1
|
Neațu M, Hera-Drăguț A, Ioniță I, Jugurt A, Davidescu EI, Popescu BO. Understanding the Complex Dynamics of Immunosenescence in Multiple Sclerosis: From Pathogenesis to Treatment. Biomedicines 2024; 12:1890. [PMID: 39200354 PMCID: PMC11351992 DOI: 10.3390/biomedicines12081890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
Immunosenescence, the gradual deterioration of immune function with age, holds profound implications for our understanding and management of multiple sclerosis (MS), a chronic autoimmune disease affecting the central nervous system. Traditionally diagnosed in young adults, advancements in disease-modifying therapies and increased life expectancy have led to a growing number of older individuals with MS. This demographic shift underscores the need for a deeper investigation into how age-related alterations in immune function shape the course of MS, influencing disease progression, treatment effectiveness, and overall patient outcomes. Age-related immunosenescence involves changes such as shifts in cytokine profiles, the accumulation of senescent immune cells, and compromised immune surveillance, collectively contributing to a state known as "inflammaging". In the context of MS, these immunological changes disturb the intricate balance between inflammatory and regulatory responses, thereby impacting mechanisms of central immune tolerance and peripheral regulation. This paper stands out by combining the most recent advancements in immunosenescence with both pathophysiological and treatment perspectives on multiple sclerosis, offering a cohesive and accessible discussion that bridges theory and practice, while also introducing novel insights into underexplored concepts such as therapy discontinuation and the latest senolytic, neuroprotective, and remyelination therapies. Enhancing our understanding of these complexities will guide tailored approaches to MS management, ultimately improving clinical outcomes for affected individuals.
Collapse
Affiliation(s)
- Monica Neațu
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (A.H.-D.); (I.I.); (A.J.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Ana Hera-Drăguț
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (A.H.-D.); (I.I.); (A.J.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Iulia Ioniță
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (A.H.-D.); (I.I.); (A.J.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Ana Jugurt
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (A.H.-D.); (I.I.); (A.J.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Eugenia Irene Davidescu
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (A.H.-D.); (I.I.); (A.J.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Bogdan Ovidiu Popescu
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (A.H.-D.); (I.I.); (A.J.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Department of Cell Biology, Neurosciences and Experimental Myology, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
2
|
Xu M, Wang H, Ren S, Wang B, Yang W, Lv L, Sha X, Li W, Wang Y. Identification of crucial inflammaging related risk factors in multiple sclerosis. Front Mol Neurosci 2024; 17:1398665. [PMID: 38836117 PMCID: PMC11148336 DOI: 10.3389/fnmol.2024.1398665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
Background Multiple sclerosis (MS) is an immune-mediated disease characterized by inflammatory demyelinating lesions in the central nervous system. Studies have shown that the inflammation is vital to both the onset and progression of MS, where aging plays a key role in it. However, the potential mechanisms on how aging-related inflammation (inflammaging) promotes MS have not been fully understood. Therefore, there is an urgent need to integrate the underlying mechanisms between inflammaging and MS, where meaningful prediction models are needed. Methods First, both aging and disease models were developed using machine learning methods, respectively. Then, an integrated inflammaging model was used to identify relative risk factors, by identifying essential "aging-inflammation-disease" triples. Finally, a series of bioinformatics analyses (including network analysis, enrichment analysis, sensitivity analysis, and pan-cancer analysis) were further used to explore the potential mechanisms between inflammaging and MS. Results A series of risk factors were identified, such as the protein homeostasis, cellular homeostasis, neurodevelopment and energy metabolism. The inflammaging indices were further validated in different cancer types. Therefore, various risk factors were integrated, and even both the theories of inflammaging and immunosenescence were further confirmed. Conclusion In conclusion, our study systematically investigated the potential relationships between inflammaging and MS through a series of computational approaches, and could present a novel thought for other aging-related diseases.
