1
|
Häupl B, Wilke AC, Urlaub H, Oellerich T. Phosphoproteomic Analysis of Signaling Pathways in Lymphomas. Methods Mol Biol 2025; 2865:283-294. [PMID: 39424730 DOI: 10.1007/978-1-0716-4188-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Cellular fate is regulated by intricate signal transduction mediated by posttranslational protein modifications like phosphorylation to transmit information. As other cancer types, lymphomas frequently show dysregulation of signaling pathways that contribute to malignant transformation and tumor progression. For example, in diffuse large B-cell lymphoma the B-cell antigen receptor was identified as an oncogenic driver mediating cellular growth and survival signals. Thus, the elucidation of these complex signaling networks is crucial to gain insight into the mechanisms underlying tumorigenesis and to identify target proteins for innovative therapeutic approaches.Here, we describe a mass spectrometry-based phosphoproteomic approach for the global analysis of intracellular signaling events and their dynamics. The workflow combines phosphopeptide enrichment and fractionation with liquid chromatography-coupled mass spectrometry for the amino acid site-specific identification and quantification of thousands of phosphorylation events. Such global signaling analyses have great potential for the elucidation of oncogenic pathomechanisms, diagnostic biomarkers, and drug targets.
Collapse
Affiliation(s)
- Björn Häupl
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
| | - Anne Christine Wilke
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Oellerich
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt, Germany.
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany.
| |
Collapse
|
2
|
Wang Y, Peng L, Wang F. M6A-mediated molecular patterns and tumor microenvironment infiltration characterization in nasopharyngeal carcinoma. Cancer Biol Ther 2024; 25:2333590. [PMID: 38532632 DOI: 10.1080/15384047.2024.2333590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
N6-methyladenosine (m6A) is the most predominant RNA epigenetic regulation in eukaryotic cells. Numerous evidence revealed that m6A modification exerts a crucial role in the regulation of tumor microenvironment (TME) cell infiltration in several tumors. Nevertheless, the potential role and mechanism of m6A modification in nasopharyngeal carcinoma (NPC) remains unknown. mRNA expression data and clinical information from GSE102349, and GSE53819 datasets obtained from Gene Expression Omnibus (GEO) was used for differential gene expression and subsequent analysis. Consensus clustering was used to identify m6A-related molecular patterns of 88 NPC samples based on prognostic m6A regulators using Univariate Cox analysis. The TME cell-infiltrating characteristics of each m6A-related subclass were explored using single-sample gene set enrichment (ssGSEA) algorithm and CIBERSORT algotithm. DEGs between two m6A-related subclasses were screened using edgeR package. The prognostic signature and predicated nomogram were constructed based on the m6A-related DEGs. The cell infiltration and expression of prognostic signature in NPC was determined using immunohistochemistry (IHC) analysis. Chi-square test was used to analysis the significance of difference of the categorical variables. And survival analysis was performed using Kaplan-Meier plots and log-rank tests. The NPC samples were divided into two m6A-related subclasses. The TME cell-infiltrating characteristics analyses indicated that cluster 1 is characterized by immune-related and metabolism pathways activation, better response to anit-PD1 and anti-CTLA4 treatment and chemotherapy. And cluster 2 is characterized by stromal activation, low expression of HLA family and immune checkpoints, and a worse response to anti-PD1 and anti-CTLA4 treatment and chemotherapy. Furthermore, we identified 1558 DEGs between two m6A-related subclasses and constructed prognostic signatures to predicate the progression-free survival (PFS) for NPC patients. Compared to non-tumor samples, REEP2, TMSB15A, DSEL, and ID4 were upregulated in NPC samples. High expression of REEP2 and TMSB15A showed poor survival in NPC patients. The interaction between REEP2, TMSB15A, DSEL, ID4, and m6A regulators was detected. Our finding indicated that m6A modification plays an important role in the regulation of TME heterogeneity and complexity.
Collapse
Affiliation(s)
- Yong Wang
- Department of Radiotherapy, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lisha Peng
- Department of Radiotherapy, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Feng Wang
- Department of Radiotherapy, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
3
|
Zhou J, Lei B, Shi F, Luo X, Wu K, Xu Y, Zhang Y, Liu R, Wang H, Zhou J, He X. CAR T-cell therapy for systemic lupus erythematosus: current status and future perspectives. Front Immunol 2024; 15:1476859. [PMID: 39749335 PMCID: PMC11694027 DOI: 10.3389/fimmu.2024.1476859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025] Open
Abstract
Systemic lupus erythematosus (SLE) and lupus nephritis (LN) are debilitating autoimmune disorders characterized by pathological autoantibodies production and immune dysfunction, causing chronic inflammation and multi-organ damage. Despite current treatments with antimalarial drugs, glucocorticoids, immunosuppressants, and monoclonal antibodies, a definitive cure remains elusive, highlighting an urgent need for novel therapeutic strategies. Recent studies indicate that chimeric antigen receptor T-cell (CAR-T) therapy has shown promising results in treating B-cell malignancies and may offer a significant breakthrough for non-malignant conditions like SLE. In this paper, we aim to provide an in-depth analysis of the advancements in CAR-T therapy for SLE, focusing on its potential to revolutionize treatment for this complex disease. We explore the fundamental mechanisms of CAR-T cell action, the rationale for its application in SLE, and the immunological underpinnings of the disease. We also summarize clinical data on the safety and efficacy of anti-CD19 and anti-B cell maturation antigen (BCMA) CAR-T cells in targeting B-cells in SLE. We discuss the clinical implications of these findings and the potential for CAR-T therapy to improve outcomes in severe or refractory SLE cases. The integration of CAR-T therapy into the SLE treatment paradigm presents a new horizon in autoimmunity research and clinical practice. This review underscores the need for continued exploration and optimization of CAR-T strategies to address the unmet needs of SLE patients.
Collapse
Affiliation(s)
- Jincai Zhou
- Innovation & Research Department, OriCell Therapeutics Co. Ltd., Shanghai, China
| | | | | | | | | | | | | | | | | | - Joy Zhou
- Innovation & Research Department, OriCell Therapeutics Co. Ltd., Shanghai, China
| | - Xiaowen He
- Innovation & Research Department, OriCell Therapeutics Co. Ltd., Shanghai, China
| |
Collapse
|
4
|
Zhang P, Ruan C, Yang G, Guan Y, Zhu Y, Li Q, Dai X, An Y, Shi X, Huang P, Chen Y, He Z, Du Z, Liu C. PGRN Inhibits Early B-cell Activation and IgE Production Through the IFITM3-STAT1 Signaling Pathway in Asthma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403939. [PMID: 39412083 PMCID: PMC11615816 DOI: 10.1002/advs.202403939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/23/2024] [Indexed: 12/06/2024]
Abstract
Progranulin (PGRN) plays a critical role in bronchial asthma and the function of various immune cells. However, the mechanisms by which PGRN influences B-cell receptor (BCR) signaling and immunoglobulin E(IgE) production are not fully understood. The study aimed to elucidate the molecular mechanisms through which PGRN affects BCR signaling, B-cell differentiation, and IgE production. A PGRN knockout mouse model, along with techniques including flow cytometry, the creation of a bone marrow chimeric mouse model, total internal reflection fluorescence (TIRF), and Western blot (WB) analysis is employed, to investigate the link between PGRN and various aspects of B-cell biology. It is discovered that the absence of PGRN in mice alters peripheral B-cell subpopulations, promotes IgE class switching in a cell-intrinsic manner, and affects B-cell subpopulations. Additionally, PGRN modulates B-cell functions by regulating BCR signaling pathways, metabolic processes, and the actin cytoskeleton during early B-cell activation. Significantly, PGRN deficiency results in diminished production of NP-specific antibodies. Moreover, it is found that PGRN inhibits B-cell activation and IgE production through the PGRN-IFITM3-STAT1 signaling pathway. The findings provide new strategies for the targeted treatment of bronchial asthma, highlighting the crucial role of PGRN in B-cell signaling and IgE production.
Collapse
Affiliation(s)
- Pingping Zhang
- Department of PediatricsAffiliated Hospital of Zunyi Medical UniversityZunyi563000China
- Department of PediatricsGuizhou Children's HospitalZunyi563000China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical UniversityZunyi563099China
| | - Changshun Ruan
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqing400014China
| | - Guangli Yang
- Department of PediatricsAffiliated Hospital of Zunyi Medical UniversityZunyi563000China
- Department of PediatricsGuizhou Children's HospitalZunyi563000China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical UniversityZunyi563099China
| | - Yaning Guan
- Department of PediatricsAffiliated Hospital of Zunyi Medical UniversityZunyi563000China
- Department of PediatricsGuizhou Children's HospitalZunyi563000China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical UniversityZunyi563099China
| | - Yin Zhu
- Department of PediatricsAffiliated Hospital of Zunyi Medical UniversityZunyi563000China
- Department of PediatricsGuizhou Children's HospitalZunyi563000China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical UniversityZunyi563099China
| | - Qian Li
- Department of PediatricsAffiliated Hospital of Zunyi Medical UniversityZunyi563000China
- Department of PediatricsGuizhou Children's HospitalZunyi563000China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical UniversityZunyi563099China
| | - Xin Dai
- Zhanjiang Institute of Clinical MedicineZhanjiang Central HospitalGuangdong Medical UniversityZhanjiang524037China
- Department of HematologyCentral People's Hospital of ZhanjiangZhanjiang524037China
| | - Yang An
- Department of PediatricsAffiliated Hospital of Zunyi Medical UniversityZunyi563000China
- Department of PediatricsGuizhou Children's HospitalZunyi563000China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical UniversityZunyi563099China
| | - Xiaoqi Shi
- Department of PediatricsAffiliated Hospital of Zunyi Medical UniversityZunyi563000China
- Department of PediatricsGuizhou Children's HospitalZunyi563000China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical UniversityZunyi563099China
| | - Pei Huang
- Department of PediatricsAffiliated Hospital of Zunyi Medical UniversityZunyi563000China
- Department of PediatricsGuizhou Children's HospitalZunyi563000China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical UniversityZunyi563099China
| | - Yan Chen
- Department of PediatricsAffiliated Hospital of Zunyi Medical UniversityZunyi563000China
- Department of PediatricsGuizhou Children's HospitalZunyi563000China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical UniversityZunyi563099China
| | - Zhixu He
- Department of PediatricsAffiliated Hospital of Zunyi Medical UniversityZunyi563000China
- Department of PediatricsGuizhou Children's HospitalZunyi563000China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical UniversityZunyi563099China
| | - Zuochen Du
- Department of PediatricsAffiliated Hospital of Zunyi Medical UniversityZunyi563000China
- Department of PediatricsGuizhou Children's HospitalZunyi563000China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical UniversityZunyi563099China
| | - Chaohong Liu
- Department of Pathogen Biology School of Basic MedicineTongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesHuazhong University of Science and Technology Wuhan Hubei ChinaHubei430074China
| |
Collapse
|
5
|
Moraga-Fernández A, de Sousa-Blanco M, Marques JP, Queirós J, Fernández-Melgar R, García-Álvarez O, Alves PC, Contreras M. Impact of vaccination with the Anaplasma phagocytophilum MSP4 chimeric antigen on gene expression in the rabbit host. Res Vet Sci 2024; 178:105370. [PMID: 39116823 DOI: 10.1016/j.rvsc.2024.105370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/28/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
There are currently no vaccines available to prevent and control of Anaplasma phagocytophilum, an intracellular bacterial pathogen transmitted by ticks that occurs in many regions of the world and causes disease in a wide range of domestic and wild hosts, including humans. Vaccines induce long-lasting immunity and could prevent or reduce transmission of this pathogen. Understanding how vaccines induce a protective response can be difficult due to the complexity of the immune system, which operates at many levels throughout the organism. New perspectives in vaccinology, based on systems biology approaches, integrate many scientific disciplines to fully understand the biological responses to vaccination, where a transcriptomic approach could reveal relevant information of the host immune system, allowing profiling for rational design of vaccine formulations, administration, and potential protection. In the present study we report the gene expression profiles by RNA-seq followed by functional analysis using whole blood samples from rabbits immunized with a recombinant chimeric protein containing peptides from the MSP4 protein of A. phagocytophilum, which showed satisfactory results in terms of potential protection. Transcriptomic analysis revealed differential expression of 720 genes, with 346 genes upregulated and 374 genes downregulated. Overrepresentation of biological and metabolic pathways correlated with immune response, protein signaling, cytoskeleton organization and protein synthesis were found. These changes in gene expression could provide a complete and unique picture of the biological response to the epitope candidate vaccine against A. phagocytophilum in the host.
