results indicate that the delivery of protein effectors by contractile injection systems may orchestrate microbe–animal interactions in diverse contexts. Many marine animals, including corals and tubeworms, begin life as larvae swimming in open water before transforming into adults that anchor themselves to the seabed. These transformations, known as metamorphoses, are often triggered by certain types of bacteria that form friendly relationships (or “symbioses”) with the animals. One such symbiosis forms between a bacterium called Pseudoalteromonas luteoviolacea and a tubeworm known as Hydroides elegans. Previous studies have shown that P. luteoviolacea produces syringe-like structures known as Metamorphosis Associated Contractile structures (or MACs for short) that are responsible for stimulating metamorphosis in the tubeworm larvae. Some viruses that infect bacteria use similar structures to inject molecules into their host cells. However, it was not clear whether MACs were also able to inject molecules into cells. Here, Ericson, Eisenstein et al. used a technique called cryo-electron tomography combined with genetic and biochemical approaches to study how the MACs of P. luteoviolacea trigger metamorphosis in tubeworms. The experiments identified a protein in the bacteria named Mif1 that was required for the tubeworms to transform. The bacteria loaded Mif1 into the tube of the MAC structure and then injected it into the tubeworms. Further experiments showed that inserting Mif1 alone into tubeworms was sufficient to activate metamorphosis. Mif1 is the first protein from bacteria to be shown to activate metamorphosis, but it is likely that many more remain to be discovered. Since other marine animals also form symbioses with bacteria, understanding how Mif1 and other similar proteins work may inform efforts to restore coral reefs and other fragile ecosystems, and increase the production of oysters and other shellfish. Furthermore, MACs and related structures may have the potential to be developed into biotechnology tools that deliver drugs and other molecules directly into animal cells.
Collapse
Affiliation(s)
- Charles F Ericson
- Department of Biology, San Diego State University, San Diego, United States.,Viral Information Institute, San Diego State University, San Diego, United States.,Department of Biology, Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | - Fabian Eisenstein
- Department of Biology, Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | - João M Medeiros
- Department of Biology, Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | - Kyle E Malter
- Department of Biology, San Diego State University, San Diego, United States.,Viral Information Institute, San Diego State University, San Diego, United States
| | - Giselle S Cavalcanti
- Department of Biology, San Diego State University, San Diego, United States.,Viral Information Institute, San Diego State University, San Diego, United States
| | - Robert W Zeller
- Department of Biology, San Diego State University, San Diego, United States
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States.,Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, United States
| | - Martin Pilhofer
- Department of Biology, Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | - Nicholas J Shikuma
- Department of Biology, San Diego State University, San Diego, United States.,Viral Information Institute, San Diego State University, San Diego, United States
| |
Collapse
|
15
|
Razy-Krajka F, Stolfi A. Regulation and evolution of muscle development in tunicates. EvoDevo 2019; 10:13. [PMID: 31249657 PMCID: PMC6589888 DOI: 10.1186/s13227-019-0125-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/08/2019] [Indexed: 12/16/2022] Open
Abstract
For more than a century, studies on tunicate muscle formation have revealed many principles of cell fate specification, gene regulation, morphogenesis, and evolution. Here, we review the key studies that have probed the development of all the various muscle cell types in a wide variety of tunicate species. We seize this occasion to explore the implications and questions raised by these findings in the broader context of muscle evolution in chordates.
Collapse
Affiliation(s)
- Florian Razy-Krajka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| |
Collapse
|
16
|
Kourakis MJ, Borba C, Zhang A, Newman-Smith E, Salas P, Manjunath B, Smith WC. Parallel visual circuitry in a basal chordate. eLife 2019; 8:44753. [PMID: 30998184 PMCID: PMC6499539 DOI: 10.7554/elife.44753] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/11/2019] [Indexed: 12/28/2022] Open
Abstract
A common CNS architecture is observed in all chordates, from vertebrates to basal chordates like the ascidian Ciona. Ciona stands apart among chordates in having a complete larval connectome. Starting with visuomotor circuits predicted by the Ciona connectome, we used expression maps of neurotransmitter use with behavioral assays to identify two parallel visuomotor circuits that are responsive to different components of visual stimuli. The first circuit is characterized by glutamatergic photoreceptors and responds to the direction of light. These photoreceptors project to cholinergic motor neurons, via two tiers of cholinergic interneurons. The second circuit responds to changes in ambient light and mediates an escape response. This circuit uses GABAergic photoreceptors which project to GABAergic interneurons, and then to cholinergic interneurons. Our observations on the behavior of larvae either treated with a GABA receptor antagonist or carrying a mutation that eliminates photoreceptors indicate the second circuit is disinhibitory.