Collapse
Affiliation(s)
- Mengchu Xu
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Huize Wang
- Department of Nursing, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Siwei Ren
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Bing Wang
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Wenyan Yang
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Ling Lv
- Department of Thorax, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xianzheng Sha
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Wenya Li
- Department of Thorax, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yin Wang
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Wang H, Shen Z, Wu CS, Ji P, Noh JY, Geoffroy CG, Kim S, Threadgill D, Li J, Zhou Y, Xiao X, Zheng H, Sun Y. Neuronal ablation of GHSR mitigates diet-induced depression and memory impairment via AMPK-autophagy signaling-mediated inflammation. Front Immunol 2024; 15:1339937. [PMID: 38464534 PMCID: PMC10920242 DOI: 10.3389/fimmu.2024.1339937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/06/2024] [Indexed: 03/12/2024] Open
Abstract
Obesity is associated with chronic inflammation in the central nervous system (CNS), and neuroinflammation has been shown to have detrimental effects on mood and cognition. The growth hormone secretagogue receptor (GHSR), the biologically relevant receptor of the orexigenic hormone ghrelin, is primarily expressed in the brain. Our previous study showed that neuronal GHSR deletion prevents high-fat diet-induced obesity (DIO). Here, we investigated the effect of neuronal GHSR deletion on emotional and cognitive functions in DIO. The neuron-specific GHSR-deficient mice exhibited reduced depression and improved spatial memory compared to littermate controls under DIO. We further examined the cortex and hippocampus, the major regions regulating cognitive and emotional behaviors, and found that the neuronal deletion of GHSR reduced DIO-induced neuroinflammation by suppressing proinflammatory chemokines/cytokines and decreasing microglial activation. Furthermore, our data showed that neuronal GHSR deletion suppresses neuroinflammation by downregulating AMPK-autophagy signaling in neurons. In conclusion, our data reveal that neuronal GHSR inhibition protects against DIO-induced depressive-like behavior and spatial cognitive dysfunction, at least in part, through AMPK-autophagy signaling-mediated neuroinflammation.
Collapse
Affiliation(s)
- Hongying Wang
- Department of Nutrition, Texas A&M University, College Station, TX, United States
- Department of Endocrinology, Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng Shen
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Chia-Shan Wu
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Pengfei Ji
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Ji Yeon Noh
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Cédric G. Geoffroy
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University, College Station, TX, United States
| | - Sunja Kim
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, United States
| | - David Threadgill
- Department of Nutrition, Texas A&M University, College Station, TX, United States
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, United States
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, United States
| | - Jianrong Li
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Yu Zhou
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Xiaoqiu Xiao
- Department of Endocrinology, Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, United States
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| |
Collapse
|
4
|
Tian J, Guo L, Wang T, Jia K, Swerdlow RH, Zigman JM, Du H. Liver-expressed antimicrobial peptide 2 elevation contributes to age-associated cognitive decline. JCI Insight 2023; 8:166175. [PMID: 37212281 DOI: 10.1172/jci.insight.166175] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/31/2023] [Indexed: 05/23/2023] Open
Abstract
Elderly individuals frequently report cognitive decline, while various studies indicate hippocampal functional declines with advancing age. Hippocampal function is influenced by ghrelin through hippocampus-expressed growth hormone secretagogue receptor (GHSR). Liver-expressed antimicrobial peptide 2 (LEAP2) is an endogenous GHSR antagonist that attenuates ghrelin signaling. Here, we measured plasma ghrelin and LEAP2 levels in a cohort of cognitively normal individuals older than 60 and found that LEAP2 increased with age while ghrelin (also referred to in literature as "acyl-ghrelin") marginally declined. In this cohort, plasma LEAP2/ghrelin molar ratios were inversely associated with Mini-Mental State Examination scores. Studies in mice showed an age-dependent inverse relationship between plasma LEAP2/ghrelin molar ratio and hippocampal lesions. In aged mice, restoration of the LEAP2/ghrelin balance to youth-associated levels with lentiviral shRNA Leap2 downregulation improved cognitive performance and mitigated various age-related hippocampal deficiencies such as CA1 region synaptic loss, declines in neurogenesis, and neuroinflammation. Our data collectively suggest that LEAP2/ghrelin molar ratio elevation may adversely affect hippocampal function and, consequently, cognitive performance; thus, it may serve as a biomarker of age-related cognitive decline. Moreover, targeting LEAP2 and ghrelin in a manner that lowers the plasma LEAP2/ghrelin molar ratio could benefit cognitive performance in elderly individuals for rejuvenation of memory.
