1
|
Kesdiren E, Martens H, Brand F, Werfel L, Wedekind L, Trowe MO, Schmitz J, Hennies I, Geffers R, Gucev Z, Seeman T, Schmidt S, Tasic V, Fasano L, Bräsen JH, Kispert A, Christians A, Haffner D, Weber RG. Heterozygous variants in the teashirt zinc finger homeobox 3 (TSHZ3) gene in human congenital anomalies of the kidney and urinary tract. Eur J Hum Genet 2024:10.1038/s41431-024-01710-y. [PMID: 39420202 DOI: 10.1038/s41431-024-01710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/10/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Around 180 genes have been associated with congenital anomalies of the kidney and urinary tract (CAKUT) in mice, and represent promising novel candidate genes for human CAKUT. In whole-exome sequencing data of two siblings with genetically unresolved multicystic dysplastic kidneys (MCDK), prioritizing variants in murine CAKUT-associated genes yielded a rare variant in the teashirt zinc finger homeobox 3 (TSHZ3) gene. Therefore, the role of TSHZ3 in human CAKUT was assessed. Twelve CAKUT patients from 9/301 (3%) families carried five different rare heterozygous TSHZ3 missense variants predicted to be deleterious. CAKUT patients with versus without TSHZ3 variants were more likely to present with hydronephrosis, hydroureter, ureteropelvic junction obstruction, MCDK, and with genital anomalies, developmental delay, overlapping with the previously described phenotypes in Tshz3-mutant mice and patients with heterozygous 19q12-q13.11 deletions encompassing the TSHZ3 locus. Comparable with Tshz3-mutant mice, the smooth muscle layer was disorganized in the renal pelvis and thinner in the proximal ureter of the nephrectomy specimen of a TSHZ3 variant carrier compared to controls. TSHZ3 was expressed in the human fetal kidney, and strongly at embryonic day 11.5-14.5 in mesenchymal compartments of the murine ureter, kidney, and bladder. TSHZ3 variants in a 5' region were more frequent in CAKUT patients than in gnomAD samples (p < 0.001). Mutant TSHZ3 harboring N-terminal variants showed significantly altered SOX9 and/or myocardin binding, possibly adversely affecting smooth muscle differentiation. Our results provide evidence that heterozygous TSHZ3 variants are associated with human CAKUT, particularly MCDK, hydronephrosis, and hydroureter, and, inconsistently, with specific extrarenal features, including genital anomalies.
Collapse
Affiliation(s)
- Esra Kesdiren
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Helge Martens
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Frank Brand
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Lina Werfel
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
- Department of Pediatric Kidney, Liver, Metabolic and Neurological Diseases, Hannover Medical School, Hannover, Germany
| | - Lukas Wedekind
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Mark-Oliver Trowe
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Jessica Schmitz
- Nephropathology, Department of Pathology, Hannover Medical School, Hannover, Germany
| | - Imke Hennies
- Department of Pediatric Kidney, Liver, Metabolic and Neurological Diseases, Hannover Medical School, Hannover, Germany
| | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Zoran Gucev
- Pediatric Nephrology, University Children's Hospital, Skopje, Macedonia
| | - Tomáš Seeman
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Pediatrics, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Sonja Schmidt
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Velibor Tasic
- Pediatric Nephrology, University Children's Hospital, Skopje, Macedonia
| | - Laurent Fasano
- Aix-Marseille Univ, CNRS, IBDM UMR7288, Marseille, France
| | - Jan H Bräsen
- Nephropathology, Department of Pathology, Hannover Medical School, Hannover, Germany
| | - Andreas Kispert
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Anne Christians
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver, Metabolic and Neurological Diseases, Hannover Medical School, Hannover, Germany
| | - Ruthild G Weber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
2
|
Vendrig LM, Ten Hoor MAC, König BH, Lekkerkerker I, Renkema KY, Schreuder MF, van der Zanden LFM, van Eerde AM, Groen In 't Woud S, Mulder J, Westland R. Translational strategies to uncover the etiology of congenital anomalies of the kidney and urinary tract. Pediatr Nephrol 2024:10.1007/s00467-024-06479-2. [PMID: 39373868 DOI: 10.1007/s00467-024-06479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 10/08/2024]
Abstract
While up to 50% of children requiring kidney replacement therapy have congenital anomalies of the kidney and urinary tract (CAKUT), they represent only a fraction of the total patient population with CAKUT. The extreme variability in clinical outcome underlines the fundamental need to devise personalized clinical management strategies for individuals with CAKUT. Better understanding of the pathophysiology of abnormal kidney and urinary tract development provides a framework for precise diagnoses and prognostication of patients, the identification of biomarkers and disease modifiers, and, thus, the development of personalized strategies for treatment. In this review, we provide a state-of-the-art overview of the currently known genetic causes, including rare variants in kidney and urinary tract development genes, genomic disorders, and common variants that have been attributed to CAKUT. Furthermore, we discuss the impact of environmental factors and their interactions with developmental genes in kidney and urinary tract malformations. Finally, we present multi-angle translational modalities to validate candidate genes and environmental factors and shed light on future strategies to better understand the molecular underpinnings of CAKUT.