Collapse
Affiliation(s)
- Alberto Moraga-Fernández
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - María de Sousa-Blanco
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - João Pedro Marques
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - João Queirós
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal; Estação Biológica de Mértola (EBM), CIBIO, Praça Luís de Camões, Mértola 7750-329, Portugal
| | - Rubén Fernández-Melgar
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Olga García-Álvarez
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Paulo C Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal; Estação Biológica de Mértola (EBM), CIBIO, Praça Luís de Camões, Mértola 7750-329, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain.
| |
Collapse
|
6
|
Park B, Choi ME, Ryu KJ, Park C, Choi M, Yoon SE, Kim WS, Kim HH, Hong JY, Kim SJ. Exosomal miR-155-5p drives ibrutinib resistance in B-cell lymphoma. Exp Cell Res 2024; 442:114248. [PMID: 39260673 DOI: 10.1016/j.yexcr.2024.114248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Ibrutinib, a Bruton Tyrosine Kinase (BTK) inhibitor, has shown effectiveness against various B-cell lymphoid malignancies. However, prolonged usage can induce resistance, affecting treatment outcomes. The oncogenic microRNA, miR-155-5p, is associated with poor prognosis in B-cell lymphomas, prompting our investigation into the mechanism of acquired ibrutinib resistance in these cells. We generated ibrutinib-resistant OCI-Ly1 cells (OCI-Ly1-IbtR) through continuous exposure to 1 μM and 2 μM of ibrutinib. We conducted microRNA profiling of OCI-Ly1-IbtR and isolated exosomes via ultracentrifugation. Comparative studies of microRNA levels in cells and exosomes, as well as exploration of targets of up-regulated microRNAs in OCI-Ly1-IbtR, were performed. Target validation involved transfection of candidate microRNAs, and co-culture experiments utilized OCI-Ly1 cells with exosomes from OCI-Ly1-IbtR. Elevated levels of miR-155-5p were observed in OCI-Ly1-IbtR and its exosomes, correlating with AKT and NF-κB activation. Transfection of miR-155-5p induced AKT/NF-κB pathway activation in OCI-Ly1, resulting in ibrutinib resistance, enhanced colony formation, and sustained BTK activity. Primary cell lines from ibrutinib-refractory B-cell lymphoma patients exhibited similar signaling protein activation. Target evaluation identified KDM5B and DEPTOR as miR-155-5p targets, confirmed by downregulation after transfection. We observed KDM5B and DEPTOR enrichment in Ago2 during ibrutinib resistance and miR-155-5p transfection. Co-culture experiments demonstrated exosome-mediated transfer of miR-155-5p, inducing ibrutinib resistance and KDM5B/DEPTOR downregulation in OCI-Ly1. Our findings suggest that miR-155-5p overexpression is associated with AKT and NF-κB pathway activation in ibrutinib-resistant cells, proposing a potential role for acquired miR-155-5p upregulation in B-cell lymphoma ibrutinib resistance.
Collapse
Affiliation(s)
- Bon Park
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Myung Eun Choi
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Kyung Ju Ryu
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Chaehwa Park
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Minki Choi
- College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Sang Eun Yoon
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Won Seog Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, South Korea; Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hyeon Ho Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Jung Yong Hong
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Seok Jin Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, South Korea; Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| |
Collapse
|
7
|
Wang X, Zou C, Hou C, Li M, Bian Z, Zhu L. POU Class 2 Homeobox Associating Factor 1, as a Hub Candidate Gene in OP, Relieves Osteoblast Apoptosis. Appl Biochem Biotechnol 2024; 196:6072-6096. [PMID: 38183606 DOI: 10.1007/s12010-023-04833-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/08/2024]
Abstract
Increasing evidence suggests that osteoblast apoptosis contributes to the pathogenesis of postmenopausal osteoporosis (PMOP). This study aimed to identify a hub gene associated with osteoporosis (OP) progression and its functions. We utilized the GSE68303 expression dataset from GEO database and conducted weighted gene co-expression network analysis (WGCNA) to investigate changes in co-expressed genes between sham and ovariectomy (OVX) groups. Differentially expressed genes (DEGs) were identified using the "limma" R package on GSE68303 dataset. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the DAVID database. A protein-protein interaction (PPI) network was constructed using the STRING database, which was visualized by Cytoscape software. The top ten hub genes were screened using the Cytohubba plugin, among which POU class 2 homeobox associating factor 1 (POU2AF1), an OP-related hub gene, showed a significant increase in OVX-induced mouse model based on immunohistochemical staining. Inhibition of POU2AF1 suppressed cell viability, induced cell cycle arrest at the G1 phase, and promoted osteoblast apoptosis as demonstrated by CCK-8 assay, flow cytometry analysis, and TUNEL assay. Moreover, overexpression of POU2AF1 decreased cleaved caspase-3/-8/-9 expression while increasing cyclinD1 and Ki67 expression in MC3T3-E1 and hFOB1.19 cells. Therefore, POU2AF1 may serve as a potential diagnostic biomarker for slowing down the progression of OP.
Collapse
Affiliation(s)
- Xuepeng Wang
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310006, Zhejiang Province, China
| | - Chunchun Zou
- Department of Obstetrics and Gynecology, Hangzhou Third People's Hospital, Hangzhou, China
| | - Changju Hou
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310006, Zhejiang Province, China
| | - Maoqiang Li
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310006, Zhejiang Province, China
| | - Zhenyu Bian
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310006, Zhejiang Province, China
| | - Liulong Zhu
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310006, Zhejiang Province, China.
| |
Collapse
|
8
|
Vervoordeldonk MYL, Hengeveld PJ, Levin MD, Langerak AW. B cell receptor signaling proteins as biomarkers for progression of CLL requiring first-line therapy. Leuk Lymphoma 2024; 65:1031-1043. [PMID: 38619476 DOI: 10.1080/10428194.2024.2341151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
The molecular landscape of chronic lymphocytic leukemia (CLL) has been extensively characterized, and various potent prognostic biomarkers were discovered. The genetic composition of the B-cell receptor (BCR) immunoglobulin (IG) was shown to be especially powerful for discerning indolent from aggressive disease at diagnosis. Classification based on the IG heavy chain variable gene (IGHV) somatic hypermutation status is routinely applied. Additionally, BCR IGH stereotypy has been implicated to improve risk stratification, through characterization of subsets with consistent clinical profiles. Despite these advances, it remains challenging to predict when CLL progresses to requiring first-line therapy, thus emphasizing the need for further refinement of prognostic indicators. Signaling pathways downstream of the BCR are essential in CLL pathogenesis, and dysregulated components within these pathways impact disease progression. Considering not only genomics but the entirety of factors shaping BCR signaling activity, this review offers insights in the disease for better prognostic assessment of CLL.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- Signal Transduction
- Disease Progression
- Biomarkers, Tumor/genetics
- Prognosis
Collapse
Affiliation(s)
- Mischa Y L Vervoordeldonk
- Department of Immunology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Paul J Hengeveld
- Department of Immunology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Mark-David Levin
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Anton W Langerak
- Department of Immunology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
9
|
Pérez-Pérez D, Fuentes-Pananá EM, Flores-Hermenegildo JM, Romero-Ramirez H, Santos-Argumedo L, Kilimann MW, Rodríguez-Alba JC, Lopez-Herrera G. Lipopolysaccharide-responsive beige-like anchor is involved in regulating NF-κB activation in B cells. Front Immunol 2024; 15:1409434. [PMID: 39076990 PMCID: PMC11284061 DOI: 10.3389/fimmu.2024.1409434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/21/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction Lipopolysaccharide-responsive and beige-like anchor (LRBA) is a scaffolding protein that interacts with proteins such as CTLA-4 and PKA, the importance of which has been determined in various cell types, including T regulatory cells, B cells, and renal cells. LRBA deficiency is associated with an inborn error in immunity characterized by immunodeficiency and autoimmunity. In addition to defects in T regulatory cells, patients with LRBA deficiency also exhibit B cell defects, such as reduced cell number, low memory B cells, hypogammaglobulinemia, impaired B cell proliferation, and increased autophagy. Although Lrba-/- mice do not exhibit the immunodeficiency observed in humans, responses to B cell receptors (BCR) in B cells have not been explored. Therefore, a murine model is for elucidating the mechanism of Lrba mechanism in B cells. Aim To compare and evaluate spleen-derived B cell responses to BCR crosslinking in C57BL6 Lrba-/- and Lrba+/+ mice. Materials and methods Spleen-derived B cells were obtained from 8 to 12-week-old mice. Subpopulations were determined by immunostaining and flow cytometry. BCR crosslinking was assessed by the F(ab')2 anti-μ chain. Activation, proliferation and viability assays were performed using flow cytometry and protein phosphorylation was evaluated by immunoblotting. The nuclear localization of p65 was determined using confocal microscopy. Nur77 expression was evaluated by Western blot. Results Lrba-/- B cells showed an activated phenotype and a decreased proportion of transitional 1 B cells, and both proliferation and survival were affected after BCR crosslinking in the Lrba-/- mice. The NF-κB pathway exhibited a basal activation status of several components, resulting in increased activation of p50, p65, and IκBα, basal p50 activation was reduced by the Plcγ2 inhibitor U73122. BCR crosslinking in Lrba-/ - B cells resulted in poor p50 phosphorylation and p65 nuclear localization. Increased levels of Nur77 were detected. Discussion These results indicate the importance of Lrba in controlling NF-κB activation driven by BCR. Basal activation of NF-κB could impact cellular processes, such as, activation, differentiation, proliferation, and maintenance of B cells after antigen encounter.
