1
|
Hossein Garakani M, Kakavand K, Sabbaghian M, Ghaheri A, Masoudi NS, Shahhoseini M, Hassanzadeh V, Zamanian M, Meybodi AM, Moradi SZ. Comprehensive analysis of chromosomal breakpoints and candidate genes associated with male infertility: insights from cytogenetic studies and expression analyses. Mamm Genome 2024; 35:764-783. [PMID: 39358566 DOI: 10.1007/s00335-024-10074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
The study aimed to investigate prevalent chromosomal breakpoints identified in balanced structural chromosomal anomalies and to pinpoint potential candidate genes linked with male infertility. This was acchieved through a comprehensive approach combining RNA-seq and microarray data analysis, enabling precise identification of candidate genes. The Cytogenetics data from 2,500 infertile males referred to Royan Research Institute between 2009 and 2022 were analyzed, with 391 cases meeting the inclusion criteria of balanced chromosomal rearrangement. Of these, 193 cases exhibited normal variations and were excluded from the analysis. By examining the breakpoints, potential candidate genes were suggested. Among the remaining 198 cases, reciprocal translocations were the most frequent anomaly (129 cases), followed by Robertsonian translocations (43 cases), inversions (34 cases), and insertions (3 cases).Some patients had more than one chromosomal abnormality. Chromosomal anomalies were most frequently observed in chromosomes 13 (21.1%), 14 (20.1%), and 1 (16.3%) with 13q12, 14q12, and 1p36.3 being the most prevalent breakpoints, respectively. Chromosome 1 contributed the most to reciprocal translocations (20.2%) and inversions (17.6%), while chromosome 14 was the most involved in the Robertsonian translocations (82.2%). The findings suggested that breakpoints at 1p36.3 and 14q12 might be associated with pregestational infertility, whereas breakpoints at 13q12 could be linked to both gestational and pregestational infertility. Several candidate genes located on common breakpoints were proposed as potentially involved in male infertility. Bioinformatics analyses utilizing three databases were conducted to examine the expression patterns of 78 candidate genes implicated in various causes of infertility. In azoospermic individuals, significant differential expression was observed in 19 genes: 15 were downregulated (TSSK2, SPINK2, TSSK4, CDY1, CFAP70, BPY2, BTG4, FKBP6, PPP2R1B, SPECC1L, CENPJ, SKA3, FGF9, NODAL, CLOCK), while four genes were upregulated (HSPB1, MIF, PRF1, ENTPD6). In the case of Asthenozoospermia, seven genes showed significant upregulation (PRF1, DDX21, KIT, SRD5A3, MTCH1, DDX50, NODAL). Though RNA-seq data for Teratozoospermia were unavailable, microarray data revealed differential expression insix genes: three downregulated (BUB1, KLK4, PIWIL2) and three upregulated (AURKC, NPM2, RANBP2). These findings enhance our understanding of the molecular basis of male infertility and could provide valuable insights for future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Melika Hossein Garakani
- Department of Cell and Molecular Biology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Kianoush Kakavand
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic
| | - Marjan Sabbaghian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Azadeh Ghaheri
- Department of Epidemiology and Reproductive Health, Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Najmeh Sadat Masoudi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maryam Shahhoseini
- Department of Cell and Molecular Biology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Department of Biochemistry, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Vahideh Hassanzadeh
- Department of Cell and Molecular Biology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammadreza Zamanian
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Shabnam Zarei Moradi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
2
|
Benn P, Merrion K. Chromosome segregation of human nonhomologous Robertsonian translocations: insights from preimplantation genetic testing. Eur J Hum Genet 2024:10.1038/s41431-024-01693-w. [PMID: 39341985 DOI: 10.1038/s41431-024-01693-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/15/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Robertsonian translocations (robs) are associated with a high risk for unbalanced segregations. Preimplantation Genetic Testing (PGT) offers an early opportunity to evaluate segregation patterns and selection against chromosome imbalances. The objective of this study was to evaluate the chromosome complements in blastocysts for male and female rob carriers and provide information useful in PGT counseling for rob carriers. PGT results were reviewed for 296 couples where a balanced and nonhomologous rob was present in one member of the couple. All embryos had day 5/6 trophectoderm biopsy and SNP-based PGT. The study included 2235 blastocysts, of which 2151 (96.2%) had results. Significantly fewer blastocysts were available for female rob carriers (mean 4.60/IVF cycle) compared to males (5.49/cycle). Male carriers were more likely to have blastocysts with a normal/balanced chromosome complement; 84.8% versus 62.8% (P < 0.00001). Male carriers had fewer blastocysts with monosomy (60/152, 39.5%) compared to female carriers (218/396, 55.1%) (P = 0.001). Twenty-one (1%) blastocysts showed 3:0 segregation; these were mostly double trisomies and derived from female carriers. Differences between chromosome complements for male versus female carriers suggest that selection against unbalanced forms may occur during spermatogenesis. Six blastocyst samples showed an unexpected ("noncanonical") combination of trisomy and monosomy. One case of uniparental disomy was identified. For female carriers, there was no association between unbalanced segregation and parental age but for male carriers, there was an inverse association. PGT is a highly beneficial option for rob carriers and patients can be counseled using our estimates for the chance of at least one normal/balanced embryo.
Collapse
Affiliation(s)
- Peter Benn
- University of Connecticut Health Center, Farmington, CT, 06030, USA.
| | | |
Collapse
|
3
|
Go M, Shim SH. Genomic aspects in reproductive medicine. Clin Exp Reprod Med 2024; 51:91-101. [PMID: 38263590 PMCID: PMC11140259 DOI: 10.5653/cerm.2023.06303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 01/25/2024] Open
Abstract
Infertility is a complex disease characterized by extreme genetic heterogeneity, compounded by various environmental factors. While there are exceptions, individual genetic and genomic variations related to infertility are typically rare, often family-specific, and may serve as susceptibility factors rather than direct causes of the disease. Consequently, identifying the cause of infertility and developing prevention and treatment strategies based on these factors remain challenging tasks, even in the modern genomic era. In this review, we first examine the genetic and genomic variations associated with infertility, and subsequently summarize the concepts and methods of preimplantation genetic testing in light of advances in genome analysis technology.
Collapse
Affiliation(s)
- Minyeon Go
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, Republic of Korea
| | - Sung Han Shim
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, Republic of Korea
| |
Collapse
|
4
|
Lu W, Zhou J, Rao H, Yuan H, Huang S, Liu Y, Yang B. A Retrospective Analysis of Robertsonian Translocations from a Single Center in China. Reprod Sci 2024; 31:851-856. [PMID: 37932552 PMCID: PMC10912152 DOI: 10.1007/s43032-023-01398-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
Robertsonian translocations (ROBs) are the most common structural chromosomal abnormalities in the general population, with an estimated incidence rate of 1/1000 births. In this study, we retrospectively analyzed the cases of ROBs from September 2015 to August 2022 and totally identified ROB carriers from 84,569 specimens karyotyped in a single accredited laboratory in China, including 189 cases of balanced ROBs and 3 of mosaic ROBs. Microsoft Excel and descriptive statistics were used to record and analyze the collected data. The male/female ratio of ROBs is 1/1.29, with der(13;14) and der(14;21) being the main karyotypes. Among the 192 patients, 7 were lost to follow-up, 82 had given birth, and 103 were childless (such as miscarriage, fetal chromosomal abnormalities, in vitro fertilization (IVF) failure, or divorce). A total of 44 amniocenteses were performed in 42 couples; ROB cases with natural pregnancies showed that the normal karyotype and balanced ROBs of fetal accounted for 66.67% (16/24), while the results of assisted pregnancies showed 90.00% (18/20). This study represents the largest collections of ROBs in Jiangxi population and reminder that the ROB carriers can achieve the ideal outcome for pregnancy with the appropriate genetic guidance and assisted reproductive technologies (ART).
Collapse
Affiliation(s)
- Wan Lu
- Medical Genetic Center, Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Jihui Zhou
- Medical Genetic Center, Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Huihua Rao
- Medical Genetic Center, Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Huizhen Yuan
- Medical Genetic Center, Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Shuhui Huang
- Medical Genetic Center, Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Yanqiu Liu
- Medical Genetic Center, Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China.
| | - Bicheng Yang
- Medical Genetic Center, Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China.
| |
Collapse
|
5
|
Zhang S, Cui Q, Yang S, Zhang F, Li C, Wang X, Lei B, Sheng X. Exome and genome sequencing to unravel the precise breakpoints of partial trisomy 6q and partial Monosomy 2q. BMC Pediatr 2023; 23:586. [PMID: 37993819 PMCID: PMC10664609 DOI: 10.1186/s12887-023-04368-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/15/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Patients with complex phenotypes and a chromosomal translocation are particularly challenging, since several potentially pathogenic mechanisms need to be investigated. CASE PRESENTATION Here, we combined exome and genome sequencing techniques to identify the precise breakpoints of heterozygous microduplications in the 6q25.3-q27 region and microdeletions in the 2q37.1-q37.3 region in a proband. The 5-year-old girl exhibited a severe form of congenital cranial dysinnervation disorder (CCDD) in addition to skeletal dysmorphism anomalies and severe intellectual disability. This is the second case affecting chromosomes 2q and 6q. The individual's karyotype showed an unbalanced translocation 46,XX,del(2)t(2;6)(q37.1;q25.3), which was inherited from her unaffected father [46,XY,t(2;6)(q37.1;q25.3)]. We also obtained the precise breakpoints of a de novo heterozygous copy number deletion [del(2)(q37.1q37.3)chr2:g.232963568_24305260del] and a copy number duplication [dup(6)(q25.3q27)chr6:g.158730978_170930050dup]. The parental origin of the observed balanced translocation was not clear because the parents declined genetic testing. CONCLUSION Patients with a 2q37 deletion and 6q25.3 duplication may exhibit severe significant neurological and skeletal dysmorphisms, and the utilization of exome and genome sequencing techniques has the potential to unveil the entire translocation of the CNV and the precise breakpoint.