Collapse
Affiliation(s)
- Lisanne M Vendrig
- Department of Pediatric Nephrology, Amsterdam UMC-Emma Children's Hospital, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Mayke A C Ten Hoor
- Division of Nephrology, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Benthe H König
- IQ Health Science Department, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Iris Lekkerkerker
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kirsten Y Renkema
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Sander Groen In 't Woud
- IQ Health Science Department, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jaap Mulder
- Division of Nephrology, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
- Division of Nephrology, Department of Pediatrics, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Rik Westland
- Department of Pediatric Nephrology, Amsterdam UMC-Emma Children's Hospital, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Shi M, Fu P, Bonventre JV, McCracken KW. Directed differentiation of ureteric bud and collecting duct organoids from human pluripotent stem cells. Nat Protoc 2023; 18:2485-2508. [PMID: 37460630 PMCID: PMC11154671 DOI: 10.1038/s41596-023-00847-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 04/24/2023] [Indexed: 08/09/2023]
Abstract
Developing models of human kidney tissue in vitro is an important challenge in regenerative nephrology research, given the paucity of novel and effective therapies in kidney disease. However, the de novo generation of kidney tissues from human pluripotent stem cells (hPSCs) is challenging owing to the structural and functional complexity of the organ, as well its developmental origin from two distinct embryologic populations: the metanephric mesenchyme and the ureteric bud (UB). Directed differentiation strategies have been developed to generate kidney organoids containing nephron-like structures; we recently reported an efficient and practical method to generate UB tissues. Here, we describe a detailed step-by-step protocol for differentiation of hPSCs into three-dimensonal UB organoids that exhibit complex morphological development and the capacity to differentiate into functional collecting duct tissues. Over 3 d, hPSCs are induced into PAX2+GATA3+ pronephric (anterior) intermediate mesoderm fates in monolayer cultures at high efficiency. The cells are aggregated into three-dimensional spheroids, which then assemble and organize into nephric duct-like tissue over 4 d. When embedded into an extracellular matrix, the spheroids grow into UB organoids that recapitulate fetal branching morphogenesis for 1 week of culture. When switched to permissive conditions, the UB organoids spontaneously differentiate to form collecting duct principal cells. This approach provides robust and reproducible methods that can be readily adopted by users with basic experience in hPSC and organoid differentiation to generate UB tissues, which may be used to investigate human kidney development, model disease processes and catalyze further efforts in engineering functional kidney tissue.
Collapse
Affiliation(s)
- Min Shi
- Division of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
- Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ping Fu
- Division of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| | - Joseph V Bonventre
- Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge and Boston, MA, USA.
- Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Kyle W McCracken
- Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Nephrology, Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
4
|
Shi M, McCracken KW, Patel AB, Zhang W, Ester L, Valerius MT, Bonventre JV. Human ureteric bud organoids recapitulate branching morphogenesis and differentiate into functional collecting duct cell types. Nat Biotechnol 2023; 41:252-261. [PMID: 36038632 PMCID: PMC9957856 DOI: 10.1038/s41587-022-01429-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/13/2022] [Indexed: 12/29/2022]
Abstract
Directed differentiation of human pluripotent stem cells (hPSCs) into functional ureteric and collecting duct (CD) epithelia is essential to kidney regenerative medicine. Here we describe highly efficient, serum-free differentiation of hPSCs into ureteric bud (UB) organoids and functional CD cells. The hPSCs are first induced into pronephric progenitor cells at 90% efficiency and then aggregated into spheres with a molecular signature similar to the nephric duct. In a three-dimensional matrix, the spheres form UB organoids that exhibit branching morphogenesis similar to the fetal UB and correct distal tip localization of RET expression. Organoid-derived cells incorporate into the UB tips of the progenitor niche in chimeric fetal kidney explant culture. At later stages, the UB organoids differentiate into CD organoids, which contain >95% CD cell types as estimated by single-cell RNA sequencing. The CD epithelia demonstrate renal electrophysiologic functions, with ENaC-mediated vectorial sodium transport by principal cells and V-type ATPase proton pump activity by FOXI1-induced intercalated cells.
Collapse
Affiliation(s)
- Min Shi
- Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| | - Kyle W McCracken
- Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Nephrology, Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, USA.
| | - Ankit B Patel
- Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Weitao Zhang
- Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lioba Ester
- Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine, and University Hospital Cologne, Cologne, Germany
| | - M Todd Valerius
- Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge and Boston, Boston, MA, USA
| | - Joseph V Bonventre
- Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge and Boston, Boston, MA, USA.
- Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Lukianenko N, Nurgaliyeva Z, Astapieva O, Starenkiy V, Pidchenko N. Congenital malformations of the urinary system as visceral markers of undifferentiated connective tissue dysplasia. Postgrad Med 2023; 135:67-71. [PMID: 36200784 DOI: 10.1080/00325481.2022.2131439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE The relevance of this study is conditioned by the need for urgent search and implementation of effective methods of treatment of urinary system diseases in people of different ages, as well as addressing issues of quality treatment of connective tissue diseases in general and its dysplasia in particular. The aim of the article is to identify congenital defects as visceral markers of connective tissue dysplasia. METHODS The methodology of this study includes a survey of a group of children with considerable problems in the development and functioning of the urinary system at the age of 2 weeks to 3 years, in order to qualitatively select and determine the most effective methods of treatment. Children who took part in this study had a set of phenotypic and clinical properties of undifferentiated connective tissue dysplasia. RESULTS The considerable prevalence of undifferentiated connective tissue dysplasia in young children with congenital malformations of the urinary system, especially in children with abnormal development and functioning of kidney tissue, which substantially influences the course of the disease was determined. Also, treatment of undifferentiated connective tissue dysplasia was predicted. CONCLUSIONS It was concluded that the presence of a malformation of the urinary system, which is acquired by a child from birth, can be considered as a visceral manifestation of undifferentiated connective tissue dysplasia.
Collapse
Affiliation(s)
- Nataliia Lukianenko
- Department of Clinical Genetics, Institute of Hereditary Pathology of the National Academy of Medical Sciences of Ukraine, Lviv, Ukraine.,Department of Propaedeutics of Pediatrics and Medical Genetics, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Zhansulu Nurgaliyeva
- Department of Pharmacology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Republic of Kazakhstan
| | - Olha Astapieva
- Department of Radiology and Radiation Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Viktor Starenkiy
- Department of Radiology and Radiation Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Nataliia Pidchenko
- Research Group of Radiology and Nuclear Medicine, Grigoriev Institute for Medical Radiology and Oncology of the National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine
| |
Collapse
|
6
|
Perl AJ, Schuh MP, Kopan R. Regulation of nephron progenitor cell lifespan and nephron endowment. Nat Rev Nephrol 2022; 18:683-695. [PMID: 36104510 PMCID: PMC11078284 DOI: 10.1038/s41581-022-00620-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
Low nephron number - resulting, for example, from prematurity or developmental anomalies - is a risk factor for the development of hypertension, chronic kidney disease and kidney failure. Considerable interest therefore exists in the mechanisms that regulate nephron endowment and contribute to the premature cessation of nephrogenesis following preterm birth. The cessation of nephrogenesis in utero or shortly after birth is synchronized across multiple niches in all mammals, and is coupled with the exhaustion of nephron progenitor cells. Consequently, no nephrons are formed after the cessation of developmental nephrogenesis, and lifelong renal function therefore depends on the complement of nephrons generated during gestation. In humans, a tenfold variation in nephron endowment between individuals contributes to differences in susceptibility to kidney disease; however, the mechanisms underlying this variation are not yet clear. Salient advances in our understanding of environmental inputs, and of intrinsic molecular mechanisms that contribute to the regulation of cessation timing or nephron progenitor cell exhaustion, have the potential to inform interventions to enhance nephron endowment and improve lifelong kidney health for susceptible individuals.