Collapse
Affiliation(s)
- Daniela Pérez-Pérez
- Doctorate Program in Biological Sciences, Autonomous National University of Mexico, Mexico City, Mexico
- Immunodeficiency Laboratory, National Institute of Pediatrics, Mexico City, Mexico
| | | | - José Mizael Flores-Hermenegildo
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV IPN, Mexico City, Mexico
| | - Hector Romero-Ramirez
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV IPN, Mexico City, Mexico
| | - Leopoldo Santos-Argumedo
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV IPN, Mexico City, Mexico
| | - Manfred W. Kilimann
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Juan Carlos Rodríguez-Alba
- Medicine and Surgery Faculty, Autonomous University Benito Juarez from Oaxaca, Oaxaca, Mexico
- Neuroimmunology and Neurooncology Unit, The National Institute of Neurology and Neurosurgery (NINN), Mexico City, Mexico
| | | |
Collapse
|
10
|
He M, Zhi Y, Li C, Zhao C, Yang G, Lv J, You H, Huang H, Cao X. Consensus clustering and novel risk score model construction based on m6A methylation regulators to evaluate the prognosis and tumor immune microenvironment of early-stage lung adenocarcinoma. Aging (Albany NY) 2024; 16:11318-11338. [PMID: 39028290 PMCID: PMC11315395 DOI: 10.18632/aging.206004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/30/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND The aim of this study was to investigate the correlation between m6A methylation regulators and cell infiltration characteristics in tumor immune microenvironment (TIME), so as to help understand the immune mechanism of early-stage lung adenocarcinoma (LUAD). METHODS The expression and consensus cluster analyses of m6A methylation regulators in early-stage LUAD were performed. The clinicopathological features, immune cell infiltration, survival and functional enrichment in different subtypes were analyzed. We also constructed a prognostic model. Clinical tissue samples were used to validate the expression of model genes through real-time polymerase chain reaction (RT-PCR). In addition, cell scratch assay and Transwell assay were also performed. RESULTS Expression of m6A methylation regulators was abnormal in early-stage LUAD. According to the consensus clustering of m6A methylation regulators, patients with early-stage LUAD were divided into two subtypes. Two subtypes showed different infiltration levels of immune cell and survival time. A prognostic model consisting of HNRNPC, IGF2BP1 and IGF2BP3 could be used to predict the survival of early-stage LUAD. RT-PCR results showed that HNRNPC, IGF2BP1 and IGF2BP3 were significantly up-regulated in early-stage LUAD tissues. The results of cell scratch assay and Transwell assay showed that overexpression of HNRNPC promotes the migration and invasion of NCI-H1299 cells, while knockdown HNRNPC inhibits the migration and invasion of NCI-H1299 cells. CONCLUSIONS This work reveals that m6A methylation regulators may be potential biomarkers for prognosis in patients with early-stage LUAD. Our prognostic model may be of great value in predicting the prognosis of early-stage LUAD.
Collapse
Affiliation(s)
- Miao He
- Department of Radiation Oncology, People’s Hospital of Deyang, Deyang 618000, Sichuan, P.R. China
| | - Yuxue Zhi
- Department of Radiation Oncology, People’s Hospital of Deyang, Deyang 618000, Sichuan, P.R. China
| | - Chao Li
- Department of Radiation Oncology, People’s Hospital of Deyang, Deyang 618000, Sichuan, P.R. China
| | - Changming Zhao
- Department of Cardiovascular Surgery, People’s Hospital of Deyang, Deyang 618000, Sichuan, P.R. China
| | - Guangquan Yang
- Department of Radiation Oncology, People’s Hospital of Deyang, Deyang 618000, Sichuan, P.R. China
| | - Jing Lv
- Department of Cardiovascular Surgery, People’s Hospital of Deyang, Deyang 618000, Sichuan, P.R. China
| | - Hong You
- Department of Radiation Oncology, People’s Hospital of Deyang, Deyang 618000, Sichuan, P.R. China
| | - Hai Huang
- Department of Radiation Oncology, People’s Hospital of Deyang, Deyang 618000, Sichuan, P.R. China
| | - Xiaoyu Cao
- Department of Radiation Oncology, People’s Hospital of Deyang, Deyang 618000, Sichuan, P.R. China
| |
Collapse
|
11
|
Schmidt-Barbo P, Kalweit G, Naouar M, Paschold L, Willscher E, Schultheiß C, Märkl B, Dirnhofer S, Tzankov A, Binder M, Kalweit M. Detection of disease-specific signatures in B cell repertoires of lymphomas using machine learning. PLoS Comput Biol 2024; 20:e1011570. [PMID: 38954728 PMCID: PMC11249212 DOI: 10.1371/journal.pcbi.1011570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 07/15/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
The classification of B cell lymphomas-mainly based on light microscopy evaluation by a pathologist-requires many years of training. Since the B cell receptor (BCR) of the lymphoma clonotype and the microenvironmental immune architecture are important features discriminating different lymphoma subsets, we asked whether BCR repertoire next-generation sequencing (NGS) of lymphoma-infiltrated tissues in conjunction with machine learning algorithms could have diagnostic utility in the subclassification of these cancers. We trained a random forest and a linear classifier via logistic regression based on patterns of clonal distribution, VDJ gene usage and physico-chemical properties of the top-n most frequently represented clonotypes in the BCR repertoires of 620 paradigmatic lymphoma samples-nodular lymphocyte predominant B cell lymphoma (NLPBL), diffuse large B cell lymphoma (DLBCL) and chronic lymphocytic leukemia (CLL)-alongside with 291 control samples. With regard to DLBCL and CLL, the models demonstrated optimal performance when utilizing only the most prevalent clonotype for classification, while in NLPBL-that has a dominant background of non-malignant bystander cells-a broader array of clonotypes enhanced model accuracy. Surprisingly, the straightforward logistic regression model performed best in this seemingly complex classification problem, suggesting linear separability in our chosen dimensions. It achieved a weighted F1-score of 0.84 on a test cohort including 125 samples from all three lymphoma entities and 58 samples from healthy individuals. Together, we provide proof-of-concept that at least the 3 studied lymphoma entities can be differentiated from each other using BCR repertoire NGS on lymphoma-infiltrated tissues by a trained machine learning model.
Collapse
MESH Headings
- Humans
- Machine Learning
- Receptors, Antigen, B-Cell/genetics
- High-Throughput Nucleotide Sequencing/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Computational Biology/methods
- Lymphoma, B-Cell/genetics
- B-Lymphocytes/metabolism
- B-Lymphocytes/immunology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/classification
- Algorithms
Collapse
Affiliation(s)
- Paul Schmidt-Barbo
- Department of Biomedicine, Translational Immuno-Oncology, University Hospital Basel, Basel, Switzerland
- Collaborative Research Institute Intelligent Oncology (CRIION), Freiburg, Germany
| | - Gabriel Kalweit
- Collaborative Research Institute Intelligent Oncology (CRIION), Freiburg, Germany
- Neurorobotics Lab, University of Freiburg, Freiburg, Germany
| | - Mehdi Naouar
- Collaborative Research Institute Intelligent Oncology (CRIION), Freiburg, Germany
- Neurorobotics Lab, University of Freiburg, Freiburg, Germany
| | - Lisa Paschold
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Edith Willscher
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Christoph Schultheiß
- Department of Biomedicine, Translational Immuno-Oncology, University Hospital Basel, Basel, Switzerland
| | - Bruno Märkl
- Pathology, University Hospital Augsburg, Augsburg, Germany
| | | | | | - Mascha Binder
- Department of Biomedicine, Translational Immuno-Oncology, University Hospital Basel, Basel, Switzerland
- Collaborative Research Institute Intelligent Oncology (CRIION), Freiburg, Germany
- Medical Oncology, University Hospital Basel, Basel, Switzerland
| | - Maria Kalweit
- Collaborative Research Institute Intelligent Oncology (CRIION), Freiburg, Germany
- Neurorobotics Lab, University of Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Typiak M, Żurawa-Janicka D. Not an immune cell, but they may act like one-cells with immune properties outside the immune system. Immunol Cell Biol 2024; 102:487-499. [PMID: 38650437 DOI: 10.1111/imcb.12752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
The cells presented in this work are not classified as cells that make up the immune system. They, however, present functions and molecules, which are characteristic of immune cells. These characteristic functions are, for example, sensing threat, performing phagocytosis, presentation of foreign antigens, cytokine release or enhancing immune memory. The enlisted immune response mechanisms are carried out by the possession of molecules such as Toll-like receptors, receptors for the Fc fragment of IgG, major histocompatibility complex class II molecules, costimulatory CD80/CD86 proteins and molecules needed for NLRP3 (NOD-like family pyrin domain containing 3) inflammasome activation. Thanks to these properties, the described nonimmune cells play an important role in the local immune response and support of the entire body in the fight against pathogens. They constitute the first line of defense of tissues and organs against pathogens and molecules recognized as harmful. The cells described in this article are particularly important in immunologically privileged places (e.g. the Bowman's capsule in the kidney), where "typical" immune cells normally do not have access. In this paper, we present immune-like functions and molecule suites of resident kidney cells (podocytes and mesangial cells), cochlear resident cells, fibrocytes and fibroblasts, as well as some stem cells (mesenchymal stem cells and umbilical cord Wharton's jelly-derived cells).
Collapse
Affiliation(s)
- Marlena Typiak
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Dorota Żurawa-Janicka
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| |
Collapse
|
13
|
Che XQ, Zhan SK, Song JJ, Deng YL, Wei-Liu, Peng-Huang, Jing-Zhang, Sun ZF, Che ZQ, Liu J. Altered immune pathways in patients of temporal lobe epilepsy with and without hippocampal sclerosis. Sci Rep 2024; 14:13661. [PMID: 38871732 PMCID: PMC11176392 DOI: 10.1038/s41598-024-63541-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024] Open
Abstract
Over the past decades, the immune responses have been suspected of participating in the mechanisms for epilepsy. To assess the immune related pathway in temporal lobe epilepsy (TLE), we explored the altered immune pathways in TLE patients with and without hippocampal sclerosis (HS). We analyzed RNA-seq data from 3 TLE-HS and 3 TLE-nonHS patients, including identification of differentially expressed RNA, function pathway enrichment, the protein-protein interaction network and construction of ceRNA regulatory network. We illustrated the immune related landscape of molecules and pathways on human TLE-HS. Also, we identified several differential immune related genes like HSP90AA1 and SOD1 in TLE-HS patients. Further ceRNA regulatory network analysis found SOX2-OT connected to miR-671-5p and upregulated the target gene SPP1 in TLE-HS patients. Also, we identified both SOX2-OT and SPP1 were significantly upregulated in five different databases including TLE-HS patients and animal models. Our findings established the first immune related genes and possible regulatory pathways in TLE-HS patients and animal models, which provided a novel insight into disease pathogenesis in both patients and animal models. The immune related SOX2-OT/miR-671-5p/SPP1 axis may be the potential therapeutic target for TLE-HS.
