1
|
Vishwakarma P, Puri S, Banerjee M, Chang CY, Chang CC, Chaudhuri TK. Deciphering the Thermal Stability of Bacteriophage MS2-Derived Virus-like Particle and Its Engineered Variant. ACS Biomater Sci Eng 2024; 10:4812-4822. [PMID: 38976823 DOI: 10.1021/acsbiomaterials.4c00770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
RNA bacteriophage MS2-derived virus-like particles (VLPs) have been widely used in biomedical research as model systems to study virus assembly, structure-function relationships, vaccine development, and drug delivery. Considering the diverse utility of these VLPs, a systemic engineering approach has been utilized to generate smaller particles with optimal serum stability and tissue penetrance. Additionally, it is crucial to demonstrate the overall stability of these mini MS2 VLPs, ensuring cargo protection until they reach their target cell/organ. However, no detailed analysis of the thermal stability and heat-induced disassembly of MS2 VLPs has yet been attempted. In this work, we investigated the thermal stability of both wild-type (WT) MS2 VLP and its "mini" variant containing S37P mutation (mini MS2 VLP). The mini MS2 VLP exhibits a higher capsid melting temperature (Tm) when compared to its WT MS2 VLP counterpart, possibly attributed to its smaller interdimer angle. Our study presents that the thermal unfolding of MS2 VLPs follows a sequential process involving particle destabilization, nucleic acid exposure/melting, and disassembly of VLP. This observation underscores the disruption of cooperative intersubunit interactions and protein-nucleic acid interactions, shedding light on the mechanism of heat-induced VLP disassembly.
Collapse
Affiliation(s)
- Pragati Vishwakarma
- Kusuma School of Biological Science, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sarita Puri
- Department of Bioscience, University of Milan, Milan 20133, Italy
| | - Manidipa Banerjee
- Kusuma School of Biological Science, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Chia-Yu Chang
- Department of Biological Sciences and Technology, National Yang-Ming Chiao Tsung University, Hsinchu 30068, Taiwan
| | - Chia-Ching Chang
- Department of Biological Sciences and Technology, National Yang-Ming Chiao Tsung University, Hsinchu 30068, Taiwan
- Department of Electrophysics, National Yang-Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang-Ming Chiao Tung University, Hsinchu 30068, Taiwan
- International College of Semiconductor Technology, National Yang-Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | - Tapan K Chaudhuri
- Kusuma School of Biological Science, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
2
|
Kalniņa Z, Liekniņa I, Skeltona V, Akopjana I, Kazāks A, Tārs K. Preclinical Evaluation of virus-like particle Vaccine Against Carbonic Anhydrase IX Efficacy in a Mouse Breast Cancer Model System. Mol Biotechnol 2024; 66:1206-1219. [PMID: 38217826 DOI: 10.1007/s12033-023-01021-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/05/2023] [Indexed: 01/15/2024]
Abstract
Carbonic anhydrase IX (CAIX) is a cancer-associated membrane protein frequently overexpressed in hypoxic solid tumours leading to enhanced tumour cell survival and invasion, and it has been proposed to be an attractive tumour-specific molecule for antibody-mediated targeting. This study aimed to generate a virus-like particle (VLP)-based CAIX vaccine candidate and evaluate its efficacy in a mouse model of breast cancer. The prototype murine vaccine was developed based on the ssRNA bacteriophage Qbeta VLPs with chemically coupled murine CAIX protein catalytic domains on their surfaces. The vaccine was shown to efficiently break the natural B cell tolerance against autologous murine CAIX and to induce high-titre Th1-oriented IgG responses in the BALB/c mice. This vaccine was tested in a therapeutic setting by using a triple-negative breast cancer mouse model system comprising 4T1, 4T1-Car9KI and 4T1-Car9KO cells, the latter representing positive and negative controls for murine CAIX production, respectively. The humoural immune responses induced in tumour-bearing animals were predominantly of Th1-type and higher anti-mCAIXc titres correlated with slower growth and lung metastasis development of 4T1 tumours constitutively expressing mCAIX in vivo in the syngeneic host.