Collapse
Affiliation(s)
- Alison J Perl
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Meredith P Schuh
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Raphael Kopan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
7
|
Sharma A, Meer M, Dapkunas A, Ihermann-Hella A, Kuure S, Vainio SJ, Iber D, Naillat F. FGF8 induces chemokinesis and regulates condensation of mouse nephron progenitor cells. Development 2022; 149:277149. [DOI: 10.1242/dev.201012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022]
Abstract
ABSTRACT
Kidneys develop via iterative branching of the ureteric epithelial tree and subsequent nephrogenesis at the branch points. Nephrons form in the cap mesenchyme as the metanephric mesenchyme (MM) condenses around the epithelial ureteric buds (UBs). Previous work has demonstrated that FGF8 is important for the survival of nephron progenitor cells (NPCs), and early deletion of Fgf8 leads to the cessation of nephron formation, which results in post-natal lethality. We now reveal a previously unreported function of FGF8. By combining transgenic mouse models, quantitative imaging assays and data-driven computational modelling, we show that FGF8 has a strong chemokinetic effect and that this chemokinetic effect is important for the condensation of NPCs to the UB. The computational model shows that the motility must be lower close to the UB to achieve NPC attachment. We conclude that the FGF8 signalling pathway is crucial for the coordination of NPC condensation at the UB. Chemokinetic effects have also been described for other FGFs and may be generally important for the formation of mesenchymal condensates.
Collapse
Affiliation(s)
- Abhishek Sharma
- University of Oulu 1 Faculty of Biochemistry and Molecular Medicine , , Oulu 90220, Finland
- Biocenter Oulu 2 , Oulu 90220, Finland
| | - Marco Meer
- ETH Zürich 3 Department of Biosystems, Science and Engineering , , Zürich 04058, Switzerland
- Swiss Institute of Bioinformatics 4 , Lausanne 1015 , Switzerland
| | - Arvydas Dapkunas
- University of Helsinki 5 HiLIFE and Research Programs Unit, Faculty of Medicine , , Helsinki 00014, Finland
| | - Anneliis Ihermann-Hella
- University of Helsinki 5 HiLIFE and Research Programs Unit, Faculty of Medicine , , Helsinki 00014, Finland
| | - Satu Kuure
- University of Helsinki 5 HiLIFE and Research Programs Unit, Faculty of Medicine , , Helsinki 00014, Finland
- LAC/HiLIFE, and Medicum, University of Helsinki 6 GM-Unit , , Helsinki 00014, Finland
| | - Seppo J. Vainio
- University of Oulu 1 Faculty of Biochemistry and Molecular Medicine , , Oulu 90220, Finland
- Biocenter Oulu 2 , Oulu 90220, Finland
- Infotech Oulu 7 , Oulu 90200, Finland
- Borealis Biobank 8 , Oulu 90200, Finland
- Kvantum Institute, University of Oulu 9 , Oulu 90200, Finland
| | - Dagmar Iber
- ETH Zürich 3 Department of Biosystems, Science and Engineering , , Zürich 04058, Switzerland
- Swiss Institute of Bioinformatics 4 , Lausanne 1015 , Switzerland
| | - Florence Naillat
- University of Oulu 1 Faculty of Biochemistry and Molecular Medicine , , Oulu 90220, Finland
- Biocenter Oulu 2 , Oulu 90220, Finland
| |
Collapse
|
8
|
Comparative whole-genome transcriptome analysis in renal cell populations reveals high tissue specificity of MAPK/ERK targets in embryonic kidney. BMC Biol 2022; 20:112. [PMID: 35550069 PMCID: PMC9102746 DOI: 10.1186/s12915-022-01309-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 04/25/2022] [Indexed: 12/19/2022] Open
Abstract