Collapse
Affiliation(s)
- Xiang-Qian Che
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shi-Kun Zhan
- Department of Neurosurgery, Centre for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiao-Jiao Song
- Department of Teaching Office, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Lei Deng
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Liu
- Department of Neurosurgery, Centre for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng-Huang
- Department of Neurosurgery, Centre for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Zhang
- Department of Neurosurgery, Centre for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhan-Fang Sun
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zai-Qian Che
- Department of Emergency, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Jun Liu
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
14
|
Wang S, Yan N, Yang Y, Sun L, Huang Y, Zhang J, Xu G. Screening of drug targets for tuberculosis on the basis of transcription factor regulatory network and mRNA sequencing technology. Front Mol Biosci 2024; 11:1410445. [PMID: 38841189 PMCID: PMC11150615 DOI: 10.3389/fmolb.2024.1410445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/24/2024] [Indexed: 06/07/2024] Open
Abstract
Background Tuberculosis is a worldwide epidemic disease, posing a serious threat to human health. To find effective drug action targets for Mycobacterium tuberculosis, differentially expressed genes in tuberculosis patients and healthy people were screened by mRNA sequencing in this study. A total of 556 differentially expressed genes in tuberculosis patients and healthy people were screened out by mRNA sequencing technology. 26 transcription factors and 66 corresponding target genes were screened out in the AnimalTFDB 3.0 database, and a transcription factor regulatory network was constructed. Results Three key transcription factors (TP53, KLF5 and GATA2) and one key gene (AKT1) were screened as new potential drug targets and diagnostic targets for tuberculosis by MCODE cluster analysis, and the key genes and key transcription factors were verified by RT-PCR. Finally, we constructed the and a key factor and KEGG signaling pathway regulatory network to clarify the possible molecular pathogenesis of tuberculosis. Conclusion This study suggested M. tuberculosis may activate the AKT1 gene expression by regulating transcription factors TP53, KLF5, and GATA2, thus activating the B cell receptor signaling pathway to induce the infection and invasion of M. tuberculosis. AKT1, TP53, KLF5, and GATA2 can be used as new potential drug targets for tuberculosis.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Infectious Disease, Changchun Infectious Disease Hospital, Changchun, China
| | - Na Yan
- Department of Infectious Disease, Changchun Infectious Disease Hospital, Changchun, China
| | - Yue Yang
- College of Pharmacy, Beihua University, Jilin, Jilin, China
| | - Li Sun
- Department of Infectious Disease, Changchun Infectious Disease Hospital, Changchun, China
| | - Yingxin Huang
- Department of Infectious Disease, Changchun Infectious Disease Hospital, Changchun, China
| | - Jian Zhang
- Department of Infectious Disease, Changchun Infectious Disease Hospital, Changchun, China
| | - Guangyu Xu
- College of Pharmacy, Beihua University, Jilin, Jilin, China
| |
Collapse
|
15
|
Xu M, Wang H, Ren S, Wang B, Yang W, Lv L, Sha X, Li W, Wang Y. Identification of crucial inflammaging related risk factors in multiple sclerosis. Front Mol Neurosci 2024; 17:1398665. [PMID: 38836117 PMCID: PMC11148336 DOI: 10.3389/fnmol.2024.1398665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
Background Multiple sclerosis (MS) is an immune-mediated disease characterized by inflammatory demyelinating lesions in the central nervous system. Studies have shown that the inflammation is vital to both the onset and progression of MS, where aging plays a key role in it. However, the potential mechanisms on how aging-related inflammation (inflammaging) promotes MS have not been fully understood. Therefore, there is an urgent need to integrate the underlying mechanisms between inflammaging and MS, where meaningful prediction models are needed. Methods First, both aging and disease models were developed using machine learning methods, respectively. Then, an integrated inflammaging model was used to identify relative risk factors, by identifying essential "aging-inflammation-disease" triples. Finally, a series of bioinformatics analyses (including network analysis, enrichment analysis, sensitivity analysis, and pan-cancer analysis) were further used to explore the potential mechanisms between inflammaging and MS. Results A series of risk factors were identified, such as the protein homeostasis, cellular homeostasis, neurodevelopment and energy metabolism. The inflammaging indices were further validated in different cancer types. Therefore, various risk factors were integrated, and even both the theories of inflammaging and immunosenescence were further confirmed. Conclusion In conclusion, our study systematically investigated the potential relationships between inflammaging and MS through a series of computational approaches, and could present a novel thought for other aging-related diseases.
Collapse
Affiliation(s)
- Mengchu Xu
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Huize Wang
- Department of Nursing, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Siwei Ren
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Bing Wang
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Wenyan Yang
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Ling Lv
- Department of Thorax, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xianzheng Sha
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Wenya Li
- Department of Thorax, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yin Wang
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
16
|
Patton JT, Woyach JA. Targeting the B cell receptor signaling pathway in chronic lymphocytic leukemia. Semin Hematol 2024; 61:100-108. [PMID: 38749798 DOI: 10.1053/j.seminhematol.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/04/2024] [Accepted: 04/10/2024] [Indexed: 06/09/2024]
Abstract
Aberrant signal transduction through the B cell receptor (BCR) plays a critical role in the pathogenesis of chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL). BCR-dependent signaling is necessary for the growth and survival of neoplastic cells, making inhibition of down-stream pathways a logical therapeutic strategy. Indeed, selective inhibitors against Bruton's tyrosine kinase (BTK) and phosphoinositide 3-kinase (PI3K) have been shown to induce high rates of response in CLL and other B cell lymphomas. In particular, the development of BTK inhibitors revolutionized the treatment approach to CLL, demonstrating long-term efficacy. While BTK inhibitors are widely used for multiple lines of treatment, PI3K inhibitors are much less commonly utilized, mainly due to toxicities. CLL remains an incurable disease and effective treatment options after relapse or development of TKI resistance are greatly needed. This review provides an overview of BCR signaling, a summary of the current therapeutic landscape, and a discussion of the ongoing trials targeting BCR-associated kinases.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Signal Transduction/drug effects
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/antagonists & inhibitors
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors
- Agammaglobulinaemia Tyrosine Kinase/metabolism
- Molecular Targeted Therapy
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/pharmacology
- Phosphoinositide-3 Kinase Inhibitors/therapeutic use
- Phosphoinositide-3 Kinase Inhibitors/pharmacology
Collapse
Affiliation(s)
- John T Patton
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Jennifer A Woyach
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH.
| |
Collapse
|
17
|
Zhang X, Zhu R, Jiao Y, Simayi H, He J, Shen Z, Wang H, He J, Zhang S, Yang F. Expression profiles and gene set enrichment analysis of the transcriptomes from the cancer tissue, white adipose tissue and paracancer tissue with colorectal cancer. PeerJ 2024; 12:e17105. [PMID: 38563016 PMCID: PMC10984182 DOI: 10.7717/peerj.17105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common cancers worldwide and is related to diet and obesity. Currently, crosstalk between lipid metabolism and CRC has been reported; however, the specific mechanism is not yet understood. In this study, we screened differentially expressed long non-coding RNAs (lncRNAs) and mRNAs from primary cancer, paracancer, and white adipose tissue of CRC patients. We screened and analyzed the genes differentially expressed between primary and paracancer tissue and between paracancer and white adipose tissue but not between primary and white adipose tissue. According to the results of the biological analysis, we speculated a lncRNA (MIR503HG) that may be involved in the crosstalk between CRC and lipid metabolism through exosome delivery. Methods We screened differentially expressed long non-coding RNAs (lncRNAs) and mRNAs from primary cancer, paracancer, and white adipose tissue of CRC patients. We screened and analyzed the genes differentially expressed between primary and paracancer tissue and between paracancer and white adipose tissue but not between primary and white adipose tissue. Results We speculated a lncRNA (MIR503HG) that may be involved in the crosstalk between CRC and lipid metabolism through exosome delivery. Conclusions In this study, the findings raise the possibility of crosstalk between lipid metabolism and CRC through the exosomal delivery of lncRNAs.
Collapse
Affiliation(s)
- Xiufeng Zhang
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang Provincial Clinical Research Center, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Rui Zhu
- Affiliated XiaoShan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Ye Jiao
- Chronic Disease Research Institute, The Children’s Hospital, and National Clinical Research Center for Child Health, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Halizere Simayi
- Chronic Disease Research Institute, The Children’s Hospital, and National Clinical Research Center for Child Health, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jialing He
- Department of Colorectal Surgery, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhong Shen
- Department of Colorectal Surgery, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Houdong Wang
- Department of Colorectal Surgery, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun He
- Department of Colorectal Surgery, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Suzhan Zhang
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang Provincial Clinical Research Center, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Fei Yang
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Shu X, Wang J, Zeng H, Shao L. Progression of Notch signaling regulation of B cells under radiation exposure. Front Immunol 2024; 15:1339977. [PMID: 38524139 PMCID: PMC10957566 DOI: 10.3389/fimmu.2024.1339977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/14/2024] [Indexed: 03/26/2024] Open
Abstract
With the continuous development of nuclear technology, the radiation exposure caused by radiation therapy is a serious health hazard. It is of great significance to further develop effective radiation countermeasures. B cells easily succumb to irradiation exposure along with immunosuppressive response. The approach to ameliorate radiation-induced B cell damage is rarely studied, implying that the underlying mechanisms of B cell damage after exposure are eager to be revealed. Recent studies suggest that Notch signaling plays an important role in B cell-mediated immune response. Notch signaling is a critical regulator for B cells to maintain immune function. Although accumulating studies reported that Notch signaling contributes to the functionality of hematopoietic stem cells and T cells, its role in B cells is scarcely appreciated. Presently, we discussed the regulation of Notch signaling on B cells under radiation exposure to provide a scientific basis to prevent radiation-induced B cell damage.