Collapse
Affiliation(s)
- Shuang Zhang
- People's Hospital of Ningxia Hui Autonomous Region (Ningxia Medical University), Ningxia Eye Hospital, Yinchuan, 750001, China
| | - Qianwei Cui
- People's Hospital of Ningxia Hui Autonomous Region (Ningxia Medical University), Ningxia Eye Hospital, Yinchuan, 750001, China
| | - Shangying Yang
- People's Hospital of Ningxia Hui Autonomous Region (Ningxia Medical University), Ningxia Eye Hospital, Yinchuan, 750001, China
| | - Fangxia Zhang
- People's Hospital of Ningxia Hui Autonomous Region (Ningxia Medical University), Ningxia Eye Hospital, Yinchuan, 750001, China
| | - Chunxia Li
- People's Hospital of Ningxia Hui Autonomous Region (Ningxia Medical University), Ningxia Eye Hospital, Yinchuan, 750001, China
| | - Xiaoguang Wang
- People's Hospital of Ningxia Hui Autonomous Region (Ningxia Medical University), Ningxia Eye Hospital, Yinchuan, 750001, China
| | - Bo Lei
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China.
| | - Xunlun Sheng
- Gansu Aier Ophthalmology & Optometry Hospital, Lanzhou, 730030, China.
| |
Collapse
|
6
|
Xie M, Xue J, Zhang Y, Zhou Y, Yu Q, Li H, Li Q. Combination of trio-based whole exome sequencing and optical genome mapping reveals a cryptic balanced translocation that causes unbalanced chromosomal rearrangements in a family with multiple anomalies. Front Genet 2023; 14:1248544. [PMID: 37745854 PMCID: PMC10512417 DOI: 10.3389/fgene.2023.1248544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Background: Balanced translocation (BT) carriers can produce imbalanced gametes and experience recurrent spontaneous abortions (RSAs) and even give birth to a child with complex chromosomal disorders. Here, we report a cryptic BT, t(5; 6) (p15.31; p25.1), in the proband's grandmother, which caused unbalanced chromosomal rearrangements and various anomalies in the two subsequent generations. We also provide a thorough overview of the application of optical genome mapping (OGM) to identify chromosomal structural variants (SVs). Methods: Trio-based whole exome sequencing (Trio-WES) was conducted to explore the genetic basis of the phenotype of the proband and her mother. High-resolution karyotype analysis and OGM detection were performed on the proband's grandparents to trace the origin of the unbalanced rearrangements between chromosomes 5 and 6. A PubMed search was conducted with the following keywords: "OGM" and "SVs." Then, relevant studies were collected and systematically reviewed. Results: The proband and her mother presented with various anomalies, whereas the grandmother was healthy but had a history of four abnormal pregnancies. Trio-WES revealed a heterozygous duplication on the terminal region of chromosome 5p and a heterozygous deletion on the proximal end of chromosome 6p in the proband and her mother. High-resolution karyotype analysis revealed no aberrant karyotypes in either grandparent, whereas OGM detection revealed a cryptic BT, t(5; 6)(p15.31; p25.1), in the proband's grandmother. An overwhelming majority of research publications have verified the clinical utility of OGM in detecting SVs. Conclusion: The results of this study revealed that the unbalanced chromosomal rearrangements and many anomalies observed in multiple members of the family were attributable to the cryptic BT carried by the proband's grandmother. This study supports that OGM has a unique advantage for detecting cryptic BTs, and can be used as a first-tier genetic test for the etiological diagnosis of infertility, RSAs, and other complex genetic disorders.
Collapse
Affiliation(s)
- Min Xie
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Jiangyang Xue
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Yuxin Zhang
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Ying Zhou
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Qi Yu
- Neonatal Screening Center, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Haibo Li
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Qiong Li
- Neonatal Screening Center, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
7
|
Rao H, Zhang H, Zou Y, Ma P, Huang T, Yuan H, Zhou J, Lu W, Li Q, Huang S, Liu Y, Yang B. Analysis of chromosomal structural variations in patients with recurrent spontaneous abortion using optical genome mapping. Front Genet 2023; 14:1248755. [PMID: 37732322 PMCID: PMC10507169 DOI: 10.3389/fgene.2023.1248755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Background and aims: Certain chromosomal structural variations (SVs) in biological parents can lead to recurrent spontaneous abortions (RSAs). Unequal crossing over during meiosis can result in the unbalanced rearrangement of gamete chromosomes such as duplication or deletion. Unfortunately, routine techniques such as karyotyping, fluorescence in situ hybridization (FISH), chromosomal microarray analysis (CMA), and copy number variation sequencing (CNV-seq) cannot detect all types of SVs. In this study, we show that optical genome mapping (OGM) quickly and accurately detects SVs for RSA patients with a high resolution and provides more information about the breakpoint regions at gene level. Methods: Seven couples who had suffered RSA with unbalanced chromosomal rearrangements of aborted embryos were recruited, and ultra-high molecular weight (UHMW) DNA was isolated from their peripheral blood. The consensus genome map was created by de novo assembly on the Bionano Solve data analysis software. SVs and breakpoints were identified via alignments of the reference genome GRCh38/hg38. The exact breakpoint sequences were verified using either Oxford Nanopore sequencing or Sanger sequencing. Results: Various SVs in the recruited couples were successfully detected by OGM. Also, additional complex chromosomal rearrangement (CCRs) and four cryptic balanced reciprocal translocations (BRTs) were revealed, further refining the underlying genetic causes of RSA. Two of the disrupted genes identified in this study, FOXK2 [46,XY,t(7; 17)(q31.3; q25)] and PLXDC2 [46,XX,t(10; 16)(p12.31; q23.1)], had been previously shown to be associated with male fertility and embryo transit. Conclusion: OGM accurately detects chromosomal SVs, especially cryptic BRTs and CCRs. It is a useful complement to routine human genetic diagnostics, such as karyotyping, and detects cryptic BRTs and CCRs more accurately than routine genetic diagnostics.
Collapse
Affiliation(s)
- Huihua Rao
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Haoyi Zhang
- School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Yongyi Zou
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Pengpeng Ma
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Tingting Huang
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Huizhen Yuan
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Jihui Zhou
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Wan Lu
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Qiao Li
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Shuhui Huang
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Yanqiu Liu
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Bicheng Yang
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Laufer VA, Glover TW, Wilson TE. Applications of advanced technologies for detecting genomic structural variation. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108475. [PMID: 37931775 PMCID: PMC10792551 DOI: 10.1016/j.mrrev.2023.108475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Chromosomal structural variation (SV) encompasses a heterogenous class of genetic variants that exerts strong influences on human health and disease. Despite their importance, many structural variants (SVs) have remained poorly characterized at even a basic level, a discrepancy predicated upon the technical limitations of prior genomic assays. However, recent advances in genomic technology can identify and localize SVs accurately, opening new questions regarding SV risk factors and their impacts in humans. Here, we first define and classify human SVs and their generative mechanisms, highlighting characteristics leveraged by various SV assays. We next examine the first-ever gapless assembly of the human genome and the technical process of assembling it, which required third-generation sequencing technologies to resolve structurally complex loci. The new portions of that "telomere-to-telomere" and subsequent pangenome assemblies highlight aspects of SV biology likely to develop in the near-term. We consider the strengths and limitations of the most promising new SV technologies and when they or longstanding approaches are best suited to meeting salient goals in the study of human SV in population-scale genomics research, clinical, and public health contexts. It is a watershed time in our understanding of human SV when new approaches are expected to fundamentally change genomic applications.
Collapse
Affiliation(s)
- Vincent A Laufer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Thomas W Glover
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Thomas E Wilson
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
Cao L, Dong W, Wu Q, Huang X, Zeng X, Yang J, Lu J, Chen X, Zheng X, Fu X. Advanced maternal age: copy number variations and pregnancy outcomes. Front Genet 2023; 14:1206855. [PMID: 37396033 PMCID: PMC10308028 DOI: 10.3389/fgene.2023.1206855] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Objective: Adverse pregnancy outcomes are closely related to advanced maternal age (AMA; age at pregnancy ≥35 years). Little research has been reported on aneuploid abnormalities and pathogenic copy number variations (CNVs) affecting pregnancy outcomes in women with AMA. The purpose of this study was to assess CNVs associated with AMA in prenatal diagnosis to determine the characteristics of pathogenic CNVs and assist with genetic counseling of women with AMA. Methods: Among 277 fetuses of women with AMA, 218 (78.7%) were isolated AMA fetuses and 59 (21.3%) were non-isolated AMA fetuses and showed ultrasound anomalies from January 2021 to October 2022. Isolated AMA was defined as AMA cases without sonographic abnormalities. Non-isolated AMA was defined as AMA cases with sonographic abnormalities such as sonographic soft markers, widening of the lateral ventricles, or extracardiac structural anomalies. The amniotic fluid cells underwent routine karyotyping followed by single nucleotide polymorphism array (SNP-array) analysis. Results: Of the 277 AMA cases, karyotype analysis identified 20 chromosomal abnormalities. As well as 12 cases of chromosomal abnormalities corresponded to routine karyotyping, the SNP array identified an additional 14 cases of CNVs with normal karyotyping results. There were five pathogenetic CNVs, seven variations of uncertain clinical significance (VOUS), and two benign CNVs. The detection rate of abnormal CNVs in non-isolated AMA cases was increasing (13/59; 22%) than in isolated AMA cases (13/218; 5.96%) (p < 0.001). We also determined that pathogenic CNVs affected the rate of pregnancy termination in women with AMA. Conclusion: Aneuploid abnormalities and pathogenic CNVs affect pregnancy outcomes in women with AMA. SNP array had a higher detection rate of genetic variation than did karyotyping and is an important supplement to karyotype analysis, which enables better informed clinical consultation and clinical decision-making.