Background MAPK/ERK signaling is a well-known mediator of extracellular stimuli controlling intracellular responses to growth factors and mechanical cues. The critical requirement of MAPK/ERK signaling for embryonic stem cell maintenance is demonstrated, but specific functions in progenitor regulation during embryonic development, and in particular kidney development remain largely unexplored. We previously demonstrated MAPK/ERK signaling as a key regulator of kidney growth through branching morphogenesis and normal nephrogenesis where it also regulates progenitor expansion. Here, we performed RNA sequencing-based whole-genome expression analysis to identify transcriptional MAPK/ERK targets in two distinct renal populations: the ureteric bud epithelium and the nephron progenitors. Results Our analysis revealed a large number (5053) of differentially expressed genes (DEGs) in nephron progenitors and significantly less (1004) in ureteric bud epithelium, reflecting likely heterogenicity of cell types. The data analysis identified high tissue-specificity, as only a fraction (362) of MAPK/ERK targets are shared between the two tissues. Tissue-specific MAPK/ERK targets participate in the regulation of mitochondrial energy metabolism in nephron progenitors, which fail to maintain normal mitochondria numbers in the MAPK/ERK-deficient tissue. In the ureteric bud epithelium, a dramatic decline in progenitor-specific gene expression was detected with a simultaneous increase in differentiation-associated genes, which was not observed in nephron progenitors. Our experiments in the genetic model of MAPK/ERK deficiency provide evidence that MAPK/ERK signaling in the ureteric bud maintains epithelial cells in an undifferentiated state. Interestingly, the transcriptional targets shared between the two tissues studied are over-represented by histone genes, suggesting that MAPK/ERK signaling regulates cell cycle progression and stem cell maintenance through chromosome condensation and nucleosome assembly. Conclusions Using tissue-specific MAPK/ERK inactivation and RNA sequencing in combination with experimentation in embryonic kidneys, we demonstrate here that MAPK/ERK signaling maintains ureteric bud tip cells, suggesting a regulatory role in collecting duct progenitors. We additionally deliver new mechanistic information on how MAPK/ERK signaling regulates progenitor maintenance through its effects on chromatin accessibility and energy metabolism. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01309-z.
Collapse
|
9
|
Khan K, Ahram DF, Liu YP, Westland R, Sampogna RV, Katsanis N, Davis EE, Sanna-Cherchi S. Multidisciplinary approaches for elucidating genetics and molecular pathogenesis of urinary tract malformations. Kidney Int 2022; 101:473-484. [PMID: 34780871 PMCID: PMC8934530 DOI: 10.1016/j.kint.2021.09.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/15/2021] [Accepted: 09/30/2021] [Indexed: 12/28/2022]
Abstract
Advances in clinical diagnostics and molecular tools have improved our understanding of the genetically heterogeneous causes underlying congenital anomalies of kidney and urinary tract (CAKUT). However, despite a sharp incline of CAKUT reports in the literature within the past 2 decades, there remains a plateau in the genetic diagnostic yield that is disproportionate to the accelerated ability to generate robust genome-wide data. Explanations for this observation include (i) diverse inheritance patterns with incomplete penetrance and variable expressivity, (ii) rarity of single-gene drivers such that large sample sizes are required to meet the burden of proof, and (iii) multigene interactions that might produce either intra- (e.g., copy number variants) or inter- (e.g., effects in trans) locus effects. These challenges present an opportunity for the community to implement innovative genetic and molecular avenues to explain the missing heritability and to better elucidate the mechanisms that underscore CAKUT. Here, we review recent multidisciplinary approaches at the intersection of genetics, genomics, in vivo modeling, and in vitro systems toward refining a blueprint for overcoming the diagnostic hurdles that are pervasive in urinary tract malformation cohorts. These approaches will not only benefit clinical management by reducing age at molecular diagnosis and prompting early evaluation for comorbid features but will also serve as a springboard for therapeutic development.