Collapse
Affiliation(s)
- Xin Shu
- Department of Occupational Health and Toxicology, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, School of Public Health, Nanchang University, Nanchang, China
| | - Jie Wang
- Department of Histology and Embryology, School of Basic Medicine Sciences, Nanchang University, Nanchang, China
| | - Huihong Zeng
- Department of Histology and Embryology, School of Basic Medicine Sciences, Nanchang University, Nanchang, China
| | - Lijian Shao
- Department of Occupational Health and Toxicology, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, China
| |
Collapse
|
19
|
Li R, Chang Z, Liu H, Wang Y, Li M, Chen Y, Fan L, Wang S, Sun X, Liu S, Cheng A, Ding P, Zhang G. Double-layered N-S1 protein nanoparticle immunization elicits robust cellular immune and broad antibody responses against SARS-CoV-2. J Nanobiotechnology 2024; 22:44. [PMID: 38291444 PMCID: PMC10825999 DOI: 10.1186/s12951-024-02293-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND The COVID-19 pandemic is a persistent global threat to public health. As for the emerging variants of SARS-CoV-2, it is necessary to develop vaccines that can induce broader immune responses, particularly vaccines with weak cellular immunity. METHODS In this study, we generated a double-layered N-S1 protein nanoparticle (N-S1 PNp) that was formed by desolvating N protein into a protein nanoparticle as the core and crosslinking S1 protein onto the core surface against SARS-CoV-2. RESULTS Vaccination with N-S1 PNp elicited robust humoral and vigorous cellular immune responses specific to SARS-CoV-2 in mice. Compared to soluble protein groups, the N-S1 PNp induced a higher level of humoral response, as evidenced by the ability of S1-specific antibodies to block hACE2 receptor binding and neutralize pseudovirus. Critically, N-S1 PNp induced Th1-biased, long-lasting, and cross-neutralizing antibodies, which neutralized the variants of SARS-CoV-2 with minimal loss of activity. N-S1 PNp induced strong responses of CD4+ and CD8+ T cells, mDCs, Tfh cells, and GCs B cells in spleens. CONCLUSIONS These results demonstrate that N-S1 PNp vaccination is a practical approach for promoting protection, which has the potential to counteract the waning immune responses against SARS-CoV-2 variants and confer broad efficacy against future new variants. This study provides a new idea for the design of next-generation SARS-CoV-2 vaccines based on the B and T cells response coordination.
Collapse
Affiliation(s)
- Ruiqi Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- School of Advanced Agricultural Sciences , Peking University, Beijing, 100080, China
- Longhu Laboratory, Zhengzhou, 450046, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Zejie Chang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hongliang Liu
- School of Life Sciences , Zhengzhou University, Zhengzhou, 450001, China
| | - Yanan Wang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Minghui Li
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yilan Chen
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Lu Fan
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Siqiao Wang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Xueke Sun
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Siyuan Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Anchun Cheng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Peiyang Ding
- School of Life Sciences , Zhengzhou University, Zhengzhou, 450001, China.
| | - Gaiping Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
- School of Advanced Agricultural Sciences , Peking University, Beijing, 100080, China.
- Longhu Laboratory, Zhengzhou, 450046, China.
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- School of Life Sciences , Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
20
|
Li X, Zeng F, Yue R, Ma D, Meng Z, Li Q, Zhang Z, Zhang H, Liao Y, Liao Y, Jiang G, Zhao H, Yu L, Li D, Zhang Y, Liu L, Li Q. Heterologous Booster Immunization Based on Inactivated SARS-CoV-2 Vaccine Enhances Humoral Immunity and Promotes BCR Repertoire Development. Vaccines (Basel) 2024; 12:120. [PMID: 38400104 PMCID: PMC10891849 DOI: 10.3390/vaccines12020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Recent studies have indicated that sequentially administering SARS-CoV-2 vaccines can result in increased antibody and cellular immune responses. In this study, we compared homologous and heterologous immunization strategies following two doses of inactivated vaccines in a mouse model. Our research demonstrates that heterologous sequential immunization resulted in more immune responses displayed in the lymph node germinal center, which induced a greater number of antibody-secreting cells (ASCs), resulting in enhanced humoral and cellular immune responses and increased cross-protection against five variant strains. In further single B-cell analysis, the above findings were supported by the presence of unique B-cell receptor (BCR) repertoires and diversity in CDR3 sequence profiles elicited by a heterologous booster immunization strategy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Longding Liu
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China (Y.Z.)
| | - Qihan Li
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China (Y.Z.)
| |
Collapse
|
21
|
Kim EB, Song JH, Le LNH, Kim H, Koh JW, Seo Y, Jeong HR, Kim HT, Ryu S. Characterization of exosomal microRNAs in preterm infants fed with breast milk and infant formula. Front Nutr 2024; 11:1339919. [PMID: 38304545 PMCID: PMC10830786 DOI: 10.3389/fnut.2024.1339919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
Breastfeeding not only reduces infection-related morbidity, but also increases growth of preterm infants. Advantages of breast milk (BM) for preterm infants are significant. They continue to be studied. However, because not all preterm infants can receive breastfeeding, bovine-based infant formula (IF) is used as an alternative, which may increase the risk of several preterm complications. Exosomes isolated from biofluids are emerging as biomarkers in research of various diseases. Here, we characterized miRNA contents of exosomes in urine and serum samples of preterm infants who were BM and IF fed and performed transcriptomic analysis of small RNA libraries. We identified significantly up-regulated 6 miRNAs and 10 miRNAs, respectively. Gene Ontology (GO) analysis revealed that target genes of these miRNAs might participate in neuronal development, immunity modulation, detoxification of reactive oxygen species, and transmembrane exchange. Our data suggest that exosome-based systemic screening for preterm infants with breastfeeding might be a screening tool for identifying target molecules involved in therapy for preterm infants in neonatal intensive care unit (NICU) and for future application as nutraceutical formulations or pharmaceuticals.
Collapse
Affiliation(s)
- Eun-Bit Kim
- Soonchunhyang Institute of Med-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Jun Hwan Song
- Soonchunhyang University Cheonan Hospital, College of Medicine, Soon-chunhyang University, Cheonan, Republic of Korea
| | - Linh Nguy-Hoang Le
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
| | - Ho Kim
- Soonchunhyang University Cheonan Hospital, College of Medicine, Soon-chunhyang University, Cheonan, Republic of Korea
| | - Ji Won Koh
- Soonchunhyang University Cheonan Hospital, College of Medicine, Soon-chunhyang University, Cheonan, Republic of Korea
| | - Yekyeng Seo
- Soonchunhyang University Cheonan Hospital, College of Medicine, Soon-chunhyang University, Cheonan, Republic of Korea
| | - Hwal Rim Jeong
- Department of Pediatrics, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Hyun-Taek Kim
- Soonchunhyang Institute of Med-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Seongho Ryu
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
22
|
Dominguez-Sola D. Sending positive signals and good (calcium) vibes. J Exp Med 2024; 221:e20231821. [PMID: 38051276 PMCID: PMC10697794 DOI: 10.1084/jem.20231821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
In this issue of JEM, Yada et al. (https://doi.org/10.1084/jem.20222178) demonstrate that effective antibody affinity selection in germinal centers relies on the store-operated calcium entry (SOCE) component of the B cell receptor (BCR) signaling network. Therefore, active BCR signaling is as relevant to positive selection as the function of BCRs as endocytic receptors, answering a question that had puzzled experts for a while. These findings transform our understanding of the mechanisms supporting adaptive immune responses (to vaccines, for example) and have important implications for interpreting the genomics and pathogenesis of germinal center-derived B cell lymphomas.
Collapse
Affiliation(s)
- David Dominguez-Sola
- Departments of Oncological Sciences and Pathology, The Tisch Cancer Institute, Marc and Jennifer Lipschultz Precision Immunology Institute, Center for Advanced Blood Cancer Therapies and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
23
|
Wu M, Zhao J, Wu W, Hao C, Yang Y, Zhang J. miR-130b regulates B cell proliferation via CYLD-mediated NF-κB signaling. Exp Cell Res 2024; 434:113870. [PMID: 38049082 DOI: 10.1016/j.yexcr.2023.113870] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
Previous studies have revealed that B cell activation is regulated by various microRNAs(miRNAs). However, the role of microRNA-130b regulating B cell activation and apoptosis is still unclear. In the present study, we first found that the expression of miR-130b was the lowest in Pro/Pre-B cells and the highest in immature B cells. Besides, the expression of miR-130b decreased after activation in B cells. Through the immuno-phenotypic analysis of miR-130b transgenic and knockout mice, we found that miR-130b mainly promoted the proliferation of B cells and inhibited B cell apoptosis. Furthermore, we identified that Cyld, a tumor suppressor gene was the target gene of miR-130b in B cells. Besides, the Cyld-mediated NF-κB signaling was increased in miR-130b overexpressed B cells, which further explains the enhanced proliferation of B cells. In conclusion, we propose that miR-130b promotes B cell proliferation via Cyld-mediated NF-κB signaling, which provides a new theoretical basis for the molecular regulation of B cell activation.
Collapse
Affiliation(s)
- Mengyun Wu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215000, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215000, China
| | - Jing Zhao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215000, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215000, China
| | - Wenyan Wu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215000, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215000, China
| | - Chuangli Hao
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, Jiangsu Province 215000, China.
| | - Yi Yang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215000, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215000, China.
| | - Jinping Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215000, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215000, China.
