1
|
Seraphim TV, Nano N, Cheung YWS, Aluksanasuwan S, Colleti C, Mao YQ, Bhandari V, Young G, Höll L, Phanse S, Gordiyenko Y, Southworth DR, Robinson CV, Thongboonkerd V, Gava LM, Borges JC, Babu M, Barbosa LRS, Ramos CHI, Kukura P, Houry WA. Assembly principles of the human R2TP chaperone complex reveal the presence of R2T and R2P complexes. Structure 2022; 30:156-171.e12. [PMID: 34492227 DOI: 10.1016/j.str.2021.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/16/2021] [Accepted: 08/10/2021] [Indexed: 11/18/2022]
Abstract
R2TP is a highly conserved chaperone complex formed by two AAA+ ATPases, RUVBL1 and RUVBL2, that associate with PIH1D1 and RPAP3 proteins. R2TP acts in promoting macromolecular complex formation. Here, we establish the principles of R2TP assembly. Three distinct RUVBL1/2-based complexes are identified: R2TP, RUVBL1/2-RPAP3 (R2T), and RUVBL1/2-PIH1D1 (R2P). Interestingly, we find that PIH1D1 does not bind to RUVBL1/RUVBL2 in R2TP and does not function as a nucleotide exchange factor; instead, RPAP3 is found to be the central subunit coordinating R2TP architecture and linking PIH1D1 and RUVBL1/2. We also report that RPAP3 contains an intrinsically disordered N-terminal domain mediating interactions with substrates whose sequences are primarily enriched for Armadillo repeat domains and other helical-type domains. Our work provides a clear and consistent model of R2TP complex structure and gives important insights into how a chaperone machine concerned with assembly of folded proteins into multisubunit complexes might work.
Collapse
Affiliation(s)
- Thiago V Seraphim
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON M5G 1M1, Canada; Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Nardin Nano
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON M5G 1M1, Canada
| | - Yiu Wing Sunny Cheung
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON M5G 1M1, Canada
| | - Siripat Aluksanasuwan
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON M5G 1M1, Canada; Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Carolina Colleti
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON M5G 1M1, Canada; Center of Biological and Health Sciences, Federal University of São Carlos, São Carlos, SP 13560-970, Brazil
| | - Yu-Qian Mao
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON M5G 1M1, Canada
| | - Vaibhav Bhandari
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON M5G 1M1, Canada
| | - Gavin Young
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Larissa Höll
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Sadhna Phanse
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON M5G 1M1, Canada; Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Yuliya Gordiyenko
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Daniel R Southworth
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, CA 94158, USA
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Lisandra M Gava
- Center of Biological and Health Sciences, Federal University of São Carlos, São Carlos, SP 13560-970, Brazil
| | - Júlio C Borges
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP 13566-590, Brazil
| | - Mohan Babu
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Leandro R S Barbosa
- Institute of Physics, University of São Paulo, São Paulo, SP 05508-090, Brazil; Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-100, Brazil
| | - Carlos H I Ramos
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON M5G 1M1, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
2
|
Shen F, Yang W, Cui J, Hou Y, Bai G. Small-Molecule Fluorogenic Probe for the Detection of Mitochondrial Temperature In Vivo. Anal Chem 2021; 93:13417-13420. [PMID: 34581568 DOI: 10.1021/acs.analchem.1c03554] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mitochondria, as energy factories, participate in many metabolic processes and play vital roles in cell life. Most human diseases are caused by mitochondrial dysfunction, and mitochondrial temperature is an important indicator of mitochondrial function. Despite the biological importance of mitochondria, there are few tools for detecting changes in mitochondrial temperature in living organisms. Here, we report on a thermosensitive rhodamine B (RhB)-derived fluorogenic probe (RhBIV) that enables fluorescent labeling of cell mitochondria at concentrations as low as 1 μM. We demonstrate that this probe exhibits a temperature-dependent response in cell mitochondria. Furthermore, in mice, it has a long half-life (t1/2) and is primarily enriched in the liver. This unique thermosensitive probe offers a simple, nondestructive method for longitudinal monitoring of mitochondrial temperature both in vitro and in vivo to elucidate fundamental physiological and pathological processes related to mitochondrial function.
Collapse
Affiliation(s)
- Fukui Shen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Wen Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Jing Cui
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| |
Collapse
|