Collapse
Affiliation(s)
- Zane Kalniņa
- Latvian Biomedical Research and Study Centre, Ratsupites 1, k-1, Riga, LV-1067, Latvia.
- Faculty of Biology, University of Latvia, Jelgavas 1, Riga, LV-1004, Latvia.
| | - Ilva Liekniņa
- Latvian Biomedical Research and Study Centre, Ratsupites 1, k-1, Riga, LV-1067, Latvia
| | - Vendija Skeltona
- Faculty of Biology, University of Latvia, Jelgavas 1, Riga, LV-1004, Latvia
| | - Ināra Akopjana
- Latvian Biomedical Research and Study Centre, Ratsupites 1, k-1, Riga, LV-1067, Latvia
| | - Andris Kazāks
- Latvian Biomedical Research and Study Centre, Ratsupites 1, k-1, Riga, LV-1067, Latvia
| | - Kaspars Tārs
- Latvian Biomedical Research and Study Centre, Ratsupites 1, k-1, Riga, LV-1067, Latvia
- Faculty of Biology, University of Latvia, Jelgavas 1, Riga, LV-1004, Latvia
| |
Collapse
|
3
|
Somovilla P, Rodríguez-Moreno A, Arribas M, Manrubia S, Lázaro E. Standing Genetic Diversity and Transmission Bottleneck Size Drive Adaptation in Bacteriophage Qβ. Int J Mol Sci 2022; 23:ijms23168876. [PMID: 36012143 PMCID: PMC9408265 DOI: 10.3390/ijms23168876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 01/15/2023] Open
Abstract
A critical issue to understanding how populations adapt to new selective pressures is the relative contribution of the initial standing genetic diversity versus that generated de novo. RNA viruses are an excellent model to study this question, as they form highly heterogeneous populations whose genetic diversity can be modulated by factors such as the number of generations, the size of population bottlenecks, or exposure to new environment conditions. In this work, we propagated at nonoptimal temperature (43 °C) two bacteriophage Qβ populations differing in their degree of heterogeneity. Deep sequencing analysis showed that, prior to the temperature change, the most heterogeneous population contained some low-frequency mutations that had previously been detected in the consensus sequences of other Qβ populations adapted to 43 °C. Evolved populations with origin in this ancestor reached similar growth rates, but the adaptive pathways depended on the frequency of these standing mutations and the transmission bottleneck size. In contrast, the growth rate achieved by populations with origin in the less heterogeneous ancestor did depend on the transmission bottleneck size. The conclusion is that viral diversification in a particular environment may lead to the emergence of mutants capable of accelerating adaptation when the environment changes.
Collapse
Affiliation(s)
- Pilar Somovilla
- Centro de Astrobiología (CAB), CSIC-INTA, Ctra. de Torrejón Km 4, Torrejón de Ardoz, 28850 Madrid, Spain
| | - Alicia Rodríguez-Moreno
- Centro de Astrobiología (CAB), CSIC-INTA, Ctra. de Torrejón Km 4, Torrejón de Ardoz, 28850 Madrid, Spain
| | - María Arribas
- Centro de Astrobiología (CAB), CSIC-INTA, Ctra. de Torrejón Km 4, Torrejón de Ardoz, 28850 Madrid, Spain
| | - Susanna Manrubia
- Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin 3, 28049 Madrid, Spain
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
| | - Ester Lázaro
- Centro de Astrobiología (CAB), CSIC-INTA, Ctra. de Torrejón Km 4, Torrejón de Ardoz, 28850 Madrid, Spain
- Correspondence:
| |
Collapse
|
4
|
Nchinda GW, Al-Atoom N, Coats MT, Cameron JM, Waffo AB. Uniqueness of RNA Coliphage Qβ Display System in Directed Evolutionary Biotechnology. Viruses 2021; 13:v13040568. [PMID: 33801772 PMCID: PMC8067240 DOI: 10.3390/v13040568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Phage display technology involves the surface genetic engineering of phages to expose desirable proteins or peptides whose gene sequences are packaged within phage genomes, thereby rendering direct linkage between genotype with phenotype feasible. This has resulted in phage display systems becoming invaluable components of directed evolutionary biotechnology. The M13 is a DNA phage display system which dominates this technology and usually involves selected proteins or peptides being displayed through surface engineering of its minor coat proteins. The displayed protein or peptide’s functionality is often highly reduced due to harsh treatment of M13 variants. Recently, we developed a novel phage display system using the coliphage Qβ as a nano-biotechnology platform. The coliphage Qβ is an RNA phage belonging to the family of Leviviridae, a long investigated virus. Qβ phages exist as a quasispecies and possess features making them comparatively more suitable and unique for directed evolutionary biotechnology. As a quasispecies, Qβ benefits from the promiscuity of its RNA dependent RNA polymerase replicase, which lacks proofreading activity, and thereby permits rapid variant generation, mutation, and adaptation. The minor coat protein of Qβ is the readthrough protein, A1. It shares the same initiation codon with the major coat protein and is produced each time the ribosome translates the UGA stop codon of the major coat protein with the of misincorporation of tryptophan. This misincorporation occurs at a low level (1/15). Per convention and definition, A1 is the target for display technology, as this minor coat protein does not play a role in initiating the life cycle of Qβ phage like the pIII of M13. The maturation protein A2 of Qβ initiates the life cycle by binding to the pilus of the F+ host bacteria. The extension of the A1 protein with a foreign peptide probe recognizes and binds to the target freely, while the A2 initiates the infection. This avoids any disturbance of the complex and the necessity for acidic elution and neutralization prior to infection. The combined use of both the A1 and A2 proteins of Qβ in this display system allows for novel bio-panning, in vitro maturation, and evolution. Additionally, methods for large library size construction have been improved with our directed evolutionary phage display system. This novel phage display technology allows 12 copies of a specific desired peptide to be displayed on the exterior surface of Qβ in uniform distribution at the corners of the phage icosahedron. Through the recently optimized subtractive bio-panning strategy, fusion probes containing up to 80 amino acids altogether with linkers, can be displayed for target selection. Thus, combined uniqueness of its genome, structure, and proteins make the Qβ phage a desirable suitable innovation applicable in affinity maturation and directed evolutionary biotechnology. The evolutionary adaptability of the Qβ phage display strategy is still in its infancy. However, it has the potential to evolve functional domains of the desirable proteins, glycoproteins, and lipoproteins, rendering them superior to their natural counterparts.
Collapse
Affiliation(s)
- Godwin W. Nchinda
- Laboratory of Vaccinology and Biobanking, International Reference Centre CIRCB), BP 3077 Yaoundé, Cameroon;
- Department of Pharmaceutical Microbiology & Biotechnology, Nnamdi Azikiwe University, 420110 Awka, Nigeria
| | - Nadia Al-Atoom
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA;
| | - Mamie T. Coats
- Clinical and Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Jacqueline M. Cameron
- Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Alain B. Waffo
- Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Correspondence: ; Tel.: +1-317-274-9640
| |
Collapse
|
5
|
Gorzelnik KV, Zhang J. Cryo-EM reveals infection steps of single-stranded RNA bacteriophages. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 160:79-86. [PMID: 32841651 DOI: 10.1016/j.pbiomolbio.2020.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023]
Abstract
Single-stranded RNA bacteriophages (ssRNA phages) are small spherical RNA viruses that infect bacteria with retractile pili. The single positive-sense genomic RNA of ssRNA phages, which is protected by a capsid shell, is delivered into the host via the retraction of the host pili. Structures involved in ssRNA phage infection cycle are essential for understanding the underlying mechanisms that can be used to engineer them for therapeutic applications. This review summarizes the recent breakthroughs in high-resolution structural studies of two ssRNA phages, MS2 and Qβ, and their interaction with the host, E. coli, by cryo-electron microscopy (cryo-EM). These studies revealed new cryo-EM structures, which provide insights into how MS2 and Qβ package the RNA, lyse E. coli, and adsorb to the receptor F-pili, responsible for conjugation. Methodologies described here can be expanded to study other ssRNA phages that target pathogenic bacteria.