| |
Collapse
|
24
|
Tkachenko A, Kupcova K, Havranek O. B-Cell Receptor Signaling and Beyond: The Role of Igα (CD79a)/Igβ (CD79b) in Normal and Malignant B Cells. Int J Mol Sci 2023; 25:10. [PMID: 38203179 PMCID: PMC10779339 DOI: 10.3390/ijms25010010] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
B-cell receptor (BCR) is a B cell hallmark surface complex regulating multiple cellular processes in normal as well as malignant B cells. Igα (CD79a)/Igβ (CD79b) are essential components of BCR that are indispensable for its functionality, signal initiation, and signal transduction. CD79a/CD79b-mediated BCR signaling is required for the survival of normal as well as malignant B cells via a wide signaling network. Recent studies identified the great complexity of this signaling network and revealed the emerging role of CD79a/CD79b in signal integration. In this review, we have focused on functional features of CD79a/CD79b, summarized signaling consequences of CD79a/CD79b post-translational modifications, and highlighted specifics of CD79a/CD79b interactions within BCR and related signaling cascades. We have reviewed the complex role of CD79a/CD79b in multiple aspects of normal B cell biology and how is the normal BCR signaling affected by lymphoid neoplasms associated CD79A/CD79B mutations. We have also summarized important unresolved questions and highlighted issues that remain to be explored for better understanding of CD79a/CD79b-mediated signal transduction and the eventual identification of additional therapeutically targetable BCR signaling vulnerabilities.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Kristyna Kupcova
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic
- First Department of Internal Medicine–Hematology, General University Hospital and First Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic
| | - Ondrej Havranek
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic
- First Department of Internal Medicine–Hematology, General University Hospital and First Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic
| |
Collapse
|
25
|
Bhanja A, Seeley-Fallen MK, Lazzaro M, Upadhyaya A, Song W. N-WASP-dependent branched actin polymerization attenuates B-cell receptor signaling by increasing the molecular density of receptor clusters. eLife 2023; 12:RP87833. [PMID: 38085658 PMCID: PMC10715734 DOI: 10.7554/elife.87833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Antigen-induced B-cell receptor (BCR) signaling is critical for initiating and regulating B-cell activation. The actin cytoskeleton plays essential roles in BCR signaling. Upon encountering cell-surface antigens, actin-driven B-cell spreading amplifies signaling, while B-cell contraction following spreading leads to signal attenuation. However, the mechanism by which actin dynamics switch BCR signaling from amplification to attenuation is unknown. Here, we show that Arp2/3-mediated branched actin polymerization is required for mouse splenic B-cell contraction. Contracting B-cells generate centripetally moving actin foci from lamellipodial F-actin networks in the plasma membrane region contacting antigen-presenting surfaces. Actin polymerization driven by N-WASP, but not WASP, initiates these actin foci and facilitates non-muscle myosin II recruitment to the contact zone, creating actomyosin ring-like structures. B-cell contraction increases BCR molecular density in individual clusters, leading to decreased BCR phosphorylation. Increased BCR molecular density reduced levels of the stimulatory kinase Syk, the inhibitory phosphatase SHIP-1, and their phosphorylated forms in individual BCR clusters. These results suggest that N-WASP-activated Arp2/3, coordinating with myosin, generates centripetally moving foci and contractile actomyosin ring-like structures from lamellipodial networks, enabling contraction. B-cell contraction attenuates BCR signaling by pushing out both stimulatory kinases and inhibitory phosphatases from BCR clusters, providing novel insights into actin-facilitated signal attenuation.
Collapse
Affiliation(s)
- Anshuman Bhanja
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege ParkUnited States
| | - Margaret K Seeley-Fallen
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege ParkUnited States
| | - Michelle Lazzaro
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege ParkUnited States
| | - Arpita Upadhyaya
- Biophysics Program, University of MarylandCollege ParkUnited States
- Department of Physics, University of MarylandCollege ParkUnited States
- Institute for Physical Science and Technology, University of MarylandCollege ParkUnited States
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege ParkUnited States
| |
Collapse
|
26
|
Zhang CJ, Zhao ML. Rituximab combined with Bruton tyrosine kinase inhibitor to treat elderly diffuse large B-cell lymphoma patients: Two case reports. World J Clin Cases 2023; 11:7170-7178. [PMID: 37946784 PMCID: PMC10631395 DOI: 10.12998/wjcc.v11.i29.7170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/25/2023] [Accepted: 09/22/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is a common aggressive non-Hodgkin's lymphoma (NHL), accounting for 30%-40% of adult NHLs. This report aims to explore the efficacy and safety of rituximab combined with Bruton tyrosine kinase inhibitors (BTKis) in the treatment of elderly patients with DLBCL. CASE SUMMARY The clinical data of two elderly patients with DLBCL who received rituximab combined with BTKi in our hospital were retrospectively analyzed, and the literature was reviewed. The patients were treated with chemotherapy using the R-miniCHOP regimen for two courses. Then, they received rituximab in combination with BTKi. CONCLUSION The treatment experience in these cases demonstrates the potential efficacy of rituximab combined with BTKi to treat elderly DLBCL patients, thus providing a new treatment strategy.
Collapse
Affiliation(s)
- Cang-Jian Zhang
- Department of Hematology, Lishui Municipal Central Hospital, Lishui 323000, Zhejiang Province, China
| | - Min-Lei Zhao
- Department of Hematology, Lishui Municipal Central Hospital, Lishui 323000, Zhejiang Province, China
| |
Collapse
|
27
|
Bhanja A, Seeley-Fallen MK, Lazzaro M, Upadhyaya A, Song W. N-WASP-dependent branched actin polymerization attenuates B-cell receptor signaling by increasing the molecular density of receptor clusters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532631. [PMID: 36993351 PMCID: PMC10055065 DOI: 10.1101/2023.03.14.532631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Antigen-induced B-cell receptor (BCR) signaling is critical for initiating and regulating B-cell activation. The actin cytoskeleton plays essential roles in BCR signaling. Upon encountering cell-surface antigens, actin-driven B-cell spreading amplifies signaling, while B-cell contraction following spreading leads to signal attenuation. However, the mechanism by which actin dynamics switch BCR signaling from amplification to attenuation is unknown. Here, we show that Arp2/3-mediated branched actin polymerization is required for B-cell contraction. Contracting B-cells generate centripetally moving actin foci from lamellipodial F-actin networks in the B-cell plasma membrane region contacting antigen-presenting surfaces. Actin polymerization driven by N-WASP, but not WASP, initiates these actin foci and facilitates non-muscle myosin II recruitment to the contact zone, creating actomyosin ring-like structures. Furthermore, B-cell contraction increases BCR molecular density in individual clusters, leading to decreased BCR phosphorylation. Increased BCR molecular density reduced levels of the stimulatory kinase Syk, the inhibitory phosphatase SHIP-1, and their phosphorylated forms in individual BCR clusters. These results suggest that N-WASP-activated Arp2/3, coordinating with myosin, generates centripetally moving foci and contractile actomyosin ring-like structures from lamellipodial networks, enabling contraction. B-cell contraction attenuates BCR signaling by pushing out both stimulatory kinases and inhibitory phosphatases from BCR clusters, providing novel insights into actin-facilitated signal attenuation.
Collapse
Affiliation(s)
- Anshuman Bhanja
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Margaret K. Seeley-Fallen
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Michelle Lazzaro
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Arpita Upadhyaya
- Biophysics Program, University of Maryland, College Park, MD, 20742, USA
- Department of Physics, University of Maryland, College Park, MD, 20742, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
28
|
de Pedro MÁ, López E, González-Nuño FM, Pulido M, Álvarez V, Marchena AM, Preußer C, Szymański W, Pogge von Strandmann E, Graumann J, Sánchez-Margallo FM, Casado JG, Gómez-Serrano M. Menstrual blood-derived mesenchymal stromal cells: impact of preconditioning on the cargo of extracellular vesicles as potential therapeutics. Stem Cell Res Ther 2023; 14:187. [PMID: 37507751 PMCID: PMC10386225 DOI: 10.1186/s13287-023-03413-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) have been shown to exert their therapeutic effects through the secretion of broad spectrum of paracrine factors, including extracellular vesicles (EVs). Accordingly, EVs are being pursued as a promising alternative to cell-based therapies. Menstrual blood-derived stromal cells (MenSCs) are a type of MSC that, due to their immunomodulatory and regenerative properties, have emerged as an innovative source. Additionally, new strategies of cell priming may potentially alter the concentration and cargo of released EVs, leading to modification of their biological properties. In this study, we aimed to characterize the EVs released by MenSCs and compare their therapeutic potential under three different preconditioning conditions (proinflammatory stimuli, physioxia, and acute hypoxia). METHODS MenSCs were isolated from five healthy women. Following culturing to 80% confluence, MenSCs were exposed to different priming conditions: basal (21% O2), proinflammatory stimuli (IFNγ and TNFα, 21% O2), physioxia (1-2% O2), and acute hypoxia (< 1% O2) for 48-72 h. Conditioned media from MenSCs was collected after 48 h and EVs were isolated by a combination of ultra-filtration and differential centrifugation. An extensive characterization ranging from nano-flow cytometry (nFC) to quantitative high-throughput shotgun proteomics was performed. Bioinformatics analyses were used to derive hypotheses on their biological properties. RESULTS No differences in the morphology, size, or number of EVs released were detected between priming conditions. The proteome analysis associated with basal MenSC-EVs prominently revealed their immunomodulatory and regenerative capabilities. Furthermore, quantitative proteomic analysis of differentially produced MenSC-EVs provided sufficient evidence for the utility of the differential preconditioning in purpose-tailoring EVs for their therapeutic application: proinflammatory priming enhanced the anti-inflammatory, regenerative and immunomodulatory capacity in the innate response of EVs, physioxia priming also improves tissue regeneration, angiogenesis and their immunomodulatory capacity targeting on the adaptive response, while acute hypoxia priming, increased hemostasis and apoptotic processes regulation in MenSC-EVs, also by stimulating immunomodulation mainly through the adaptive response. CONCLUSIONS Priming of MenSCs under proinflammatory and hypoxic conditions affected the cargo proteome of EVs released, resulting in different therapeutic potential, and thus warrants experimental exploration with the aim to generate better-defined MSC-derived bioproducts.
Collapse
Affiliation(s)
- María Ángeles de Pedro
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain
- RICORS-TERAV Network, ISCIII, 28029, Madrid, Spain
| | - Esther López
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain.
- RICORS-TERAV Network, ISCIII, 28029, Madrid, Spain.
| | | | - María Pulido
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain
| | - Verónica Álvarez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain
| | - Ana María Marchena
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain
- RICORS-TERAV Network, ISCIII, 28029, Madrid, Spain
| | - Christian Preußer
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Center for Tumor Biology and Immunology, Philipps University, 35043, Marburg, Germany
| | - Witold Szymański
- Institute of Translational Proteomics, Biochemical/Pharmacological Center, Philipps University, 35043, Marburg, Germany
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Center for Tumor Biology and Immunology, Philipps University, 35043, Marburg, Germany
| | - Johannes Graumann
- Institute of Translational Proteomics, Biochemical/Pharmacological Center, Philipps University, 35043, Marburg, Germany
| | - Francisco Miguel Sánchez-Margallo
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain
- RICORS-TERAV Network, ISCIII, 28029, Madrid, Spain
| | - Javier G Casado
- RICORS-TERAV Network, ISCIII, 28029, Madrid, Spain
- Immunology Unit, University of Extremadura, 10003, Cáceres, Spain
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003, Cáceres, Spain
| | - María Gómez-Serrano
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University, 35043, Marburg, Germany.