Collapse
Affiliation(s)
- Jing Tian
- Department of Pharmacology and Toxicology and
| | - Lan Guo
- Higuchi Biosciences Center, University of Kansas, Lawrence, Kansas, USA
| | - Tienju Wang
- Department of Pharmacology and Toxicology and
| | - Kun Jia
- Department of Pharmacology and Toxicology and
| | - Russell H Swerdlow
- Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jeffrey M Zigman
- Departments of Internal Medicine and Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Heng Du
- Department of Pharmacology and Toxicology and
- Higuchi Biosciences Center, University of Kansas, Lawrence, Kansas, USA
- Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
5
|
Barrio-Hernandez I, Schwartzentruber J, Shrivastava A, Del-Toro N, Gonzalez A, Zhang Q, Mountjoy E, Suveges D, Ochoa D, Ghoussaini M, Bradley G, Hermjakob H, Orchard S, Dunham I, Anderson CA, Porras P, Beltrao P. Network expansion of genetic associations defines a pleiotropy map of human cell biology. Nat Genet 2023; 55:389-398. [PMID: 36823319 PMCID: PMC10011132 DOI: 10.1038/s41588-023-01327-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/30/2023] [Indexed: 02/25/2023]
Abstract
Interacting proteins tend to have similar functions, influencing the same organismal traits. Interaction networks can be used to expand the list of candidate trait-associated genes from genome-wide association studies. Here, we performed network-based expansion of trait-associated genes for 1,002 human traits showing that this recovers known disease genes or drug targets. The similarity of network expansion scores identifies groups of traits likely to share an underlying genetic and biological process. We identified 73 pleiotropic gene modules linked to multiple traits, enriched in genes involved in processes such as protein ubiquitination and RNA processing. In contrast to gene deletion studies, pleiotropy as defined here captures specifically multicellular-related processes. We show examples of modules linked to human diseases enriched in genes with known pathogenic variants that can be used to map targets of approved drugs for repurposing. Finally, we illustrate the use of network expansion scores to study genes at inflammatory bowel disease genome-wide association study loci, and implicate inflammatory bowel disease-relevant genes with strong functional and genetic support.
Collapse
Affiliation(s)
- Inigo Barrio-Hernandez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
- Open Targets, Cambridge, UK
| | - Jeremy Schwartzentruber
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
- Open Targets, Cambridge, UK
- Wellcome Sanger Institute, Cambridge, UK
| | - Anjali Shrivastava
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
- Open Targets, Cambridge, UK
| | - Noemi Del-Toro
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
- Open Targets, Cambridge, UK
| | - Asier Gonzalez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
- Open Targets, Cambridge, UK
| | - Qian Zhang
- Wellcome Sanger Institute, Cambridge, UK
| | - Edward Mountjoy
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
- Open Targets, Cambridge, UK
| | - Daniel Suveges
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
- Open Targets, Cambridge, UK
| | - David Ochoa
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
- Open Targets, Cambridge, UK
| | - Maya Ghoussaini
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
- Open Targets, Cambridge, UK
| | - Glyn Bradley
- Computational Biology, Genomic Sciences, GSK, Stevenage, UK
| | - Henning Hermjakob
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
- Open Targets, Cambridge, UK
| | - Sandra Orchard
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
- Open Targets, Cambridge, UK
| | - Ian Dunham
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
- Open Targets, Cambridge, UK
- Wellcome Sanger Institute, Cambridge, UK
| | - Carl A Anderson
- Open Targets, Cambridge, UK
- Wellcome Sanger Institute, Cambridge, UK
| | - Pablo Porras
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
- Open Targets, Cambridge, UK
| | - Pedro Beltrao
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK.
- Open Targets, Cambridge, UK.
