High level of LncRNA MAPKAPK5-AS1 predicts poor prognosis and contributes to the malignant proliferation and EMT of non-small cell lung cancer via sponging miR-490-3p from HMGB2.
Genes Genomics 2022;
45:611-625. [PMID:
36445573 DOI:
10.1007/s13258-022-01339-5]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/22/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND
Patients with non-small cell lung cancer (NSCLC) show a low survival rate, owing to the lack of early diagnostic method and high invasiveness. Long non-coding RNA MAPKAPK5-AS1 that regulates tumor genesis and progression through multiple signals, is upregulated and involved in the growth and apoptosis in lung adenocarcinoma (LUAD).
OBJECTIVE
To investigate whether MAPKAPK5-AS1 affected the malignant progression of NSCLC.
METHODS
The levels of MAPKAPK5-AS1, miR-490-3p and HMGB2 in lung cancer were first analyzed through StarBase website, and confirmed by a quantitative reverse transcriptase-PCR (qRT-PCR) assay. The biological functions of NSCLC cells were examined by CCK-8, 5-ethynyl-2'-deoxyuridine (EdU) and flow cytometry assays. The potential binding sequences lncRNA-miRNA and miRNA-mRNA were predicted by StarBase software and verified via dual luciferase reporter experiment. The effects of MAPKAPK5-AS1 on tumor growth were evaluated in a xenografted mice model.
RESULTS
The expression of MAPKAPK5-AS1 was upregulated in tumor tissues from NSCLC patients. Patients with high expression of MAPKAPK5-AS1 had higher tumor size, advanced TNM stage, higher incidence of lymph node and distant metastasis, and shorter overall survival. Knockdown of MAPKAPK5-AS1 inhibited the proliferation, induced apoptosis and blocked epithelial mesenchymal transformation (EMT) of NSCLC cells. Mechanically, MAPKAPK5-AS1 could upregulate the HMGB2 level in NSCLC cells through competitively binding to miR-490-3p. MiR-490-3p inhibitor reversed the roles of MAPKAPK5-AS1 knockdown on tumor cell proliferation, apoptosis and EMT. Also, HMGB2 knockdown suppressed tumor cell malignant phenotypes. Furthermore, interference of MAPKAPK5-AS1 slowed NSCLC tumor growth in vivo.
CONCLUSION
Knockdown of MAPKAPK5-AS1 inhibited the aggressive tumor phenotypes through miR-490-3p/HMGB2 axis in NSCLC. MAPKAPK5-AS1/miR-490-3p/HMGB2 might be potential biomarkers or therapeutic targets for NSCLC.
Collapse