Collapse
Affiliation(s)
- Luoyuan Cao
- Department of Central Laboratory, Ningde Municipal Hospital Affilliated to Ningde Normal University, Ningde, Fujian, China
| | - Wenxu Dong
- Department of Central Laboratory, Ningde Municipal Hospital Affilliated to Ningde Normal University, Ningde, Fujian, China
| | - Qinjuan Wu
- Department of Obstetrics, Ningde Municipal Hospital Affilliated to Ningde Normal University, Ningde, Fujian, China
| | - Xiaomin Huang
- Department of Ultrasound, Ningde Municipal Hospital Affilliated to Ningde Normal University, Ningde, Fujian, China
| | - Xiaomei Zeng
- Department of Obstetrics, Ningde Municipal Hospital Affilliated to Ningde Normal University, Ningde, Fujian, China
| | - Jing Yang
- Department of Central Laboratory, Ningde Municipal Hospital Affilliated to Ningde Normal University, Ningde, Fujian, China
| | - Jiaojiao Lu
- Department of Central Laboratory, Ningde Municipal Hospital Affilliated to Ningde Normal University, Ningde, Fujian, China
| | - Xunyan Chen
- Department of Obstetrics, Ningde Municipal Hospital Affilliated to Ningde Normal University, Ningde, Fujian, China
| | - Xian Zheng
- Department of Central Laboratory, Ningde Municipal Hospital Affilliated to Ningde Normal University, Ningde, Fujian, China
| | - Xianguo Fu
- Department of Central Laboratory, Ningde Municipal Hospital Affilliated to Ningde Normal University, Ningde, Fujian, China
| |
Collapse
|
10
|
Zhan P, Hao T, Yang X, Zhang Y. Association between chromosome 22q11.2 translocation and male oligozoospermia. Medicine (Baltimore) 2022; 101:e30790. [PMID: 36181097 PMCID: PMC9524881 DOI: 10.1097/md.0000000000030790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Chromosomal aberrations in peripheral blood are a major cause of reproductive disorders for the infertile couples. Reciprocal translocation is closely related to male infertility. The breakpoint of translocation may disrupt or dysregulate important genes related to spermatogenesis. The relationship between some breakpoints of chromosome and male infertility has been paid attention. Chromosome 22q11.2 translocation has not been reported with male infertility. The purpose of this study is to evaluate the relationship between chromosome 22q11.2 translocation and male infertility. All patients were collected from the second hospital of Jilin University. Semen parameters were detected using the computer-aided semen analysis system. Cytogenetic analysis was performed using standard operating procedure. Related genes on chromosomal breakpoints were searched using online mendelian inheritance in man (OMIM). The association between this breakpoint and spermatogenesis is also discussed. We report 6 cases of translocation in chromosome 22. Of 7 breakpoints involved in these translocations, the common feature is that they all included chromosome 22q11.2 translocation and presented with oligozoospermia. The analysis of breakpoint related genes showed testis-specific serine/threonine kinase 2 (TSSK2) gene is associated with human spermatogenesis impairment. Overall, these results suggest that the breakpoint involved in translocation deserves attention from physicians in genetic counseling. The breakpoint rearrangement has the possibility of disrupting spermatogenesis. The relationship between 22q11.2 breakpoint and male infertility deserves further study.
Collapse
Affiliation(s)
- Peng Zhan
- Department of Urology, the Second Hospital of Jilin University, Changchun, China
| | - Tingting Hao
- Department of Urology, the Second Hospital of Jilin University, Changchun, China
| | - Xiao Yang
- Department of Urology, the Second Hospital of Jilin University, Changchun, China
- *Correspondence: Xiao Yang, Department of Urology, the Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, Jilin Province 130041, China (e-mail: )
| | - Yi Zhang
- Department of Urology, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Gaviria A, Cadena-Ullauri S, Cevallos F, Guevara-Ramirez P, Ruiz-Pozo V, Tamayo-Trujillo R, Paz-Cruz E, Zambrano AK. Clinical, cytogenetic, and genomic analyses of an Ecuadorian subject with Klinefelter syndrome, recessive hemophilia A, and 1;19 chromosomal translocation: a case report. Mol Cytogenet 2022; 15:40. [PMID: 36064723 PMCID: PMC9446752 DOI: 10.1186/s13039-022-00618-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Background Hemophilia A is considered one of the most common severe hereditary disorders. It is an X-linked recessive disease caused by a deficiency or lack of function of the blood clotting factor VIII. Klinefelter syndrome is a genetic disorder that affects male individuals due to one or more extra X chromosomes, present in all cells or with mosaicism. The aneuploidy is due to either mitotic or meiotic chromosome non-disjunction. Chromosomal translocations are a group of genome abnormalities in which a region or regions of a chromosome break and are transferred to a nonhomologous chromosome or a new location in the same chromosome. Case presentation Our subject was born in Ecuador at 36 weeks of gestation by vaginal delivery. At 3 months old, the Factor VIII activity measure showed a 23.7% activity indicating a diagnosis of mild hemophilia A. At 1 year old, the karyotype showed an extra X chromosome, consistent with a diagnosis of Klinefelter syndrome, and a translocation between the long arms of chromosomes 1 and 19, at positions q25 and q13, respectively. Conclusions Klinefelter syndrome and hemophilia are a rare combination. In the present case report, the subject presents both, meaning that he has inherited one X chromosome from the father and one X chromosome from the mother. Since the father has severe hemophilia A; and the subject presents a below 40% Factor VIII activity, a skewed X inactivation is suggested. Additionally, the proband presents a translocation with the karyotype 47,XXY,t(1;19)(q25;q13). No similar report with phenotypic consequences of the translocation was found. The present report highlights the importance of a correct diagnosis, based not only on the clinical manifestations of a disease but also on its genetic aspects, identifying the value of integrated diagnostics. The subject presents three different genetic alterations, Klinefelter syndrome, hemophilia A, and a 1;19 chromosomal translocation. Supplementary Information The online version contains supplementary material available at 10.1186/s13039-022-00618-w.
Collapse
Affiliation(s)
- Anibal Gaviria
- Laboratorio de Genética Molecular, Centros Médicos Especializados Cruz Roja Ecuatoriana, Quito, Ecuador.,Hemocentro Nacional, Cruz Roja Ecuatoriana, Quito, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Francisco Cevallos
- Laboratorio de Genética Molecular, Centros Médicos Especializados Cruz Roja Ecuatoriana, Quito, Ecuador.,Hemocentro Nacional, Cruz Roja Ecuatoriana, Quito, Ecuador
| | - Patricia Guevara-Ramirez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Viviana Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador.
| |
Collapse
|
12
|
Wang Y, Zhao Z, Fu X, Li S, Zhang Q, Kong X. Detection of a Cryptic 25 bp Deletion and a 269 Kb Microduplication by Nanopore Sequencing in a Seemingly Balanced Translocation Involving the LMLN and LOC105378102 Genes. Front Genet 2022; 13:883398. [PMID: 36110201 PMCID: PMC9469083 DOI: 10.3389/fgene.2022.883398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/07/2022] [Indexed: 12/03/2022] Open
Abstract
Preimplantation genetic testing plays a critical role in enabling a balanced translocation carrier to obtain the normal embryo. Identifying the precise breakpoints for the carriers with phenotypic abnormity, allows us to reveal disrupted genes. In this study, a seemingly balanced translocation 46, XX, t (3; 6) (q29; q26) was first detected using conventional karyotype analysis. To locate the precise breakpoints, whole genomes of DNA were sequenced based on the nanopore GridION platform, and bioinformatic analyses were further confirmed by polymerase-chain-reaction (PCR) and copy number variation (CNV). Nanopore sequencing results were consistent with the karyotype analysis. Meanwhile, two breakpoints were successfully validated using polymerase-chain-reaction and Sanger Sequencing. LOC105378102 and LMLN genes were disrupted at the breakpoint junctions. Notably, observations found that seemingly balanced translocation was unbalanced due to a cryptic 269 kilobases (Kb) microduplication and a 25 bp deletion at the breakpoints of chromosome (chr) 6 and chr 3, respectively. Furthermore, 269 Kb microduplication was also confirmed by copy number variation analyses. In summary, nanopore sequencing was a rapid and direct method for identifying the precise breakpoints of a balanced translocation despite low coverage (3.8×). In addition, cryptic deletion and duplication were able to be detected at the single-nucleotide level.
Collapse
|
13
|
The spectrum of chromosomal translocations in the Arab world: ethnic-specific chromosomal translocations and their relevance to diseases. Chromosoma 2022; 131:127-146. [PMID: 35907041 PMCID: PMC9470631 DOI: 10.1007/s00412-022-00775-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/13/2022] [Accepted: 06/23/2022] [Indexed: 11/04/2022]
Abstract
Chromosomal translocations (CTs) are the most common type of structural chromosomal abnormalities in humans. CTs have been reported in several studies in the Arab world, but the frequency and spectrum of these translocations are not well characterized. The aim of this study is to conduct a systematic review to estimate the frequency and spectrum of CTs in the 22 Arab countries. Four literature databases were searched: PubMed, Science Direct, Scopus, and Web of Science, from the time of inception until July 2021. A combination of broad search terms was used to collect all possible CTs reported in the Arab world. In addition to the literature databases, all captured CTs were searched in three chromosomal rearrangement databases (Mitelman Database, CytoD 1.0 Database, and the Atlas of Genetics and Cytogenetics in Oncology and Hematology), along with PubMed and Google Scholar, to check whether the CTs are unique to the Arabs or shared between Arabs and non-Arabs. A total of 9,053 titles and abstracts were screened, of which 168 studies met our inclusion criteria, and 378 CTs were identified in 15 Arab countries, of which 57 CTs were unique to Arab patients. Approximately 89% of the identified CTs involved autosomal chromosomes. Three CTs, t(9;22), t(13;14), and t(14;18), showed the highest frequency, which were associated with hematological malignancies, recurrent pregnancy loss, and follicular lymphoma, respectively. Complex CTs were commonly reported among Arabs, with a total of 44 CTs, of which 12 were unique to Arabs. This is the first study to focus on the spectrum of CTs in the Arab world and compressively map the ethnic-specific CTs relevant to cancer. It seems that there is a distinctive genotype of Arabs with CTs, of which some manifested with unique clinical phenotypes. Although ethnic-specific CTs are highly relevant to disease mechanism, they are understudied and need to be thoroughly addressed.