Collapse
Affiliation(s)
- Kamal Khan
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA.,Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA (current address)
| | - Dina F. Ahram
- Division of Nephrology, Columbia University, New York, USA
| | - Yangfan P. Liu
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA
| | - Rik Westland
- Division of Nephrology, Columbia University, New York, USA.,Department of Pediatric Nephrology, Amsterdam UMC- Emma Children’s Hospital, Amsterdam, NL
| | | | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA; Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA (current address); Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| | - Erica E. Davis
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA.,Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA (current address).,Department of Pediatrics and Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,To whom correspondence should be addressed: ADDRESS CORRESPONDENCE TO: Simone Sanna-Cherchi, MD, Division of Nephrology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA; Phone: 212-851-4925; Fax: 212-851-5461; . Erica E. Davis, PhD, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; Phone: 312-503-7662; Fax: 312-503-7343; , Nicholas Katsanis, PhD, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; Phone: 312-503-7339; Fax: 312-503-7343;
| | - Simone Sanna-Cherchi
- Department of Medicine, Division of Nephrology, Columbia University Irving Medical Center, New York, New York, USA.
| |
Collapse
|
10
|
Li H, Kurtzeborn K, Kupari J, Gui Y, Siefker E, Lu B, Mätlik K, Olfat S, Montaño-Rodríguez AR, Huh SH, Costantini F, Andressoo JO, Kuure S. Postnatal prolongation of mammalian nephrogenesis by excess fetal GDNF. Development 2021; 148:268366. [PMID: 34032268 PMCID: PMC8180252 DOI: 10.1242/dev.197475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/26/2021] [Indexed: 01/21/2023]
Abstract
Nephron endowment, defined during the fetal period, dictates renal and related cardiovascular health throughout life. We show here that, despite its negative effects on kidney growth, genetic increase of GDNF prolongs the nephrogenic program beyond its normal cessation. Multi-stage mechanistic analysis revealed that excess GDNF maintains nephron progenitors and nephrogenesis through increased expression of its secreted targets and augmented WNT signaling, leading to a two-part effect on nephron progenitor maintenance. Abnormally high GDNF in embryonic kidneys upregulates its known targets but also Wnt9b and Axin2, with concomitant deceleration of nephron progenitor proliferation. Decline of GDNF levels in postnatal kidneys normalizes the ureteric bud and creates a permissive environment for continuation of the nephrogenic program, as demonstrated by morphologically and molecularly normal postnatal nephron progenitor self-renewal and differentiation. These results establish that excess GDNF has a bi-phasic effect on nephron progenitors in mice, which can faithfully respond to GDNF dosage manipulation during the fetal and postnatal period. Our results suggest that sensing the signaling activity level is an important mechanism through which GDNF and other molecules contribute to nephron progenitor lifespan specification. Summary: Dosage of neurotropic factor GDNF regulates nephron progenitors and in utero growth factor augmentation can extend postnatal lifespan and differentiation of nephron progenitors.
Collapse
Affiliation(s)
- Hao Li
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.,Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Kristen Kurtzeborn
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.,Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Jussi Kupari
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Yujuan Gui
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Edward Siefker
- Department of Developmental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Benson Lu
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Kärt Mätlik
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland.,Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Soophie Olfat
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland.,Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Ana R Montaño-Rodríguez
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland.,Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Sung-Ho Huh
- Department of Developmental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Franklin Costantini
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Jaan-Olle Andressoo
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland.,Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.,Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Satu Kuure
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.,GM-unit, Laboratory Animal Centre, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
11
|
Li H, Hohenstein P, Kuure S. Embryonic Kidney Development, Stem Cells and the Origin of Wilms Tumor. Genes (Basel) 2021; 12:genes12020318. [PMID: 33672414 PMCID: PMC7926385 DOI: 10.3390/genes12020318] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/23/2022] Open
Abstract
The adult mammalian kidney is a poorly regenerating organ that lacks the stem cells that could replenish functional homeostasis similarly to, e.g., skin or the hematopoietic system. Unlike a mature kidney, the embryonic kidney hosts at least three types of lineage-specific stem cells that give rise to (a) a ureter and collecting duct system, (b) nephrons, and (c) mesangial cells together with connective tissue of the stroma. Extensive interest has been raised towards these embryonic progenitor cells, which are normally lost before birth in humans but remain part of the undifferentiated nephrogenic rests in the pediatric renal cancer Wilms tumor. Here, we discuss the current understanding of kidney-specific embryonic progenitor regulation in the innate environment of the developing kidney and the types of disruptions in their balanced regulation that lead to the formation of Wilms tumor.
Collapse
Affiliation(s)
- Hao Li
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland;
| | - Peter Hohenstein
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Satu Kuure
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland;
- GM-Unit, Laboratory Animal Center, Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland
- Correspondence: ; Tel.: +358-2941-59395
| |
Collapse
|