Collapse
Affiliation(s)
- Karl Victor Gorzelnik
- Department of Biochemistry and Biophysics, Center for Phage Technology, Texas A&M University, College Station, TX, 77843, USA
| | - Junjie Zhang
- Department of Biochemistry and Biophysics, Center for Phage Technology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
6
|
Abstract
ssRNA phages belonging to the family Leviviridae are among the tiniest viruses, infecting various Gram-negative bacteria by adsorption to their pilus structures. Due to their simplicity, they have been intensively studied as models for understanding various problems in molecular biology and virology. Several of the studied ssRNA characteristics, such as coat protein–RNA interactions and the ability to readily form virus-like particles in recombinant expression systems, have fueled many practical applications such as RNA labeling and tracking systems and vaccine development. In this chapter, we review the life cycle, structure and applications of these small yet fascinating viruses.
Collapse
|
7
|
Liekniņa I, Kalniņš G, Akopjana I, Bogans J, Šišovs M, Jansons J, Rūmnieks J, Tārs K. Production and characterization of novel ssRNA bacteriophage virus-like particles from metagenomic sequencing data. J Nanobiotechnology 2019; 17:61. [PMID: 31084612 PMCID: PMC6513524 DOI: 10.1186/s12951-019-0497-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/04/2019] [Indexed: 12/30/2022] Open
Abstract
Background Protein shells assembled from viral coat proteins are an attractive platform for development of new vaccines and other tools such as targeted bioimaging and drug delivery agents. Virus-like particles (VLPs) derived from the single-stranded RNA (ssRNA) bacteriophage coat proteins (CPs) have been important and successful contenders in the area due to their simplicity and robustness. However, only a few different VLP types are available that put certain limitations on continued developments and expanded adaptation of ssRNA phage VLP technology. Metagenomic studies have been a rich source for discovering novel viral sequences, and in recent years have unraveled numerous ssRNA phage genomes significantly different from those known before. Here, we describe the use of ssRNA CP sequences found in metagenomic data to experimentally produce and characterize novel VLPs. Results Approximately 150 ssRNA phage CP sequences were sourced from metagenomic sequence data and grouped into 14 different clusters based on CP sequence similarity analysis. 110 CP-encoding sequences were obtained by gene synthesis and expressed in bacteria which in 80 cases resulted in VLP assembly. Production and purification of the VLPs was straightforward and compatible with established protocols, with the only exception that a considerable proportion of the CPs had to be produced at a lower temperature to ensure VLP assembly. The VLP morphology was similar to that of the previously studied phages, although a few deviations such as elongated or smaller particles were noted in certain cases. In addition, stabilizing inter-subunit disulfide bonds were detected in six VLPs and several possible candidate RNA structures in the phage genomes were identified that might bind to the coat protein and ensure specific RNA packaging. Conclusions Compared to the few types of ssRNA phage VLPs that were used before, several dozens of new particles representing ten distinct similarity groups are now available with a notable potential for biotechnological applications. It is believed that the novel VLPs described in this paper will provide the groundwork for future development of new vaccines and other applications based on ssRNA bacteriophage VLPs. Electronic supplementary material The online version of this article (10.1186/s12951-019-0497-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ilva Liekniņa
- Latvian Biomedical Research and Study Center, Rātsupītes 1, Riga, LV1067, Latvia
| | - Gints Kalniņš
- Latvian Biomedical Research and Study Center, Rātsupītes 1, Riga, LV1067, Latvia
| | - Ināra Akopjana
- Latvian Biomedical Research and Study Center, Rātsupītes 1, Riga, LV1067, Latvia
| | - Jānis Bogans
- Latvian Biomedical Research and Study Center, Rātsupītes 1, Riga, LV1067, Latvia
| | - Mihails Šišovs
- Latvian Biomedical Research and Study Center, Rātsupītes 1, Riga, LV1067, Latvia
| | - Juris Jansons
- Latvian Biomedical Research and Study Center, Rātsupītes 1, Riga, LV1067, Latvia
| | - Jānis Rūmnieks
- Latvian Biomedical Research and Study Center, Rātsupītes 1, Riga, LV1067, Latvia
| | - Kaspars Tārs
- Latvian Biomedical Research and Study Center, Rātsupītes 1, Riga, LV1067, Latvia.
| |
Collapse
|