Collapse
|
14
|
The Burden and Benefits of Knowledge: Ethical Considerations Surrounding Population-Based Newborn Genome Screening for Hearing. Int J Neonatal Screen 2022; 8:ijns8020036. [PMID: 35735787 PMCID: PMC9224714 DOI: 10.3390/ijns8020036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/04/2022] Open
Abstract
Recent advances in genomic sequencing technologies have expanded practitioners' utilization of genetic information in a timely and efficient manner for an accurate diagnosis. With an ever-increasing resource of genomic data from progress in the interpretation of genome sequences, clinicians face decisions about how and when genomic information should be presented to families, and at what potential expense. Presently, there is limited knowledge or experience in establishing the value of implementing genome sequencing into newborn screening. Herein we provide insight into the complexities and the burden and benefits of knowledge resulting from genome sequencing of newborns.
Collapse
|
15
|
Vollger MR, Guitart X, Dishuck PC, Mercuri L, Harvey WT, Gershman A, Diekhans M, Sulovari A, Munson KM, Lewis AP, Hoekzema K, Porubsky D, Li R, Nurk S, Koren S, Miga KH, Phillippy AM, Timp W, Ventura M, Eichler EE. Segmental duplications and their variation in a complete human genome. Science 2022; 376:eabj6965. [PMID: 35357917 PMCID: PMC8979283 DOI: 10.1126/science.abj6965] [Citation(s) in RCA: 139] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite their importance in disease and evolution, highly identical segmental duplications (SDs) are among the last regions of the human reference genome (GRCh38) to be fully sequenced. Using a complete telomere-to-telomere human genome (T2T-CHM13), we present a comprehensive view of human SD organization. SDs account for nearly one-third of the additional sequence, increasing the genome-wide estimate from 5.4 to 7.0% [218 million base pairs (Mbp)]. An analysis of 268 human genomes shows that 91% of the previously unresolved T2T-CHM13 SD sequence (68.3 Mbp) better represents human copy number variation. Comparing long-read assemblies from human (n = 12) and nonhuman primate (n = 5) genomes, we systematically reconstruct the evolution and structural haplotype diversity of biomedically relevant and duplicated genes. This analysis reveals patterns of structural heterozygosity and evolutionary differences in SD organization between humans and other primates.
Collapse
Affiliation(s)
- Mitchell R Vollger
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Xavi Guitart
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Philip C Dishuck
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Ludovica Mercuri
- Department of Biology, University of Bari, Aldo Moro, Bari 70125, Italy
| | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Ariel Gershman
- Department of Molecular Biology and Genetics, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Mark Diekhans
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Arvis Sulovari
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Alexandra P Lewis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Ruiyang Li
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Sergey Nurk
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Karen H Miga
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Winston Timp
- Department of Molecular Biology and Genetics, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Mario Ventura
- Department of Biology, University of Bari, Aldo Moro, Bari 70125, Italy
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
16
|
Li M, Ji Y, Wang D, Zhang Y, Zhang H, Tang Y, Lin G, Hu L. Evaluation of Laser Confocal Raman Spectroscopy as a Non-Invasive Method for Detecting Sperm DNA Contents. Front Physiol 2022; 13:827941. [PMID: 35211034 PMCID: PMC8861532 DOI: 10.3389/fphys.2022.827941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
RESEARCH QUESTION Is Raman spectroscopy an efficient and accurate method to detect sperm chromosome balance state by DNA content differences? DESIGN Semen samples were provided by diploid healthy men, and the analysis parameters met the current World Health Organization standards. The DNA content was assessed by analysis of the corresponding spectra obtained from a laser confocal Raman spectroscope. The sperm sex chromosome information was obtained by fluorescence in situ hybridization (FISH). Comparative analysis was performed between FISH results and Raman spectral analysis results. RESULTS Different parts of the sperm head showed different spectral signal intensities, which indicated that there were different chemical components. Standard principal component analysis (PCA) can preliminarily classify sperm with different DNA contents into two groups. Further analysis showed that there were significant differences in the 785 DNA backbone peaks and 714-1,162 cm-1 DNA skeleton regions among sperm with different DNA contents. The peak and regional peak of the DNA skeleton of X sperm were significantly higher than those of Y sperm (X vs. Y, p < 0.05). The above sperm types were confirmed by FISH. ROC curve analysis shows that there is a correlation between the Raman spectrum data and FISH results. CONCLUSION Raman spectroscopy can identify X and Y sperms by analyzing the DNA content difference. However, the accuracy of the detection still needs to be improved. Nevertheless, Raman spectroscopy has a potential application value in the field of sperm aneuploidy detection and may even be used as a non-invasive predictor of sperm aneuploid state in preimplantation genetic testing (PGT-A).
Collapse
Affiliation(s)
- Mengge Li
- National Engineering and Research Center of Human Stem Cells, Changsha, China.,Hunan Guangxiu Hospital, Changsha, China
| | - Yaxing Ji
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | | | | | - Huan Zhang
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
| | - Yi Tang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
| | - Ge Lin
- National Engineering and Research Center of Human Stem Cells, Changsha, China.,NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
| | - Liang Hu
- National Engineering and Research Center of Human Stem Cells, Changsha, China.,NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
| |
Collapse
|
17
|
Abstract
For four decades, genetically altered laboratory animals have provided invaluable information. Originally, genetic modifications were performed on only a few animal species, often chosen because of the ready accessibility of embryonic materials and short generation times. The methods were often slow, inefficient and expensive. In 2013, a new, extremely efficient technology, namely CRISPR/Cas9, not only made the production of genetically altered organisms faster and cheaper, but also opened it up to non-conventional laboratory animal species. CRISPR/Cas9 relies on a guide RNA as a 'location finder' to target DNA double strand breaks induced by the Cas9 enzyme. This is a prerequisite for non-homologous end joining repair to occur, an error prone mechanism often generating insertion or deletion of genetic material. If a DNA template is also provided, this can lead to homology directed repair, allowing precise insertions, deletions or substitutions. Due to its high efficiency in targeting DNA, CRISPR/Cas9-mediated genetic modification is now possible in virtually all animal species for which we have genome sequence data. Furthermore, modifications of Cas9 have led to more refined genetic alterations from targeted single base-pair mutations to epigenetic modifications. The latter offer altered gene expression without genome alteration. With this ever growing genetic toolbox, the number and range of genetically altered conventional and non-conventional laboratory animals with simple or complex genetic modifications is growing exponentially.
Collapse
|
18
|
Strasser B, Paar C, Kiesl D, Tomasits J. A Balanced Robertsonian Translocation in a Patient with a Janus Kinase 2-Positive Polycythemia Vera. Lab Med 2021; 53:e101-e104. [PMID: 34940837 DOI: 10.1093/labmed/lmab111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A male patient with a persistent, combined erythrocytosis, leukocytosis, and thrombocytosis without representative evidence of reactive increase emerged as having a myeloproliferative disorder. Molecular-biological assessment yielded Janus kinase 2-positive results, and the patient was diagnosed with polycythemia vera. In addition to these findings, further karyotyping accounted for a Robertsonian translocation. Because this rearrangement was a balanced variant, we concluded that this cytogenetic result might not significantly alter the diagnosis of polycythemia vera.
Collapse
Affiliation(s)
- Bernhard Strasser
- Institute of Laboratory Medicine, Kepler-University-Hospital Linz, Linz, Austria
| | - Christian Paar
- Institute of Laboratory Medicine, Kepler-University-Hospital Linz, Linz, Austria
| | - David Kiesl
- Department of Hematology, Kepler-University-Hospital Linz, Linz, Austria
| | - Josef Tomasits
- Institute of Laboratory Medicine, Kepler-University-Hospital Linz, Linz, Austria
| |
Collapse
|
19
|
Zhang S, Zhu J, Qi H, Xu L, Cai L, Meng R. De novo balanced reciprocal translocation mosaic t(1;3)(q42;q25) detected by prenatal genetic diagnosis: a fetus conceived using preimplantation genetic testing due to a t(12;14)(q22;q13) balanced paternal reciprocal translocation. Mol Cytogenet 2021; 14:55. [PMID: 34863242 PMCID: PMC8645079 DOI: 10.1186/s13039-021-00576-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/12/2021] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION De novo balanced reciprocal translocations mosaicism in fetus conceived using preimplantation genetic testing from a different balanced translocation carrier parent has been rarely reported. METHODS Chromosomal microarray analysis, karyotype analysis and fluorescent in situ hybridization were performed to verify the type and heredity of the rearrangement. STR analysis was conducted to identify potential contamination and verify kinship. In addition, a local BLAST engine was performed to locate potentially homologous segments which might contribute to the translocation in breakpoints of chromosome. RESULTS A rare de novo balanced reciprocal translocations mosaicism mos 46,XY,t(1;3)(q42;q25)[40]/46,XY[39] was diagnosed in a fetus conceived using preimplantation genetic testing due to a 46,XY,t(12;14)(q22;q13) balanced translocation carrier father through multiplatform genetic techniques. Two of the largest continuous high homology segments were identified in chromosomal band 1q42.12 and 3q25.2. At the 21-months follow up, infant has achieved all psychomotor development milestones as well as growth within the normal reference range. CONCLUSION We present a prenatal diagnosis of a rare de novo balanced reciprocal translocations mosaicism in a fetus who conceived by preimplantation genetic testing. The most reasonable driving mechanism was that a de novo mitotic error caused by nonallelic homologous recombination between 1q42.12 and 3q25.2 in a zygote within the first or early cell divisions, which results in a mosaic embryo with the variant present in a half proportion of cells.