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
6
|
Noh JY, Herrera M, Patil BS, Tan XD, Wright GA, Sun Y. The expression and function of growth hormone secretagogue receptor in immune cells: A current perspective. Exp Biol Med (Maywood) 2022; 247:2184-2191. [PMID: 36151745 PMCID: PMC9899990 DOI: 10.1177/15353702221121635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The orexigenic hormone ghrelin and its receptor, growth hormone secretagogue receptor (GHS-R), have been extensively studied in the last two decades, revealing that ghrelin signaling has important implications in health and disease. Metabolic diseases, such as obesity and diabetes, are often accompanied by low-grade chronic inflammation, that has been coined as "meta-inflammation." Immune cells are key cellular mediators of meta-inflammation, controlling both initiation and resolution of inflammation. Immune cells exhibit dynamic changes in cellular characteristics and functional output in response to the stimuli/insults from their surrounding microenvironment. Emerging evidence shows that ghrelin has an important effect on inflammation, in addition to its well-known effects on metabolism. However, the cellular/molecular mechanism of ghrelin signaling in immunity is largely unknown because the knowledge in regard to the expression and function of GHS-R in immune cells is currently sparse. In this review, we have accumulated the recent findings related to the expression and functions of GHS-R in various immune cells under different physiological and pathological states. This review aims to inspire further investigation of the immunological roles of ghrelin signaling and advance the therapeutic applications of ghrelin signaling in meta-inflammation.
Collapse
Affiliation(s)
- Ji Yeon Noh
- Department of Nutrition, Texas A&M
University, College Station, TX 77843, USA
| | - Matthew Herrera
- Department of Nutrition, Texas A&M
University, College Station, TX 77843, USA
| | - Bhimanagouda S Patil
- Vegetable and Fruit Improvement Center,
Department of Horticultural Sciences, Texas A&M University, College Station, TX
77843, USA
| | - Xiao-Di Tan
- Department of Pediatrics, Feinberg
School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Gus A Wright
- Department of Veterinary Pathobiology,
Texas A&M University, College Station, TX 77843, USA
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M
University, College Station, TX 77843, USA
- USDA/ARS Children’s Nutrition Research
Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030,
USA
| |
Collapse
|
7
|
Kasprzak A, Adamek A. Role of the Ghrelin System in Colitis and Hepatitis as Risk Factors for Inflammatory-Related Cancers. Int J Mol Sci 2022; 23:ijms231911188. [PMID: 36232490 PMCID: PMC9569806 DOI: 10.3390/ijms231911188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 02/05/2023] Open
Abstract
It is not known exactly what leads to the development of colorectal cancer (CRC) and hepatocellular carcinoma (HCC), but there are specific risk factors that increase the probability of their occurrence. The unclear pathogenesis, too-late diagnosis, poor prognosis as a result of high recurrence and metastasis rates, and repeatedly ineffective therapy of both cancers continue to challenge both basic science and practical medicine. The ghrelin system, which is comprised of ghrelin and alternative peptides (e.g., obestatin), growth hormone secretagogue receptors (GHS-Rs), and ghrelin-O-acyl-transferase (GOAT), plays an important role in the physiology and pathology of the gastrointestinal (GI) tract. It promotes various physiological effects, including energy metabolism and amelioration of inflammation. The ghrelin system plays a role in the pathogenesis of inflammatory bowel diseases (IBDs), which are well known risk factors for the development of CRC, as well as inflammatory liver diseases which can trigger the development of HCC. Colitis-associated cancer serves as a prototype of inflammation-associated cancers. Little is known about the role of the ghrelin system in the mechanisms of transformation of chronic inflammation to low- and high-grade dysplasia, and, finally, to CRC. HCC is also associated with chronic inflammation and fibrosis arising from different etiologies, including alcoholic and nonalcoholic fatty liver diseases (NAFLD), and/or hepatitis B (HBV) and hepatitis C virus (HCV) infections. However, the exact role of ghrelin in the progression of the chronic inflammatory lesions into HCC is still unknown. The aim of this review is to summarize findings on the role of the ghrelin system in inflammatory bowel and liver diseases in order to better understand the impact of this system on the development of inflammatory-related cancers, namely CRC and HCC.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Święcicki Street 6, 60-781 Poznań, Poland
- Correspondence: ; Tel.: +48-61-8546441; Fax: +48-61-8546440
| | - Agnieszka Adamek
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, University of Medical Sciences, Szwajcarska Street 3, 61-285 Poznań, Poland
| |
Collapse
|
8
|
Lanz M, Janeiro MH, Milagro FI, Puerta E, Ludwig IA, Pineda-Lucena A, Ramírez MJ, Solas M. Trimethylamine N-Oxide (TMAO) drives insulin resistance and cognitive deficiencies in a senescence accelerated mouse model. Mech Ageing Dev 2022; 204:111668. [PMID: 35341897 DOI: 10.1016/j.mad.2022.111668] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/09/2022] [Accepted: 03/22/2022] [Indexed: 12/20/2022]
Abstract
It has been established that ageing is the major risk factor for cognitive deficiency and it is becoming increasingly evident that insulin resistance is another factor. Biological plausibility for a link between insulin resistance and dementia is relevant for understanding disease etiology, and to form bases for prevention efforts to decrease disease burden. In the present study, peripheral and central insulin resistance was found in SAMP8 mice (aging mouse model) accompanied by cognitive deficiencies. Furthermore, a marked peripheral inflammatory state was observed in SAMP8 mice, followed by neuroinflammation that could be due to a higher cytokine leaking into the brain across an aging-disrupted blood brain barrier. Moreover, aging-induced gut dysbiosis produces higher TMAO that could also contribute to the peripheral and central inflammatory tone as well as to the cognitive deficiencies observed in SAMP8 mice. All those alterations were reversed by DMB, a treatment that decreases TMAO levels. Data obtained from this project suggest that microbial dysbiosis and increased TMAO secretion could be a key link between aging, insulin resistance and dementia. Thus, pharmacological intervention that leads to decreased TMAO levels, such as DMB, could open a new avenue for the future treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- María Lanz
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain
| | - Manuel H Janeiro
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain; IdISNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Fermin I Milagro
- IdISNA, Navarra Institute for Health Research, Pamplona, Spain; Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain; CIBERobn, CIBER Fisiopatología de Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Puerta
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain; IdISNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Iziar A Ludwig
- Program of Molecular Therapeutics, Center for Applied Medical Research (CIMA), Universidad de Navarra, Avda. Pío XII 55, E-31008 Pamplona, Spain
| | - Antonio Pineda-Lucena
- Program of Molecular Therapeutics, Center for Applied Medical Research (CIMA), Universidad de Navarra, Avda. Pío XII 55, E-31008 Pamplona, Spain
| | - María J Ramírez
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain; IdISNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Maite Solas
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain; IdISNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
9
|
Ghrelin and Cancer: Examining the Roles of the Ghrelin Axis in Tumor Growth and Progression. Biomolecules 2022; 12:biom12040483. [PMID: 35454071 PMCID: PMC9032665 DOI: 10.3390/biom12040483] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023] Open
Abstract
Ghrelin, a hormone produced and secreted from the stomach, is prim arily known as an appetite stimulant. Recently, it has emerged as a potential regulator/biomarker of cancer progression. Inconsistent results on this subject make this body of literature difficult to interpret. Here, we attempt to identify commonalities in the relationships between ghrelin and various cancers, and summarize important considerations for future research. The main players in the ghrelin family axis are unacylated ghrelin (UAG), acylated ghrelin (AG), the enzyme ghrelin O-acyltransferase (GOAT), and the growth hormone secretagogue receptor (GHSR). GOAT is responsible for the acylation of ghrelin, after which ghrelin can bind to the functional ghrelin receptor GHSR-1a to initiate the activation cascade. Splice variants of ghrelin also exist, with the most prominent being In1-ghrelin. In this review, we focus primarily on the potential of In1-ghrelin as a biomarker for cancer progression, the unique characteristics of UAG and AG, the importance of the two known receptor variants GHSR-1a and 1b, as well as the possible mechanisms through which the ghrelin axis acts. Further understanding of the role of the ghrelin axis in tumor cell proliferation could lead to the development of novel therapeutic approaches for various cancers.