Collapse
Affiliation(s)
- Matthew J Kourakis
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States
| | - Cezar Borba
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Angela Zhang
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, United States
| | - Erin Newman-Smith
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States.,Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Priscilla Salas
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - B Manjunath
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States
| | - William C Smith
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States.,Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| |
Collapse
|
17
|
Sharma S, Wang W, Stolfi A. Single-cell transcriptome profiling of the Ciona larval brain. Dev Biol 2019; 448:226-236. [PMID: 30392840 PMCID: PMC6487232 DOI: 10.1016/j.ydbio.2018.09.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/10/2018] [Accepted: 09/10/2018] [Indexed: 11/27/2022]
Abstract
The tadpole-type larva of Ciona has emerged as an intriguing model system for the study of neurodevelopment. The Ciona intestinalis connectome has been recently mapped, revealing the smallest central nervous system (CNS) known in any chordate, with only 177 neurons. This minimal CNS is highly reminiscent of larger CNS of vertebrates, sharing many conserved developmental processes, anatomical compartments, neuron subtypes, and even specific neural circuits. Thus, the Ciona tadpole offers a unique opportunity to understand the development and wiring of a chordate CNS at single-cell resolution. Here we report the use of single-cell RNAseq to profile the transcriptomes of single cells isolated by fluorescence-activated cell sorting (FACS) from the whole brain of Ciona robusta (formerly intestinalis Type A) larvae. We have also compared these profiles to bulk RNAseq data from specific subsets of brain cells isolated by FACS using cell type-specific reporter plasmid expression. Taken together, these datasets have begun to reveal the compartment- and cell-specific gene expression patterns that define the organization of the Ciona larval brain.
Collapse
Affiliation(s)
- Sarthak Sharma
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, United States
| | - Wei Wang
- New York University, Department of Biology, New York, NY, United States
| | - Alberto Stolfi
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, United States.
| |
Collapse
|
18
|
Pickett CJ, Zeller RW. Efficient genome editing using CRISPR-Cas-mediated homology directed repair in the ascidian Ciona robusta. Genesis 2018; 56:e23260. [PMID: 30375719 DOI: 10.1002/dvg.23260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/21/2018] [Accepted: 10/25/2018] [Indexed: 12/15/2022]
Abstract
Eliminating or silencing a gene's level of activity is one of the classic approaches developmental biologists employ to determine a gene's function. A recently developed method of gene perturbation called CRISPR-Cas, which was derived from a prokaryotic adaptive immune system, has been adapted for use in eukaryotic cells. This technology has been established in several model organisms as a powerful and efficient tool for knocking out or knocking down the function of a gene of interest. It has been recently shown that CRISPR-Cas functions with fidelity and efficiency in Ciona robusta. Here, we show that in C. robusta CRISPR-Cas mediated genomic knock-ins can be efficiently generated. Electroporating a tissue-specific transgene driving Cas9 and a U6-driven gRNA transgene together with a fluorescent protein-containing homology directed repair (FP-HDR) template results in gene-specific patterns of fluorescence consistent with a targeted genomic insertion. Using the Tyrosinase locus to optimize reagents, we first characterize a new Pol III promoter for expressing gRNAs from the Ciona savignyi H1 gene, and then adapt technology that flanks gRNAs by ribozymes allowing cell-specific expression from Pol II promoters. Next, we examine homology arm-length efficiencies of FP-HDR templates. Reagents were then developed for targeting Brachyury and Pou4 that resulted in expected patterns of fluorescence, and sequenced PCR amplicons derived from single embryos validated predicted genomic insertions. Finally, using two differentially colored FP-HDR templates, we show that biallelic FP-HDR template insertion can be detected in live embryos of the F0 generation.
Collapse
Affiliation(s)
- C J Pickett
- Department of Biology, San Diego State University, San Diego, California
| | - Robert W Zeller
- Department of Biology, San Diego State University, San Diego, California.,Coastal and Marine Institute, San Diego State University, San Diego, California.,Center for Applied and Experimental Genomics, San Diego State University, San Diego, California
| |
Collapse
|