Collapse
Affiliation(s)
- Shaoqin Zhang
- Prenatal Diagnosis Center, Beijing Haidian Maternal and Child Health Hospital, No.53 Suzhou Street, Haidian District, Beijing, 100080, People's Republic of China
| | - Jianjiang Zhu
- Prenatal Diagnosis Center, Beijing Haidian Maternal and Child Health Hospital, No.53 Suzhou Street, Haidian District, Beijing, 100080, People's Republic of China
| | - Hong Qi
- Prenatal Diagnosis Center, Beijing Haidian Maternal and Child Health Hospital, No.53 Suzhou Street, Haidian District, Beijing, 100080, People's Republic of China.
| | - Limei Xu
- Prenatal Diagnosis Center, Beijing Haidian Maternal and Child Health Hospital, No.53 Suzhou Street, Haidian District, Beijing, 100080, People's Republic of China
| | - Lirong Cai
- Prenatal Diagnosis Center, Beijing Haidian Maternal and Child Health Hospital, No.53 Suzhou Street, Haidian District, Beijing, 100080, People's Republic of China
| | - Ran Meng
- Prenatal Diagnosis Center, Beijing Haidian Maternal and Child Health Hospital, No.53 Suzhou Street, Haidian District, Beijing, 100080, People's Republic of China
| |
Collapse
|
20
|
Markova ZG, Minzhenkova ME, Bessonova LA, Shilova NV. A new case of 17p13.3p13.1 microduplication resulted from unbalanced translocation: clinical and molecular cytogenetic characterization. Mol Cytogenet 2021; 14:41. [PMID: 34465353 PMCID: PMC8408977 DOI: 10.1186/s13039-021-00562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/29/2021] [Indexed: 11/30/2022] Open
Abstract
Copy number gain 17 p13.3p13.1 was detected by chromosomal microarray (CMA) in a girl with developmental/speech delay and facial dysmorphism. FISH studies made it possible to establish that the identified genomic imbalance is the unbalanced t(9;17) translocation of maternal origin. Clinical features of the patient are also discussed. The advisability of using the combination of CMA and FISH analysis is shown. Copy number gains detected by clinical CMA should be confirmed using FISH analysis in order to determine the physical location of the duplicated segment. Parental follow-up studies is an important step to determine the origin of genomic imbalance. This approach not only allows a most comprehensive characterization of an identified chromosomal/genomic imbalance but also provision of an adequate medical and genetic counseling for a family taking into account a balanced chromosomal rearrangement.
Collapse
Affiliation(s)
- Zhanna G Markova
- Research Centre for Medical Genetics, Moskvorechye St., 1, Moscow, Russia, 115522.
| | - Marina E Minzhenkova
- Research Centre for Medical Genetics, Moskvorechye St., 1, Moscow, Russia, 115522
| | - Lyudmila A Bessonova
- Research Centre for Medical Genetics, Moskvorechye St., 1, Moscow, Russia, 115522
| | - Nadezda V Shilova
- Research Centre for Medical Genetics, Moskvorechye St., 1, Moscow, Russia, 115522
| |
Collapse
|
21
|
Holečková B, Schwarzbacherová V, Galdíková M, Koleničová S, Halušková J, Staničová J, Verebová V, Jutková A. Chromosomal Aberrations in Cattle. Genes (Basel) 2021; 12:1330. [PMID: 34573313 PMCID: PMC8468509 DOI: 10.3390/genes12091330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 02/04/2023] Open
Abstract
Chromosomal aberrations and their mechanisms have been studied for many years in livestock. In cattle, chromosomal abnormalities are often associated with serious reproduction-related problems, such as infertility of carriers and early mortality of embryos. In the present work, we review the mechanisms and consequences of the most important bovine chromosomal aberrations: Robertsonian translocations and reciprocal translocations. We also discuss the application of bovine cell cultures in genotoxicity studies.
Collapse
Affiliation(s)
- Beáta Holečková
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (V.S.); (M.G.); (S.K.); (J.H.); (A.J.)
| | - Viera Schwarzbacherová
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (V.S.); (M.G.); (S.K.); (J.H.); (A.J.)
| | - Martina Galdíková
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (V.S.); (M.G.); (S.K.); (J.H.); (A.J.)
| | - Simona Koleničová
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (V.S.); (M.G.); (S.K.); (J.H.); (A.J.)
| | - Jana Halušková
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (V.S.); (M.G.); (S.K.); (J.H.); (A.J.)
| | - Jana Staničová
- First Faculty of Medicine, Charles University in Prague, Salmovská 1, 121 08 Prague, Czech Republic;
- Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia;
| | - Valéria Verebová
- Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia;
| | - Annamária Jutková
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (V.S.); (M.G.); (S.K.); (J.H.); (A.J.)
| |
Collapse
|
22
|
Snider AC, Darvin T, Spor L, Akinwole A, Cinnioglu C, Kayali R. Criteria to evaluate patterns of segmental and complete aneuploidies in preimplantation genetic testing for aneuploidy results suggestive of an inherited balanced translocation or inversion. F S Rep 2021; 2:72-79. [PMID: 34223276 PMCID: PMC8244368 DOI: 10.1016/j.xfre.2020.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/19/2020] [Accepted: 12/12/2020] [Indexed: 11/01/2022] Open
Abstract
Objective To define criteria for determining when preimplantation genetic testing for aneuploidy (PGT-A) results are suggestive of a potential balanced chromosomal rearrangement in the egg or sperm source and warrant karyotyping. Design Performance evaluation of criteria developed to assess PGT-A results for patterns of imbalances suggestive of a balanced chromosomal rearrangement in the egg or sperm source. Setting A single PGT-A laboratory and multiple in vitro fertilization centers. Patients Reproductive couples who underwent routine PGT-A testing. Interventions Karyotyping of reproductive couples for whom patterns of imbalances observed in PGT-A results suggested a balanced chromosomal rearrangement in the egg or sperm source. Main Outcome Measures Correct or incorrect flagging of predicted translocation in either the egg or sperm source based on chromosome analysis. Results Proposed criteria correctly predicted a balanced reciprocal translocation in 97% of cases (n = 33), a (13;14) Robertsonian translocation in all cases (n = 3), and an inversion in all cases (n = 2). Other criteria evaluated were determined to be ineffective because of relatively low occurrences that met the criteria and/or low predictive value. Conclusions Our results showed that the proposed criteria were effective for evaluating patterns of imbalances observed in PGT-A results suggestive of a potential chromosomal rearrangement in the egg or sperm source. Our proposed criteria can be employed by clinicians in the in vitro fertilization setting in combination with a patient's reproductive history to identify PGT-A patients who are likely carriers of balanced chromosomal rearrangements.
Collapse
|
23
|
Huang S, Xia Y, Ding H, Wang Y, Wu Y, Chen S, Zhuang J, Li P. A Case of a Derivative Chromosome: der(Y)t(Y;18)Pat with Congenital Abnormalities. Fetal Pediatr Pathol 2021; 40:256-261. [PMID: 31805817 DOI: 10.1080/15513815.2019.1695297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Chromosome reciprocal translocations are frequently occurring structural rearrangements observed in humans. Although individuals with balanced reciprocal translocations tend to be clinically normal, they have an increased risk of reproductive failure, miscarriage and abnormal phenotype.Casereport: A 14 days old neonate was found to have a 46,X,der(Y)t(Y;18)(q12;q11)pat karyotype causing multiple dysmorphisms and death within one month. The proband inherited from his father(carrier) an abnormal Y chromosome with Yq deletion of regions (q12-qter) and an 18q duplication of regions (q11-qter), resulting in a severe clinical phenotype similar to Edwards syndrome (Trisomy 18 syndrome). CONCLUSION These findings expand our current knowledge of the mutation spectrum of Y-autosomal translocations associated with dysmorphosis.
Collapse
Affiliation(s)
- Shufang Huang
- Prenatal Diagnosis Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu Xia
- Department of Cardiovascular Surgery of Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hong Ding
- Prenatal Diagnosis Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yonghua Wang
- Prenatal Diagnosis Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yueheng Wu
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shaoxian Chen
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jian Zhuang
- Department of Cardiovascular Surgery of Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ping Li
- Prenatal Diagnosis Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
24
|
Amit I, Iancu O, Levy-Jurgenson A, Kurgan G, McNeill MS, Rettig GR, Allen D, Breier D, Ben Haim N, Wang Y, Anavy L, Hendel A, Yakhini Z. CRISPECTOR provides accurate estimation of genome editing translocation and off-target activity from comparative NGS data. Nat Commun 2021; 12:3042. [PMID: 34031394 PMCID: PMC8144550 DOI: 10.1038/s41467-021-22417-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/04/2021] [Indexed: 12/26/2022] Open
Abstract
Controlling off-target editing activity is one of the central challenges in making CRISPR technology accurate and applicable in medical practice. Current algorithms for analyzing off-target activity do not provide statistical quantification, are not sufficiently sensitive in separating signal from noise in experiments with low editing rates, and do not address the detection of translocations. Here we present CRISPECTOR, a software tool that supports the detection and quantification of on- and off-target genome-editing activity from NGS data using paired treatment/control CRISPR experiments. In particular, CRISPECTOR facilitates the statistical analysis of NGS data from multiplex-PCR comparative experiments to detect and quantify adverse translocation events. We validate the observed results and show independent evidence of the occurrence of translocations in human cell lines, after genome editing. Our methodology is based on a statistical model comparison approach leading to better false-negative rates in sites with weak yet significant off-target activity.
