1
|
Mod B, Baskar AV, Bahadur R, Tavakkoli E, Van Zwieten L, Singh G, Vinu A. From cane to nano: advanced nanomaterials derived from sugarcane products with insights into their synthesis and applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2393568. [PMID: 39238510 PMCID: PMC11376298 DOI: 10.1080/14686996.2024.2393568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024]
Abstract
Sugarcane-based products are inherently rich in elements such as silicon, carbon and nitrogen. As such, these become ideal precursors for utilization in a wide array of application fields. One of the appealing areas is to transform them into nanomaterials of high interest that can be employed in several prominent applications. Among nanomaterials, sugarcane products based on silica nanoparticles (SNPs), carbon dots (CDs), metal/metal oxide-based NPs, nanocellulose, cellulose nanofibers (CNFs), and nano biochar are becoming increasingly reported. Through manipulation of the experimental conditions and choosing suitable starting precursors and elements, it is possible to devise these nanomaterials with highly desired properties suited for specific applications. The current review presents the findings from the recent literature wherein an effort has been made to convey new development in the field of sugarcane-based products for the synthesis of the above-mentioned nanomaterials. Various nanomaterials were systematically discussed in terms of their synthesis and application perspectives. Wherever possible, a comparative analysis was carried out to highlight the potential of sugarcane products for the intended purpose as compared to other biomass-based materials. This review is expected to stand out in delivering an up-to-date survey of the literature and provide readers with necessary directions for future research.
Collapse
Affiliation(s)
- Bhavya Mod
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, NSW, Australia
| | - Arun V Baskar
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, NSW, Australia
| | - Rohan Bahadur
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, NSW, Australia
| | - Ehsan Tavakkoli
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia
| | - Lukas Van Zwieten
- NSW Department of Primary Industries, Wollongbar Primary Industries Institute, Wollongbar, NSW, Australia
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, NSW, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
2
|
Zhao R, Zhao C, Wan Y, Majid M, Abbas SQ, Wang Y. In vitro and in vivo evaluation of alginate hydrogel-based wound dressing loaded with green chemistry cerium oxide nanoparticles. Front Chem 2023; 11:1298808. [PMID: 38075491 PMCID: PMC10701403 DOI: 10.3389/fchem.2023.1298808] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/06/2023] [Indexed: 02/17/2024] Open
Abstract
Interactive wound dressings have displayed promising outcomes in enhancing the wound healing process. This study focuses on creating a nanocomposite wound dressing with interactive and bioactive properties, showcasing potent antioxidant effects. To achieve this, we developed cerium oxide nanoparticles utilizing curcumin as both the reducing and capping agent. Characterization techniques such as SEM, EDX, DLS, Zetasizer, FTIR, and XRD were utilized to analyze the cerium oxide nanoparticles synthesized through a green approach. The image analysis on the obtained TEM images showed that the curcumin-assisted biosynthesized CeO2NPs have a size of 18.8 ± 4.1 nm. The peaks located at 28.1, 32.7, 47.1, 56.0, 58.7, 69.0, and 76.4 correspond to (111), (200), (220), (311), (222), (400), and (331) crystallographic planes. We applied the Debye-Scherrer equation and observed that the approximate crystallite size of the biosynthesized NPs is around 8.2 nm based on the most intensive broad Bragg peak at 28.1°. The cerium oxide nanoparticles synthesized were integrated into an alginate hydrogel matrix, and the microstructure, porosity, and swelling behavior of the resulting wound dressing were assessed. The characterization analyses provided insights into the physical and chemical properties of the green-synthesized cerium oxide nanoparticles and the alginate hydrogel-based wound dressing. In vitro studies demonstrated that the wound dressing based on alginate hydrogel exhibited favorable antioxidant properties and displayed hemocompatibility and biocompatibility. Animal studies conducted on a rat full-thickness skin wound model showed that the alginate hydrogel-based wound dressing effectively accelerated the wound healing process. Overall, these findings suggest that the alginate hydrogel-based wound dressing holds promise as a highly effective material for wound healing applications.
Collapse
Affiliation(s)
- Ran Zhao
- Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, Shandong, China
| | - Chenyuyao Zhao
- Graduate School, Shandong First Medical University, Jinan, Shandong, China
| | - Yi Wan
- School of Mechanical Engineering, Shandong University, Jinan, Shandong, China
| | - Muhammad Majid
- Faculty of Pharmacy, Hamdard University, Islamabad, Pakistan
| | - Syed Qamar Abbas
- Department of Pharmacy, Sarhad University of Science and Technology, Peshawar, Pakistan
| | - Yibing Wang
- Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, Shandong, China
| |
Collapse
|
3
|
Patel V, Jose L, Philippot G, Aymonier C, Inerbaev T, McCourt LR, Ruppert MG, Qi D, Li W, Qu J, Zheng R, Cairney J, Yi J, Vinu A, Karakoti AS. Fluoride-assisted detection of glutathione by surface Ce 3+/Ce 4+ engineered nanoceria. J Mater Chem B 2022; 10:9855-9868. [PMID: 36415972 DOI: 10.1039/d2tb01135b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nanoceria has evolved as a promising nanomaterial due to its unique enzyme-like properties, including excellent oxidase mimetic activity, which significantly increases in the presence of fluoride ions. However, this significant increase in oxidase activity has never been utilised as a signal enhancer for the detection of biological analytes partly because of the lack of understanding of the mechanism involved in this process. In this study, we show that the surface oxidation state of cerium ions plays a very crucial role in different enzymatic activities, especially the oxidase mimetic activity by engineering nanoceria with three different surface Ce4+/Ce3+ compositions. Using DFT calculations combined with Bader charge analysis, it is demonstrated that stoichiometric ceria registers a higher oxidase mimetic activity than oxygen-deficient ceria with a low Ce4+/Ce3+ ratio due to a higher charge transfer from a substrate, 3,3',5,5' tetramethylbenzidine (TMB), to the ceria surface. We also show that the fluoride ions can significantly increase the charge transfer from the TMB surface to ceria irrespective of the surface Ce4+/Ce3+ ratio. Using this knowledge, we first compare the fluoride sensing properties of nanoceria with high Ce4+ and mixed Ce4+/Ce3+ oxidation states and further demonstrate that the linear detection range of fluoride ions can be extended to 1-10 ppm for nanoceria with mixed oxidation states. Then, we also demonstrate an assay for fluoride assisted detection of glutathione, an antioxidant with elevated levels during cancer, using nanoceria with a high surface Ce4+/Ce3+ ratio. The addition of fluoride ions in this assay allows the detection of glutathione in the linear range of 2.5-50 ppm with a limit of detection (LOD) of 3.8 ppm. These studies not only underpin the role of the surface Ce4+/Ce3+ ratio in tuning the fluoride assisted boost in the oxidase mimetic activity of nanoceria but also its strategic application in designing better colourimetric assays.