Collapse
|
10
|
Bai J, Jiang G, Zhao M, Wang S. Ghrelin Mitigates High-Glucose-Induced Oxidative Damage and Apoptosis in Lens Epithelial Cells. J Diabetes Res 2022; 2022:1373533. [PMID: 36589628 PMCID: PMC9797303 DOI: 10.1155/2022/1373533] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress induced by high glucose (HG) plays an important role in the mechanism of diabetic cataract. Evidence has shown that effects from oxidative stress induced damage of lens or human lens epithelial (HLE) cells. Antioxidant supplementation is a plausible strategy to avoid oxidative stress and maintain the function of lens. Ghrelin have been used in treatment of many diseases. In this study, we found that ghrelin attenuated HG-induced loss of cell viability, reduced oxidative damage, and cell apoptosis in HLE cells. Ghrelin inhibited apoptosis through the downregulation of Bax and the upregulation of Bcl-2. Our results suggest that ghrelin could be considered as a promising therapeutic intervention for diabetic cataract. We also observed rat lens transparent in cultured media and examined lens histopathological changes. The results showed that ghrelin could inhibit the histopathological injury of lenses and ultrastructural changes induced by HG. In conclusion, ghrelin may play a role in the treatment of ocular diseases involving diabetic cataract.
Collapse
Affiliation(s)
- Jie Bai
- Department of Ophthalmology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000 Zhejiang, China
| | - Ganggang Jiang
- Department of Ophthalmology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000 Zhejiang, China
| | - Mengdan Zhao
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006 Zhejiang, China
| | - Shan Wang
- Department of Oral Pathology, School of Stomatology, Hainan Medical College, Haikou 571199, China
| |
Collapse
|
11
|
Ghrelin Ameliorates Diabetic Retinal Injury: Potential Therapeutic Avenues for Diabetic Retinopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8043299. [PMID: 34737846 PMCID: PMC8563120 DOI: 10.1155/2021/8043299] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/21/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023]
Abstract
Ghrelin has anti-inflammatory, antioxidant, and antiapoptotic effects, and it may be beneficial for the treatment of many ophthalmic diseases, such as cataract, uveitis, and glaucoma. Our previous work proved that ghrelin pretreatment reduced the apoptosis of lens epithelial cells induced by hydrogen peroxide, reduced the accumulation of reactive oxygen species (ROS), and effectively maintained the transparency of lens tissue. However, no study has yet investigated the effect of ghrelin on retina. In this study, we conducted in vitro and in vivo experiments to explore the effect of ghrelin on high-glucose- (HG-) induced ARPE-19 cell damage and diabetic retinopathy in streptozotocin-induced diabetic rats. ARPE-19 cells were incubated in a normal or an HG (30 mM glucose) medium with or without ghrelin. Cell viability was measured by 3-(4, 5-dimethylthiazol-3-yl)-2,5-diphenyl tetrazolium bromide assay, and apoptosis was detected by the Hoechst–PI staining assay. Intracellular reactive oxygen species (ROS) production levels within cells were measured using 2′,7′-dichlorofluorescein diacetate staining, and the contents of superoxide dismutase and malondialdehyde were measured using relevant detection kits. The expression levels of IL-1β and IL-18 were measured using an enzyme-linked immunosorbent assay, and those of NLRP3, IL-1β, and IL-18 were measured using Western blotting. The rat diabetes models were induced using a single intraperitoneal injection of streptozotocin (80 mg/kg). The morphological and histopathological changes in the retinal tissues were examined. The results indicated that ghrelin reduced ROS generation, inhibited cell apoptosis and the activation of NLRP3 inflammasome, inhibited the apoptosis of retinal cells in diabetic rats, and protected the retina against HG-induced dysfunction. In conclusion, ghrelin may play a role in the treatment of ocular diseases involving diabetic retinopathy.