Collapse
Affiliation(s)
- Ido Amit
- Arazi School of Computer Science, Interdisciplinary Center, Herzliya, Israel
| | - Ortal Iancu
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Alona Levy-Jurgenson
- Department of Computer Science, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gavin Kurgan
- Integrated DNA Technologies Inc., Coralville, IA, USA
| | | | | | - Daniel Allen
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Dor Breier
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Nimrod Ben Haim
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Yu Wang
- Integrated DNA Technologies Inc., Coralville, IA, USA
| | - Leon Anavy
- Arazi School of Computer Science, Interdisciplinary Center, Herzliya, Israel
| | - Ayal Hendel
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| | - Zohar Yakhini
- Arazi School of Computer Science, Interdisciplinary Center, Herzliya, Israel.
- Department of Computer Science, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
25
|
Reproductive outcomes in individuals with chromosomal reciprocal translocations. Genet Med 2021; 23:1753-1760. [PMID: 33972719 DOI: 10.1038/s41436-021-01195-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Patients with reciprocal balanced translocations (RBT) have a risk for recurrent pregnancy losses (RPL), affected child, and infertility. Currently, genetic counseling is based on karyotypes found among the products of conception (POC), although factors influencing the success of assisted reproductive technologies (ART) in RBT couples are not established. METHODS Cytogenetic results from 261 POC and offspring of the parents (113 women and 90 men) with RBT were evaluated. Chromosome segregation modes and number of euploid embryos were assessed in couples undergoing in vitro fertilization. RESULTS Patients with translocations involving an acrocentric chromosome have a higher risk of unbalanced gametes caused by a 3:1 segregation. Female RBT patients have a statistically higher risk of aneuploidy due to an interchromosomal effect. The rate of euploid embryos is low due to meiosis I malsegregation of RBT, meiosis II nondisjunction, additional whole chromosome or segmental aneusomies. RBT patients with RPL have a higher rate of miscarriage of euploid fetuses with RBT. CONCLUSION Chromosome-specific factors, female gender, age, and history of RPL are the risk elements influencing pregnancy and in vitro fertilization success in RBT patients. Chromosomal microarray analysis of POC is necessary to provide an accurate and timely diagnosis for patients with adverse reproductive outcomes.
Collapse
|
26
|
Chromosome Abnormalities and Fertility in Domestic Bovids: A Review. Animals (Basel) 2021; 11:ani11030802. [PMID: 33809390 PMCID: PMC8001068 DOI: 10.3390/ani11030802] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary In domestic bovids, numerical autosome abnormalities have been rarely reported, as they present abnormal animal phenotypes quickly eliminated by breeders. However, numerical abnormalities involving sex chromosomes and structural (balanced) chromosome anomalies have been more frequently detected because they are most often not phenotypically visible to breeders. For this reason, these chromosome abnormalities, without a cytogenetic control, escape animal selection, with subsequent deleterious effects on fertility, especially in female carriers. Abstract After discovering the Robertsonian translocation rob(1;29) in Swedish red cattle and demonstrating its harmful effect on fertility, the cytogenetics applied to domestic animals have been widely expanded in many laboratories in order to find relationships between chromosome abnormalities and their phenotypic effects on animal production. Numerical abnormalities involving autosomes have been rarely reported, as they present abnormal animal phenotypes quickly eliminated by breeders. In contrast, numerical sex chromosome abnormalities and structural chromosome anomalies have been more frequently detected in domestic bovids because they are often not phenotypically visible to breeders. For this reason, these chromosome abnormalities, without a cytogenetic control, escape selection, with subsequent harmful effects on fertility, especially in female carriers. Chromosome abnormalities can also be easily spread through the offspring, especially when using artificial insemination. The advent of chromosome banding and FISH-mapping techniques with specific molecular markers (or chromosome-painting probes) has led to the development of powerful tools for cytogeneticists in their daily work. With these tools, they can identify the chromosomes involved in abnormalities, even when the banding pattern resolution is low (as has been the case in many published papers, especially in the past). Indeed, clinical cytogenetics remains an essential step in the genetic improvement of livestock.
Collapse
|
27
|
Single-Strand Annealing in Cancer. Int J Mol Sci 2021; 22:ijms22042167. [PMID: 33671579 PMCID: PMC7926775 DOI: 10.3390/ijms22042167] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/23/2022] Open
Abstract
DNA double-strand breaks (DSBs) are among the most serious forms of DNA damage. In humans, DSBs are repaired mainly by non-homologous end joining (NHEJ) and homologous recombination repair (HRR). Single-strand annealing (SSA), another DSB repair system, uses homologous repeats flanking a DSB to join DNA ends and is error-prone, as it removes DNA fragments between repeats along with one repeat. Many DNA deletions observed in cancer cells display homology at breakpoint junctions, suggesting the involvement of SSA. When multiple DSBs occur in different chromosomes, SSA may result in chromosomal translocations, essential in the pathogenesis of many cancers. Inhibition of RAD52 (RAD52 Homolog, DNA Repair Protein), the master regulator of SSA, results in decreased proliferation of BRCA1/2 (BRCA1/2 DNA Repair Associated)-deficient cells, occurring in many hereditary breast and ovarian cancer cases. Therefore, RAD52 may be targeted in synthetic lethality in cancer. SSA may modulate the response to platinum-based anticancer drugs and radiation. SSA may increase the efficacy of the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 (CRISPR associated 9) genome editing and reduce its off-target effect. Several basic problems associated with SSA, including its evolutionary role, interplay with HRR and NHEJ and should be addressed to better understand its role in cancer pathogenesis and therapy.
Collapse
|
28
|
Li R, Wang J, Gu A, Xu Y, Guo J, Pan J, Zeng Y, Ma Y, Zhou C, Xu Y. Feasibility study of using unbalanced embryos as a reference to distinguish euploid carrier from noncarrier embryos by single nucleotide polymorphism array for reciprocal translocations. Prenat Diagn 2021; 41:681-689. [PMID: 33411373 DOI: 10.1002/pd.5897] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES To study the feasibility of using unbalanced embryos as a reference in distinguishing euploid carrier and noncarrier embryos by single nucleotide polymorphism (SNP) array-based preimplantation genetic testing (PGT) for reciprocal translocations. METHODS After comprehensive chromosome screening (CCS), euploid embryos were identified as normal or carriers using a family member as a reference. Next, unbalanced embryos were used as a reference, and the results were compared with the previous ones. Karyotypes of transferred embryos were validated by prenatal diagnosis. RESULTS Of 995 embryos from 110 couples, 288 were found to be euploid. Using a family member as a reference, 142 and 144 embryos were tested to be euploid noncarrier and carrier respectively, and the remaining 2 embryos were undetermined. When unbalanced embryos were selected as references, all the results were consistent with the previous ones. A total of 107 embryos were transferred, resulting in 66 clinical pregnancies. Karyotypes of prenatal diagnosis were all in accordance with the results of tested embryos. CONCLUSIONS SNP array-based haplotyping is a rapid and effective way to distinguish between euploid carrier and noncarrier embryos. In case no family member is available as a reference, unbalanced embryos can be used for identification of euploid carrier and noncarrier embryos.
Collapse
Affiliation(s)
- Rong Li
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Jing Wang
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Ailing Gu
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Xu
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Jing Guo
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Jiafu Pan
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Yanhong Zeng
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Yuanlin Ma
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Canquan Zhou
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Yanwen Xu
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
29
|
Age and Serum AMH and FSH Levels as Predictors of the Number of Oocytes Retrieved from Chromosomal Translocation Carriers after Controlled Ovarian Hyperstimulation: Applicability and Limitations. Genes (Basel) 2020; 12:genes12010018. [PMID: 33375549 PMCID: PMC7824090 DOI: 10.3390/genes12010018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 01/17/2023] Open
Abstract
We studied the impact of age and the serum anti-Müllerian hormone (AMH)/follicle-stimulating hormone (FSH) levels on the number of cumulus–oocyte complexes (COCs) retrieved from female reciprocal and Robertsonian translocation carriers after controlled ovarian hyperstimulation (COH). The number of COCs retrieved after COH was retrospectively analyzed in female translocation carriers and 46,XX partners of male translocation carriers from 100 couples. The median number of COCs varied from nine to 16 and did not differ among subgroups of women categorized by age, presence and type of a translocation. The number of COCs correlated negatively with the woman’s age in both the reciprocal and the Robertsonian translocation carriers, while in 46,XX women no correlation was detected. The number of COCs did not differ between the reciprocal and the Robertsonian translocation carriers aged either <35 or ≥35 years. In translocation carriers, the number of COCs correlated with the serum AMH level only in the younger-age subgroups; the correlation was strong positive in reciprocal and moderate positive in Robertsonian translocation carriers. The 46,XX women aged both <35 and ≥35 years showed similar moderate positive correlations. Across all subgroups, the number of COCs correlated moderately negatively with the serum FSH level only in Robertsonian translocation carriers aged <35 years. Our results suggest that chromosomal translocations per se do not increase the risk of poor oocyte retrieval outcome after COH. In translocation carriers, oocyte retrieval outcome depends to a large extent on their age. The serum AMH level strongly predicts oocyte retrieval outcomes only in young reciprocal translocation carriers, while the serum FSH level has a moderate predictive value in young Robertsonian translocation carriers.