| |
Collapse
|
29
|
Tao Q, Zhu Y, Wang T, Deng Y, Liu H, Wu J. Identification and analysis of lipid metabolism-related genes in allergic rhinitis. Lipids Health Dis 2023; 22:105. [PMID: 37480069 PMCID: PMC10362667 DOI: 10.1186/s12944-023-01825-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/28/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Studies have shown that the lipid metabolism mediator leukotriene and prostaglandins are associated with the pathogenesis of allergic rhinitis (AR). The aim of this study was to identify key lipid metabolism-related genes (LMRGs) related to the diagnosis and treatment of AR. MATERIALS AND METHODS AR-related expression datasets (GSE75011, GSE46171) were downloaded through the Gene Expression Omnibus (GEO) database. First, weighted gene co-expression network analysis (WGCNA) was used to get AR-related genes (ARRGs). Next, between control and AR groups in GSE75011, differentially expressed genes (DEGs) were screened, and DEGs were intersected with LMRGs to obtain lipid metabolism-related differentially expressed genes (LMR DEGs). Protein-protein interaction (PPI) networks were constructed for these LMR DEGs. Hub genes were then identified through stress, radiality, closeness and edge percolated component (EPC) analysis and intersected with the ARRGs to obtain candidate genes. Biomarkers with diagnostic value were screened via receiver operating characteristic (ROC) curves. Differential immune cells screened between control and AR groups were then assessed for correlation with the diagnostic genes, and clinical correlation analysis and enrichment analysis were performed. Finally, real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) was made on blood samples from control and AR patients to validate these identified diagnostic genes. RESULTS 73 LMR DEGs were obtained, which were involved in biological processes such as metabolism of lipids and lipid biosynthetic processes. 66 ARRGs and 22 hub genes were intersected to obtain four candidate genes. Three diagnostic genes (LPCAT1, SGPP1, SMARCD3) with diagnostic value were screened according to the AUC > 0.7, with markedly variant between control and AR groups. In addition, two immune cells, regulatory T cells (Treg) and T follicular helper cells (TFH), were marked variations between control and AR groups, and SMARCD3 was significantly associated with TFH. Moreover, SMARCD3 was relevant to immune-related pathways, and correlated significantly with clinical characteristics (age and sex). Finally, RT-qPCR results indicated that changes in the expression of LPCAT1 and SMARCD3 between control and AR groups were consistent with the GSE75011 and GSE46171. CONCLUSION LPCAT1, SGPP1 and SMARCD3 might be used as biomarkers for AR.
Collapse
Affiliation(s)
- Qilei Tao
- Department of Otolaryngology, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| | - Yajing Zhu
- Department of Otolaryngology, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| | - Tianyu Wang
- Department of Otolaryngology, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| | - Yue Deng
- Department of Otolaryngology, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| | - Huanhai Liu
- Department of Otolaryngology, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China.
| | - Jian Wu
- Department of Otolaryngology, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China.
| |
Collapse
|
30
|
Lees J, Hay J, Moles MW, Michie AM. The discrete roles of individual FOXO transcription factor family members in B-cell malignancies. Front Immunol 2023; 14:1179101. [PMID: 37275916 PMCID: PMC10233034 DOI: 10.3389/fimmu.2023.1179101] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
Forkhead box (FOX) class O (FOXO) proteins are a dynamic family of transcription factors composed of four family members: FOXO1, FOXO3, FOXO4 and FOXO6. As context-dependent transcriptional activators and repressors, the FOXO family regulates diverse cellular processes including cell cycle arrest, apoptosis, metabolism, longevity and cell fate determination. A central pathway responsible for negative regulation of FOXO activity is the phosphatidylinositol-3-kinase (PI3K)-AKT signalling pathway, enabling cell survival and proliferation. FOXO family members can be further regulated by distinct kinases, both positively (e.g., JNK, AMPK) and negatively (e.g., ERK-MAPK, CDK2), with additional post-translational modifications further impacting on FOXO activity. Evidence has suggested that FOXOs behave as 'bona fide' tumour suppressors, through transcriptional programmes regulating several cellular behaviours including cell cycle arrest and apoptosis. However, an alternative paradigm has emerged which indicates that FOXOs operate as mediators of cellular homeostasis and/or resistance in both 'normal' and pathophysiological scenarios. Distinct FOXO family members fulfil discrete roles during normal B cell maturation and function, and it is now clear that FOXOs are aberrantly expressed and mutated in discrete B-cell malignancies. While active FOXO function is generally associated with disease suppression in chronic lymphocytic leukemia for example, FOXO expression is associated with disease progression in diffuse large B cell lymphoma, an observation also seen in other cancers. The opposing functions of the FOXO family drives the debate about the circumstances in which FOXOs favour or hinder disease progression, and whether targeting FOXO-mediated processes would be effective in the treatment of B-cell malignancies. Here, we discuss the disparate roles of FOXO family members in B lineage cells, the regulatory events that influence FOXO function focusing mainly on post-translational modifications, and consider the potential for future development of therapies that target FOXO activity.
Collapse
Affiliation(s)
| | | | | | - Alison M. Michie
- Paul O’Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
31
|
Qiao Y, Hu H, Zhao Y, Jin M, Yang D, Yin J, Wu P, Liu W, Li J. Benzene induces spleen injury through the B cell receptor signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114924. [PMID: 37080132 DOI: 10.1016/j.ecoenv.2023.114924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/13/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Benzene is a toxic environmental pollutant that disrupts the immune system in humans. Benzene exposure reduces the abundance of immune cells in multiple immune organs; however, the biological mechanisms underlying benzene-induced immunotoxicity has not been elucidated. In this study, benzene was used to develop mouse model for immune dysfunction. A significant decrease in IgG, IL-2 and IL-6 levels, an increase in oxidative stress and spleen injury were observed after benzene exposure in a dose-dependent manner. Quantitative proteomics revealed that benzene-induced immune dysfunction was associated with deregulation of the B cell receptor (BCR) signaling pathway. Benzene exposure suppressed the expression of CD22, BCL10 and NF-κb p65. Also, a significant decrease in proliferation and an increase in apoptosis of splenic lymphocytes were found after benzene exposure. Moreover, we found that benzene exposure increased mitochondrial reactive oxygen species (mito-ROS) and decreased adenosine triphosphate (ATP). Overall, we revealed the damaging effects of benzene on spleen-related immune function and the underlying biological mechanism, involving the disruption of BCR signaling pathway, NF-κB deactivation, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yamei Qiao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Hui Hu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China; Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Yunyan Zhao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Min Jin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Dong Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Jing Yin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Peng Wu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| | - Weili Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.
| | - Junwen Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.
| |
Collapse
|
32
|
Zhao D, Chen X, Wang L, Zhang J, Zhao Z, Yue N, Zhu Y, Fei W, Li X, Tan L, He W. Bidirectional and persistent immunomodulation of Astragalus polysaccharide as an adjuvant of influenza and recombinant SARS-CoV-2 vaccine. Int J Biol Macromol 2023; 234:123635. [PMID: 36801224 PMCID: PMC9932796 DOI: 10.1016/j.ijbiomac.2023.123635] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023]
Abstract
Respiratory viral infections, such as coronavirus disease of 2019 (COVID-19) and influenza, cause significant morbidity and mortality and have become a worldwide public health concern with tremendous economic and societal burdens. Vaccination is a major strategy for preventing infections. However, some new vaccines have an unmet need for impairing responses in certain individuals, especially COVID-19 vaccines, despite ongoing vaccine and adjuvant research. Here, we evaluated the effectiveness of Astragalus polysaccharide (APS), a bioactive polysaccharide extracted from the traditional Chinese herb Astragalus membranaceus as an immune adjuvant to regulate the efficacy of influenza split vaccine (ISV) and recombinant severe acute respiratory syndrome (SARS)-Cov-2 vaccine in mice. Our data indicated that APS as an adjuvant can facilitate the induction of high levels of hemagglutination inhibition (HAI) titer and specific antibody immunoglobulin G (IgG) and confer protection against the lethal challenge of influenza A viruses, including increased survival and amelioration of weight loss in mice immunized with the ISV. RNA sequencing (RNA-seq) analysis revealed that the NF-κB and Fc gamma R-mediated phagocytosis signaling pathways are essential for the immune response of mice immunized with the recombinant SARS-Cov-2 vaccine (RSV). Another important finding was that bidirectional immunomodulation of APS on cellular and humoral immunity was observed, and APS-adjuvant-induced antibodies persisted at a high level for at least 20 weeks. These findings suggest that APS is a potent adjuvant for influenza and COVID-19 vaccines, and has the advantages of bidirectional immunoregulation and persistent immunity.
Collapse
Affiliation(s)
- Danping Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiuhong Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Linyuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| | - Jianjun Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Zhongpeng Zhao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| | - Na Yue
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yingli Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wenting Fei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyu Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Lingyun Tan
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Wei He
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
33
|
Melnik BC, Stadler R, Weiskirchen R, Leitzmann C, Schmitz G. Potential Pathogenic Impact of Cow’s Milk Consumption and Bovine Milk-Derived Exosomal MicroRNAs in Diffuse Large B-Cell Lymphoma. Int J Mol Sci 2023; 24:ijms24076102. [PMID: 37047075 PMCID: PMC10094152 DOI: 10.3390/ijms24076102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Epidemiological evidence supports an association between cow’s milk consumption and the risk of diffuse large B-cell lymphoma (DLBCL), the most common non-Hodgkin lymphoma worldwide. This narrative review intends to elucidate the potential impact of milk-related agents, predominantly milk-derived exosomes (MDEs) and their microRNAs (miRs) in lymphomagenesis. Upregulation of PI3K-AKT-mTORC1 signaling is a common feature of DLBCL. Increased expression of B cell lymphoma 6 (BCL6) and suppression of B lymphocyte-induced maturation protein 1 (BLIMP1)/PR domain-containing protein 1 (PRDM1) are crucial pathological deviations in DLBCL. Translational evidence indicates that during the breastfeeding period, human MDE miRs support B cell proliferation via epigenetic upregulation of BCL6 (via miR-148a-3p-mediated suppression of DNA methyltransferase 1 (DNMT1) and miR-155-5p/miR-29b-5p-mediated suppression of activation-induced cytidine deaminase (AICDA) and suppression of BLIMP1 (via MDE let-7-5p/miR-125b-5p-targeting of PRDM1). After weaning with the physiological termination of MDE miR signaling, the infant’s BCL6 expression and B cell proliferation declines, whereas BLIMP1-mediated B cell maturation for adequate own antibody production rises. Because human and bovine MDE miRs share identical nucleotide sequences, the consumption of pasteurized cow’s milk in adults with the continued transfer of bioactive bovine MDE miRs may de-differentiate B cells back to the neonatal “proliferation-dominated” B cell phenotype maintaining an increased BLC6/BLIMP1 ratio. Persistent milk-induced epigenetic dysregulation of BCL6 and BLIMP1 expression may thus represent a novel driving mechanism in B cell lymphomagenesis. Bovine MDEs and their miR cargo have to be considered potential pathogens that should be removed from the human food chain.