Collapse
|
12
|
Ribeiro SML, Fernandez SSM, Rogero MM. Nutrition and Diabetes in the Context of Inflammaging. CURRENT GERIATRICS REPORTS 2020. [DOI: 10.1007/s13670-020-00338-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Wang Y, Cao L, Liu X. Ghrelin alleviates endoplasmic reticulum stress and inflammation-mediated reproductive dysfunction induced by stress. J Assist Reprod Genet 2019; 36:2357-2366. [PMID: 31650454 DOI: 10.1007/s10815-019-01589-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/11/2019] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Psychological stress exists widely in modern society and results in the disruption of testicular tight junctions, germ cell apoptosis, and the disorder of fertility hormones and even causes infertility. Ghrelin (GHRL), a 28-amino acid peptide secreted mainly by the stomach and pancreas, has been reported to alleviate male reproductive injury through inhibiting apoptosis. However, whether GHRL has a beneficial effect on psychological stress-induced testicular injury and the possible mechanisms remain poorly understood. METHODS Male mice were immobilized in Decapicone bags for 3 h daily for 14 days treated with or without GHRL (i.p. 100 mg/kg body weight). Body weight and testicular weight were measured. Histological alterations and apoptosis were examined by H.E. staining and TUNEL staining, respectively. The expression of endoplasmic reticulum (ER) stress markers, inflammatory cytokines, Toll-like receptor 4 (TLR4), and nuclear factor-κB (NF-κB) in the testes was investigated. RESULTS Exposure to stress caused testicular histological alterations, an elevation of the Johnsen score, and germ cell apoptosis, while GHRL partially alleviated the adverse effects. The expression of ER stress marker proteins, including GRP78, CHOP, ATF6, p-JNK, and XBP-1, was upregulated in the stress group; however, GHRL treatment significantly suppressed the activation of ER stress in the testes. GHRL also inhibited the expression of TNF-α, IL-1β, IL-6, IL-10, TLR4, and NF-κB. CONCLUSIONS GHRL alleviated testicular injury induced by ER stress and inflammation which is associated with the TLR4/NF-κB signaling pathway, and these findings may provide a novel strategy for preventing and treating reproductive dysfunction.
Collapse
Affiliation(s)
- Yueying Wang
- Department of Reproductive Medicine, Jining First People's Hospital, No. 6, Jiankang Road, Rencheng District, 272000, Jining, People's Republic of China
| | - Longqiao Cao
- Department of Reproductive Medicine, Jining First People's Hospital, No. 6, Jiankang Road, Rencheng District, 272000, Jining, People's Republic of China
| | - Xiaoran Liu
- Institute of Precision and Medicine, Jining Medical University, No. 133, Hehua Road, Rencheng District, 272067, Jining, People's Republic of China.
| |
Collapse
|
14
|
Fang C, Kim H, Yanagisawa L, Bennett W, Sirven MA, Alaniz RC, Talcott ST, Mertens‐Talcott SU. Gallotannins and
Lactobacillus plantarum
WCFS1 Mitigate High‐Fat Diet‐Induced Inflammation and Induce Biomarkers for Thermogenesis in Adipose Tissue in Gnotobiotic Mice. Mol Nutr Food Res 2019; 63:e1800937. [DOI: 10.1002/mnfr.201800937] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/15/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Chuo Fang
- Department of Nutrition and Food ScienceTexas A&M University College Station 77843 TX USA
| | - Hyemee Kim
- Department of Nutrition and Food ScienceTexas A&M University College Station 77843 TX USA
| | - Lora Yanagisawa
- Microbial Pathogenesis and ImmunologyCollege of MedicineTexas A&M University College Station 77843 TX USA
| | - William Bennett
- Department of Nutrition and Food ScienceTexas A&M University College Station 77843 TX USA
| | - Maritza A. Sirven
- Department of Nutrition and Food ScienceTexas A&M University College Station 77843 TX USA
| | - Robert C. Alaniz
- Microbial Pathogenesis and ImmunologyCollege of MedicineTexas A&M University College Station 77843 TX USA
| | - Stephen T. Talcott
- Department of Nutrition and Food ScienceTexas A&M University College Station 77843 TX USA
| | | |
Collapse
|