Collapse
|
30
|
Ghosh S, Carden CF, Juras R, Mendoza MN, Jevit MJ, Castaneda C, Phelps O, Dube J, Kelley DE, Varner DD, Love CC, Raudsepp T. Two Novel Cases of Autosomal Translocations in the Horse: Warmblood Family Segregating t(4;30) and a Cloned Arabian with a de novo t(12;25). Cytogenet Genome Res 2020; 160:688-697. [PMID: 33326979 DOI: 10.1159/000512206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/07/2020] [Indexed: 11/19/2022] Open
Abstract
We report 2 novel autosomal translocations in the horse. In Case 1, a breeding stallion with a balanced t(4p;30) had produced normal foals and those with congenital abnormalities. Of his 9 phenotypically normal offspring, 4 had normal karyotypes, 4 had balanced t(4p;30), and 1 carried an unbalanced translocation with tertiary trisomy of 4p. We argue that unbalanced forms of t(4p;30) are more tolerated and result in viable congenital abnormalities, without causing embryonic death like all other known equine autosomal translocations. In Case 2, two stallions produced by somatic cell nuclear transfer from the same donor were karyotyped because of fertility issues. A balanced translocation t(12q;25) was found in one, but not in the other clone. The findings underscore the importance of routine cytogenetic screening of breeding animals and animals produced by assisted reproductive technologies. These cases will contribute to molecular studies of translocation breakpoints and their genetic consequences in the horse.
Collapse
Affiliation(s)
- Sharmila Ghosh
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | | | - Rytis Juras
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Mayra N Mendoza
- Estación Experimental Agraria Chincha, Dirección de Recursos Genéticos y Biotecnología, Instituto Nacional de Innovación Agraria, Ica, Peru
| | - Matthew J Jevit
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Caitlin Castaneda
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Olivia Phelps
- Powder River Veterinary Hospital & Supply, Kaycee, Wyoming, USA
| | - Jessie Dube
- Powder River Veterinary Hospital & Supply, Kaycee, Wyoming, USA
| | - Dale E Kelley
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Dickson D Varner
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Charley C Love
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA,
| |
Collapse
|
31
|
Wiland E, Olszewska M, Woźniak T, Kurpisz M. How much, if anything, do we know about sperm chromosomes of Robertsonian translocation carriers? Cell Mol Life Sci 2020; 77:4765-4785. [PMID: 32514588 PMCID: PMC7658086 DOI: 10.1007/s00018-020-03560-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/08/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022]
Abstract
In men with oligozoospermia, Robertsonian translocations (RobTs) are the most common type of autosomal aberrations. The most commonly occurring types are rob(13;14) and rob(14;21), and other types of RobTs are described as 'rare' cases. Based on molecular research, all RobTs can be broadly classified into Class 1 and Class 2. Class 1 translocations produce the same breakpoints within their RobT type, but Class 2 translocations are predicted to form during meiosis or mitosis through a variety of mechanisms, resulting in variation in the breakpoint locations. This review seeks to analyse the available data addressing the question of whether the molecular classification of RobTs into Classes 1 and 2 and/or the type of DD/GG/DG symmetry of the involved chromosomes is reflected in the efficiency of spermatogenesis. The lowest frequency value calculated for the rate of alternate segregants was found for rob(13;15) carriers (Class 2, symmetry DD) and the highest for rob(13;21) carriers (Class 2, DG symmetry). The aneuploidy values for the rare RobT (Class 2) and common rob(14;21) (Class 1) groups together exhibited similarities while differing from those for the common rob(13;14) (Class 1) group. Considering the division of RobT carriers into those with normozoospermia and those with oligoasthenozoospermia, it was found that the number of carriers with elevated levels of aneuploidy was unexpectedly quite similar and high (approx. 70%) in the two subgroups. The reason(s) that the same RobT does not always show a similar destructive effect on fertility was also pointed out.
Collapse
Affiliation(s)
- Ewa Wiland
- Institute of Human Genetics, Polish Academy of Sciences, ul. Strzeszynska 32, 60-479, Poznan, Poland
| | - Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, ul. Strzeszynska 32, 60-479, Poznan, Poland
| | - Tomasz Woźniak
- Institute of Human Genetics, Polish Academy of Sciences, ul. Strzeszynska 32, 60-479, Poznan, Poland
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, ul. Strzeszynska 32, 60-479, Poznan, Poland.
| |
Collapse
|
32
|
Abrams ZB, Li S, Zhang L, Coombes CE, Payne PRO, Heerema NA, Abruzzo LV, Coombes KR. CytoGPS: A large-scale karyotype analysis of CML data. Cancer Genet 2020; 248-249:34-38. [PMID: 33059160 DOI: 10.1016/j.cancergen.2020.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/11/2020] [Accepted: 09/25/2020] [Indexed: 01/19/2023]
Abstract
Karyotyping, the practice of visually examining and recording chromosomal abnormalities, is commonly used to diagnose diseases of genetic origin, including cancers. Karyotypes are recorded as text written in the International System for Human Cytogenetic Nomenclature (ISCN). Downstream analysis of karyotypes is conducted manually, due to the visual nature of analysis and the linguistic structure of the ISCN. The ISCN has not been computer-readable and, as such, prevents the full potential of these genomic data from being realized. In response, we developed CytoGPS, a platform to analyze large volumes of cytogenetic data using a Loss-Gain-Fusion model that converts the human-readable ISCN karyotypes into a machine-readable binary format. As proof of principle, we applied CytoGPS to cytogenetic data from the Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer, a National Cancer Institute hosted database of over 69,000 karyotypes of human cancers. Using the Jaccard coefficient to determine similarity between karyotypes structured as binary vectors, we were able to identify novel patterns from 4,968 Mitelman CML karyotypes, such as the co-occurrence of trisomy 19 and 21. The CytoGPS platform unlocks the potential for large-scale, comparative analysis of cytogenetic data. This methodological platform is freely available at CytoGPS.org.
Collapse
Affiliation(s)
- Zachary B Abrams
- Department of Biomedical Informatics, Wexner Medical Center, The Ohio State University, 250 Lincoln Tower, 1800 Cannon Drive, Columbus, OH 43210, USA.
| | - Suli Li
- Department of Biomedical Informatics, Wexner Medical Center, The Ohio State University, 250 Lincoln Tower, 1800 Cannon Drive, Columbus, OH 43210, USA
| | - Lin Zhang
- Institute for Informatics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| | - Caitlin E Coombes
- Department of Biomedical Informatics, Wexner Medical Center, The Ohio State University, 250 Lincoln Tower, 1800 Cannon Drive, Columbus, OH 43210, USA
| | - Philip R O Payne
- Institute for Informatics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| | - Nyla A Heerema
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Lynne V Abruzzo
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Kevin R Coombes
- Department of Biomedical Informatics, Wexner Medical Center, The Ohio State University, 250 Lincoln Tower, 1800 Cannon Drive, Columbus, OH 43210, USA.
| |
Collapse
|
33
|
Xu HH, Dai MZ, Wang K, Zhang Y, Pan FY, Shi WW. A rare Down syndrome foetus with de novo 21q;21q rearrangements causing false negative results in non-invasive prenatal testing: a case report. BMC Med Genomics 2020; 13:96. [PMID: 32631433 PMCID: PMC7339513 DOI: 10.1186/s12920-020-00751-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 06/26/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Non-invasive prenatal testing (NIPT) has been established as a routine prenatal screening to assess the risk of common foetal aneuploidy disorder (trisomy 21, 18, and 13). NIPT has high sensitivity and high specificity, but false positive and false negative results still exist. False negative NIPT results involving Down syndrome are rare, but have a high clinical impact on families and society. CASE PRESENTATION We described a case of a foetus that tested "negative" for trisomy 21 (Z-score was 0.664) by NIPT based on the semiconductor sequencing platform (SSP). The foetal fraction of cell-free DNA was 16.9%; this percentage was much larger than the threshold of 4% for obtaining accurate NIPT results. However, postnatally, the newborn was diagnosed with Down syndrome with the 46,XY,der(21;21)(q10;q10),+ 21 karyotype. CONCLUSIONS We presented a case of false negative NIPT results, which may occur through biological mechanisms rather than poor quality, technical errors or negligence. It is imperative for clinical geneticists and their patients to understand that NIPT is still a screening test.
Collapse
Affiliation(s)
- Hui-Hui Xu
- Prenatal Diagnosis Center, Taizhou Hospital, Wenzhou Medical University, Zhejiang, China. .,Medical Research Center, Taizhou Hospital, Wenzhou Medical University, Zhejiang, China.
| | - Mei-Zhen Dai
- Prenatal Diagnosis Center, Taizhou Hospital, Wenzhou Medical University, Zhejiang, China.,Medical Research Center, Taizhou Hospital, Wenzhou Medical University, Zhejiang, China
| | - Kai Wang
- Prenatal Diagnosis Center, Taizhou Hospital, Wenzhou Medical University, Zhejiang, China.,Department of Gynecology and Obstetrics, Taizhou Hospital, Wenzhou Medical University, Zhejiang, China
| | - Yang Zhang
- Prenatal Diagnosis Center, Taizhou Hospital, Wenzhou Medical University, Zhejiang, China.,Medical Research Center, Taizhou Hospital, Wenzhou Medical University, Zhejiang, China
| | - Fei-Yan Pan
- Medical Research Center, Taizhou Hospital, Wenzhou Medical University, Zhejiang, China
| | - Wei-Wu Shi
- Prenatal Diagnosis Center, Taizhou Hospital, Wenzhou Medical University, Zhejiang, China. .,Medical Research Center, Taizhou Hospital, Wenzhou Medical University, Zhejiang, China.
| |
Collapse
|
34
|
Bothmer A, Gareau KW, Abdulkerim HS, Buquicchio F, Cohen L, Viswanathan R, Zuris JA, Marco E, Fernandez CA, Myer VE, Cotta-Ramusino C. Detection and Modulation of DNA Translocations During Multi-Gene Genome Editing in T Cells. CRISPR J 2020; 3:177-187. [PMID: 32584143 DOI: 10.1089/crispr.2019.0074] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Multiplexed genome editing with DNA endonucleases has broad application, including for cellular therapies, but chromosomal translocations, natural byproducts of inducing simultaneous genomic breaks, have not been explored in detail. Here we apply various CRISPR-Cas nucleases to edit the T cell receptor alpha and beta 2 microglobulin genes in human primary T cells and comprehensively evaluate the frequency and stability of the resulting translocations. A thorough translocation frequency analysis using three orthogonal methods (droplet digital PCR, unidirectional sequencing, and metaphase fluorescence in situ hybridization) yielded comparable results and an overall translocation rate of ∼7% between two simultaneous CRISPR-Cas9 induced edits. In addition, we show that chromosomal translocations can be reduced when using different nuclease combinations, or by the presence of a homologous single stranded oligo donor for multiplexed genome editing. Importantly, the two different approaches for translocation reduction are compatible with cell therapy applications.