Collapse
Affiliation(s)
- Vaishwik Patel
- Global Innovative Center for Advanced Nanomaterials (GICAN), School of Engineering College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Linta Jose
- Global Innovative Center for Advanced Nanomaterials (GICAN), School of Engineering College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Gilles Philippot
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Cyril Aymonier
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Talgat Inerbaev
- L. N. Gumilyov Eurasian National University, Nur-Sultan 010008, Kazakhstan.,National University of Science and Technology "MISIS", Moscow 119049, Russia
| | - Luke R McCourt
- School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| | - Michael G Ruppert
- School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| | - Dongchen Qi
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Wei Li
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Jiangtao Qu
- School of Physics, The University of Sydney, NSW, 2000, Australia
| | - Rongkun Zheng
- School of Physics, The University of Sydney, NSW, 2000, Australia
| | - Julie Cairney
- School of Physics, The University of Sydney, NSW, 2000, Australia
| | - Jiabao Yi
- Global Innovative Center for Advanced Nanomaterials (GICAN), School of Engineering College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials (GICAN), School of Engineering College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Ajay S Karakoti
- Global Innovative Center for Advanced Nanomaterials (GICAN), School of Engineering College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
4
|
Yadav N. Cerium oxide nanostructures: properties, biomedical applications and surface coatings. 3 Biotech 2022; 12:121. [PMID: 35547014 PMCID: PMC9035199 DOI: 10.1007/s13205-022-03186-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/05/2022] [Indexed: 12/15/2022] Open
Abstract
Cerium oxide nanoparticles have significantly improved catalytic properties and are of increasing interest in the nanoparticle research field hence the current trends in cerium oxide nanoparticles are reviewed here. Unlike previous reviews which have focused primarily on the biosynthesis of cerium oxide nanoparticles, their properties, and applications, this review will focus on the unique physical, chemical, and biological properties of cerium oxide nanoparticles, the role of oxygen vacancies or defects in the lattice structure, the ratio of oxidation states in determining their catalytic properties and applications in biosensing, drug or gene delivery, etc. have been discussed. Furthermore, the limitations of the bare form of cerium oxide nanoparticles and the advances in the field of surface coating by different ligands to overcome the issues of bare nanoparticles have been discussed. The review concludes with a discussion on the environmental aspects and toxicity of cerium oxide nanoparticles and their potential future in practical applications.
Collapse
Affiliation(s)
- Nisha Yadav
- Nanomaterials and Toxicology Laboratory, Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, 380009 India
| |
Collapse
|
5
|
Yadav N, Singh S. Polyoxometalate-Mediated Vacancy-Engineered Cerium Oxide Nanoparticles Exhibiting Controlled Biological Enzyme-Mimicking Activities. Inorg Chem 2021; 60:7475-7489. [PMID: 33939401 DOI: 10.1021/acs.inorgchem.1c00766] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The biological enzyme-mimetic activity of cerium oxide nanoparticles (CeNPs) is well known to scavenge the reactive oxygen and nitrogen species in cell culture and animal models, imparting protection from the deleterious effects of oxidative and nitrosative stress. The superoxide dismutase (SOD)- and catalase-mimicking activity of CeNPs is reported to be controlled by the oxidation state of the surface "Ce" ions, where a high ratio of Ce3+/4+ or Ce4+/3+ has been considered for the displayed SOD and catalase-like activity, respectively. However, the redox behavior of CeNPs can be controlled by certain ligands that could offer changes in their enzyme-mimetic properties. Therefore, in this work, we have studied the enzyme-mimetic activities of CeNPs under the influence of polyoxometalates [phosphomolybdic acid (PMA) and phosphotungstic acid (PTA)], which are electron-dense molecules displaying quick and reversible multielectron redox reactions. Results revealed that the interaction of PMA with CeNPs results in the inhibition of the SOD-like activity; however, it has no impact on the catalase-like activity. Contrary to this, the interaction of PTA with CeNPs improved the SOD as well as catalase-like activities of CeNPs (3+), which generally do not exhibit catalase activity in the bare form. Although CeNPs (3+) did not show any peroxidase-like activity, CeNPs (4+) showed excellent activity, which was enhanced after the interaction with polyoxometalates. Further, the autoregeneration ability of CeNPs was found to be intact even after PTA or PMA interaction; however, the full catalytic activity was observed in the case of PTA but partially with PMA.
Collapse
Affiliation(s)
- Nisha Yadav
- Nanomaterials and Toxicology Lab, Division of Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Sanjay Singh
- Nanomaterials and Toxicology Lab, Division of Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad 380009, Gujarat, India
| |
Collapse
|