Collapse
Affiliation(s)
- Anne Bothmer
- Editas Medicine, Cambridge, Massachusetts, USA
- Tessera Therapeutic, Cambridge, Massachusetts, USA
| | | | - Hayat S Abdulkerim
- Editas Medicine, Cambridge, Massachusetts, USA
- Third Rock NewCo, Cambridge, Massachusetts, USA
| | - Frank Buquicchio
- Editas Medicine, Cambridge, Massachusetts, USA
- Program in Immunology, Stanford University, Stanford, California, USA
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Lucas Cohen
- Editas Medicine, Cambridge, Massachusetts, USA
- University of California San Diego, La Jolla, California, USA
| | | | | | | | - Cecilia A Fernandez
- Editas Medicine, Cambridge, Massachusetts, USA
- Diagon Therapeutic, Boston Massachusetts, USA
| | - Vic E Myer
- Editas Medicine, Cambridge, Massachusetts, USA
- Atlas Venture, Cambridge, Massachusetts, USA
| | - Cecilia Cotta-Ramusino
- Editas Medicine, Cambridge, Massachusetts, USA
- Tessera Therapeutic, Cambridge, Massachusetts, USA
| |
Collapse
|
35
|
Wang H, Jia Z, Mao A, Xu B, Wang S, Wang L, Liu S, Zhang H, Zhang X, Yu T, Mu T, Xu M, Cram DS, Yao Y. Analysis of balanced reciprocal translocations in patients with subfertility using single-molecule optical mapping. J Assist Reprod Genet 2020; 37:509-516. [PMID: 32026199 DOI: 10.1007/s10815-020-01702-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/27/2020] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Approximately 1% of individuals who carry a balanced reciprocal translocation (BRT) are subfertile. Current karyotyping does not have the resolution to determine whether the breakpoints of the involved chromosomes perturb genes important for fertility. The aim of this study was to apply single-molecule optical mapping (SMOM) to patients presenting for IVF (in vitro fertilization) to ascertain whether the BRT disrupted any genes associated with normal fertility. METHODS Nine subfertile patients with different BRTs were recruited for the study. Methyltransferase enzyme DLE1 was used to fluorescently label their genomic DNA samples at the recognition motif CTTAAG. The SMOM was performed on the Bionano platform, and long molecules aligned against the reference genome hg19 to identify the breakpoint regions. Mate-pair and PCR-Sanger sequencing were used to confirm the precise breakpoint sequences. RESULTS Both breakpoint regions in each of the nine BRTs were finely mapped to small regions of approximately 10 Kb, and their positions were consistent with original cytogenetic banding patterns determined by karyotyping. In three BRTs, breakpoints disrupted genes known to be associated with male infertility, namely NUP155 and FNDC3A [46,XY,t(5;13)(p15;q22)], DPY19L1 [46,XY,t(1;7)(p36.3;p15), and BAI3 [46,XY,t(3;6)(p21;q16)]. CONCLUSIONS The SMOM has potential clinical application as a rapid tool to screen patients with BRTs for underlying genetic causes of infertility and other diseases.
Collapse
Affiliation(s)
- Hui Wang
- Department of Obstetrics and Gynecology, PLA General Hospital, Beijing, 100853, China
| | - Zhengjun Jia
- Prenatal Diagnosis Center of Hunan Province, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, China
| | - Aiping Mao
- Berry Genomics Corporation, Beijing, 102200, China
| | - Bing Xu
- Department of Obstetrics and Gynecology, PLA General Hospital, Beijing, 100853, China
| | - Shuling Wang
- Department of Obstetrics and Gynecology, PLA General Hospital, Beijing, 100853, China
| | - Li Wang
- The First Hospital of KunMing, Kunming, 650034, China
| | - Sai Liu
- Department of Obstetrics and Gynecology, PLA General Hospital, Beijing, 100853, China.,The First Hospital of KunMing, Kunming, 650034, China
| | - Haiman Zhang
- Berry Genomics Corporation, Beijing, 102200, China
| | | | - Tao Yu
- Berry Genomics Corporation, Beijing, 102200, China
| | - Ting Mu
- Berry Genomics Corporation, Beijing, 102200, China
| | - Mengnan Xu
- Berry Genomics Corporation, Beijing, 102200, China
| | - David S Cram
- Berry Genomics Corporation, Beijing, 102200, China.
| | - Yuanqing Yao
- Department of Obstetrics and Gynecology, PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
36
|
Chen YC, Huang XN, Kong CY, Hu JD. Six families with balanced chromosome translocation associated with reproductive risks in Hainan Province: Case reports and review of the literature. World J Clin Cases 2020; 8:222-233. [PMID: 31970191 PMCID: PMC6962080 DOI: 10.12998/wjcc.v8.i1.222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/28/2019] [Accepted: 12/13/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Balanced translocation refers to the process where breakage and reconnection of chromosomes occur at abnormal positions. As the genetic substance with balanced translocation in individuals does not change, which is usually characterized by normal phenotype and intelligence, the individuals seek medical service after many miscarriages, resulting in considerable mental and physical burdens of the family members. In the current era with rapid advances in detection technology, cytogenetic examination, as a definitive approach, still plays an essential role.
CASE SUMMARY We report six cases with balanced chromosome translocation: Case 1: 46,XY,t(3;12)(q27;q24.1), infertility after 3 years of marriage; Case 2: 46,XX,t(4;16)(q31;q12), small uterus and irregular menstruation; Case 3: 46,XY,t(4;5)(q33;q13),9qh+, not pregnant after arrested fetal development; Case 4: 46,XX,t(11;17)(q13;p11.2), not pregnant after two times of spontaneous abortion; Case 5: 46,XX,t(10;13)(q24;q21.2), not pregnant after arrested fetal development for once; Case 6: 46,XX,t(1;4)(p36.1;q31.1), not pregnant after arrested fetal development for two times. The first four cases had chromosomal aberration karyotypes.
CONCLUSION These results suggested that balanced chromosomal translocation carriers are associated with reproductive risks and a very high probability of abnormal pregnancy. The discovery of the first four reported chromosomal aberration karyotypes provides an important basis for studying the occurrence of genetic diseases.
Collapse
Affiliation(s)
- Yun-Chun Chen
- Department of Laboratory Medicine, Haikou Branch of Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine (Haikou Hospital of Traditional Chinese Medicine), Haikou 570300, Hainan Province, China
| | - Xu-Ning Huang
- Department of Ultrasound Medicine, Second Affiliated Hospital of Hainan Medical University, Haikou 570300, Hainan Province, China
| | - Chang-Ying Kong
- Department of Gynecology, Second Affiliated Hospital of Hainan Medical University, Haikou 570300, Hainan Province, China
| | - Jian-Dong Hu
- Department of Internal Medicine, Haikou Branch of Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine (Haikou Hospital of Traditional Chinese Medicine), Haikou 570300, Hainan Province, China
| |
Collapse
|
37
|
Schilit SLP. Recent advances and future opportunities to diagnose male infertility. CURRENT SEXUAL HEALTH REPORTS 2019; 11:331-341. [PMID: 31853232 PMCID: PMC6919557 DOI: 10.1007/s11930-019-00225-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Infertility affects 10-15% of couples, making it one of the most frequent health disorders for individuals of reproductive age. The state of childlessness and efforts to restore fertility cause substantial emotional, social, and financial stress on couples. Male factors contribute to about half of all infertility cases, and yet are understudied relative to female factors. The result is that the majority of men with infertility lack specific causal diagnoses, which serves as a missed opportunity to inform therapies for these couples. RECENT FINDINGS In this review, we describe current standards for diagnosing male infertility and the various interventions offered to men in response to differential diagnoses. We then discuss recent advances in the field of genetics to identify novel etiologies for formerly unexplained infertility. SUMMARY With a specific genetic diagnosis, male factors can be addressed with appropriate reproductive counseling and with potential access to assisted reproductive technologies to improve chances of a healthy pregnancy.
Collapse
Affiliation(s)
- Samantha L. P. Schilit
- Biological and Biomedical Sciences Program, Graduate School
of Arts and Sciences, Harvard University, Cambridge, MA, USA
- Program in Genetics and Genomics, Department of Genetics,
Harvard Medical School, Boston, MA, USA
- Leder Human Biology and Translational Medicine Program,
Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
- Harvard Medical School Genetics Training Program, Harvard
Medical School, Boston, MA, USA
| |
Collapse
|
38
|
Affiliation(s)
- Ji-Un Kang
- Department of Biomedical Laboratory Science, Korea Nazarene University, Cheonan, Korea
| |
Collapse
|