Collapse
|
34
|
Iyer P, Wang L. Emerging Therapies in CLL in the Era of Precision Medicine. Cancers (Basel) 2023; 15:1583. [PMID: 36900373 PMCID: PMC10000606 DOI: 10.3390/cancers15051583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Over the past decade, the treatment landscape of CLL has vastly changed from the conventional FC (fludarabine and cyclophosphamide) and FCR (FC with rituximab) chemotherapies to targeted therapies, including inhibitors of Bruton tyrosine kinase (BTK) and phosphatidylinositol 3-kinase (PI3K) as well as inhibitors of BCL2. These treatment options dramatically improved clinical outcomes; however, not all patients respond well to these therapies, especially high-risk patients. Clinical trials of immune checkpoint inhibitors (PD-1, CTLA4) and chimeric antigen receptor T (CAR T) or NK (CAR NK) cell treatment have shown some efficacy; still, long-term outcomes and safety issues have yet to be determined. CLL remains an incurable disease. Thus, there are unmet needs to discover new molecular pathways with targeted or combination therapies to cure the disease. Large-scale genome-wide whole-exome and whole-genome sequencing studies have discovered genetic alterations associated with disease progression, refined the prognostic markers in CLL, identified mutations underlying drug resistance, and pointed out critical targets to treat the disease. More recently, transcriptome and proteome landscape characterization further stratified the disease and revealed novel therapeutic targets in CLL. In this review, we briefly summarize the past and present available single or combination therapies, focusing on potential emerging therapies to address the unmet clinical needs in CLL.
Collapse
Affiliation(s)
- Prajish Iyer
- Department of Systems Biology, Beckman Research Institute, City of Hope National Comprehensive Cancer Center, Monrovia, CA 91007, USA
| | - Lili Wang
- Department of Systems Biology, Beckman Research Institute, City of Hope National Comprehensive Cancer Center, Monrovia, CA 91007, USA
- Toni Stephenson Lymphoma Center, Beckman Research Institute, City of Hope National Comprehensive Cancer Center, Duarte, CA 91016, USA
| |
Collapse
|
35
|
Ferapontov A, Omer M, Baudrexel I, Nielsen JS, Dupont DM, Juul-Madsen K, Steen P, Eklund AS, Thiel S, Vorup-Jensen T, Jungmann R, Kjems J, Degn SE. Antigen footprint governs activation of the B cell receptor. Nat Commun 2023; 14:976. [PMID: 36813795 PMCID: PMC9947222 DOI: 10.1038/s41467-023-36672-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
Antigen binding by B cell receptors (BCR) on cognate B cells elicits a response that eventually leads to production of antibodies. However, it is unclear what the distribution of BCRs is on the naïve B cell and how antigen binding triggers the first step in BCR signaling. Using DNA-PAINT super-resolution microscopy, we find that most BCRs are present as monomers, dimers, or loosely associated clusters on resting B cells, with a nearest-neighbor inter-Fab distance of 20-30 nm. We leverage a Holliday junction nanoscaffold to engineer monodisperse model antigens with precision-controlled affinity and valency, and find that the antigen exerts agonistic effects on the BCR as a function of increasing affinity and avidity. Monovalent macromolecular antigens can activate the BCR at high concentrations, whereas micromolecular antigens cannot, demonstrating that antigen binding does not directly drive activation. Based on this, we propose a BCR activation model determined by the antigen footprint.
Collapse
Affiliation(s)
- Alexey Ferapontov
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.,Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark
| | - Marjan Omer
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Isabelle Baudrexel
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.,Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jesper Sejrup Nielsen
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Daniel Miotto Dupont
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | | | - Philipp Steen
- Max Planck Institute of Biochemistry, Martinsried, Germany.,Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Munich, Germany
| | - Alexandra S Eklund
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.,Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.,Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark
| | | | - Ralf Jungmann
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.,Max Planck Institute of Biochemistry, Martinsried, Germany.,Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Munich, Germany
| | - Jørgen Kjems
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Søren Egedal Degn
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark. .,Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
36
|
The prognostic signature based on glycolysis-immune related genes for acute myeloid leukemia patients. Immunobiology 2023; 228:152355. [PMID: 36868006 DOI: 10.1016/j.imbio.2023.152355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023]
Abstract
Acute myeloid leukemia (AML) is widely considered an immunoresponsive malignancy. However, potential association between glycolysis-immune related genes and AML patients' prognosis has been seldom studied. AML-related data was downloaded from TCGA and GEO databases. We grouped patients according to Glycolysis status, Immune Score and combination analysis, basing on which overlapped differentially expressed genes (DEGs) were identified. The Risk Score model was then established. The results showed that totally 142 overlapped genes were probably correlated with glycolysis-immunity in AML patients, among which 6 optimal genes were screened to construct Risk Score. High Risk Score was an independent poor prognostic factor for AML. In conclusion, we established a relatively reliable prognostic signature of AML based on glycolysis-immunity related genes, including METTL7B, HTR7, ITGAX, TNNI2, SIX3 and PURG.
Collapse
|
37
|
Co-Targeting of BTK and TrxR as a Therapeutic Approach to the Treatment of Lymphoma. Antioxidants (Basel) 2023; 12:antiox12020529. [PMID: 36830087 PMCID: PMC9952695 DOI: 10.3390/antiox12020529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a haematological malignancy representing the most diagnosed non-Hodgkin's lymphoma (NHL) subtype. Despite the approved chemotherapies available in clinics, some patients still suffer from side effects and relapsed disease. Recently, studies have reported the role of the Trx system and the BCR signalling pathway in cancer development and drug resistance. In this regard, we assessed a potential link between the two systems and evaluated the effects of [Au(d2pype)2]Cl (TrxR inhibitor) and ibrutinib (BTK inhibitor) alone and in combination on the cell growth of two DLBCL lymphoma cell lines, SUDHL2 and SUDHL4. In this study, we show higher expression levels of the Trx system and BCR signalling pathway in the DLBCL patient samples compared to the healthy samples. The knockdown of TrxR using siRNA reduced BTK mRNA and protein expression. A combination treatment with [Au(d2pype)2]Cl and ibrutinib had a synergistic effect on the inhibition of lymphoma cell proliferation, the activation of apoptosis, and, depending on lymphoma cell subtype, ferroptosis. Decreased BTK expression and the cytoplasmic accumulation of p65 were observed after the combination treatment in the DLBCL cells, indicating the inhibition of the NF-κB pathway. Thus, the co-targeting of BTK and TrxR may be an effective therapeutic strategy to consider for DLBCL treatment.
Collapse
|
38
|
Zhang Z, Wang Z, Liu Y, Zhao L, Fu W. Stromal Interaction Molecule 1 (STIM1) is a Potential Prognostic Biomarker and Correlates with Immune Infiltrates in Solid Tumors. J Environ Pathol Toxicol Oncol 2023; 42:11-30. [PMID: 36749087 DOI: 10.1615/jenvironpatholtoxicoloncol.2022043693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Increasing evidence has shown that stromal interaction molecule 1 (STIM1), a key subunit of store-operated Ca2+ entry (SOCE), is closely associated with tumor growth, development, and metastasis. However, there is no report of a comprehensive assessment of STIM1 in pan-cancer. This study aimed to perform a general analysis of STIM1 in human tumors, including its molecular characteristics, functional mechanisms, clinical significance, and immune infiltrates correlation based on pan-cancer data from The Cancer Genome Atlas (TCGA). Gene expression analysis was investigated using TCGA RNA-seq data, the Tumor Immune Estimation Resource (TIMER). Phosphorylation analysis was undertaken using the Clinical Proteomic Tumor Analysis Consortium (CP-TAC) and the PhosphoNET database. Genetic alterations of STIM1 were analyzed using cBioPortal. Prognostic analysis was via the R package "survival" function and the Kaplan-Meier plotter. Functional enrichment analysis was via by the R package "cluster Profiler" function. The association between STIM1 and tumor-infiltrating immune cells and immune markers was by the R package "GSVA" function and TIMER. STIM1 was differentially expressed and associated with distinct clinical stages in multiple tumors. The phosphorylation of STIM1 at S673 is highly expressed in clear cell renal carcinoma and lung adenocarcinoma tumors compared to normal tissues. STIM1 genetic alterations correlate with poor prognosis in several tumors, including ovarian cancer and lung squamous cell carcinomas. High STIM1 expression is associated with good or poor prognosis across diverse tumors. Overall survival (OS) analysis indicated that STIM1 is a favorable prognostic factor for patients with BRCA, KIRC, LIHC, LUAD, OV, SARC, and UCEC, and is a risk prognostic factor for BLCA, KIRP, STAD, and UVM. There is a close correlation between STIM1 expression and immune cell infiltration, immune-regulated genes, chemokines, and immune checkpoints in a variety of tumors. STIM1 functions differently in diverse tumors, playing an oncogenic or antitumor role. Moreover, It may serve as a prognostic biomarker and an immunotherapy target across multiple tumors.
Collapse
Affiliation(s)
- Zichao Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of General Surgery, First Hospital of Tsinghua University, Beijing 100016, China
| | - Zhihui Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of General Surgery, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Yumeng Liu
- Department of General Surgery, First Hospital of Tsinghua University, Beijing 100016, China
| | - Li Zhao
- Department of General Surgery, First Hospital of Tsinghua University, Beijing 100016, China
| | - Weihua Fu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
39
|
Yang Y, Fu Y, Sheng S, Ji C, Pu X, Xu G. Screening for diagnostic targets in tuberculosis and study on its pathogenic mechanism based on mRNA sequencing technology and miRNA-mRNA-pathway regulatory network. Front Immunol 2023; 14:1038647. [PMID: 36793717 PMCID: PMC9923233 DOI: 10.3389/fimmu.2023.1038647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
Purpose Tuberculosis is common infectious diseases, characterized by infectivity, concealment and chronicity, and the early diagnosis is helpful to block the spread of tuberculosis and reduce the resistance of Mycobacterium tuberculosis to anti-tuberculosis drugs. At present, there are obvious limitations in the application of clinical detection methods used for the early diagnosis of tuberculosis. RNA sequencing (RNA-Seq) has become an economical and accurate gene sequencing method for quantifying transcripts and detecting unknown RNA species. Methods A peripheral blood mRNA sequencing was used to screen the differentially expressed genes between healthy people and tuberculosis patients. A protein-protein interaction (PPI) network of differentially expressed genes was constructed through Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. The potential diagnostic targets of tuberculosis were screened by the calculation of degree, betweenness and closeness in Cytoscape 3.9.1 software. Finally, the functional pathways and the molecular mechanism of tuberculosis were clarified in combination of the prediction results of key gene miRNAs, and by Gene Ontology (GO) enrichment analysis and the Kyoto Encyclopedia Genes and Genomes (KEGG) pathway annotation analysis. Results 556 Differential genes of tuberculosis were screened out by mRNA sequencing. Six key genes (AKT1, TP53, EGF, ARF1, CD274 and PRKCZ) were screened as the potential diagnostic targets for tuberculosis by analyzing the PPI regulatory network and using three algorithms. Three pathways related to the pathogenesis of tuberculosis were identified by KEGG pathway analysis, and two key miRNAs (has-miR-150-5p and has-miR-25-3p) that might participate in the pathogenesis of tuberculosis were screened out by constructing a miRNA-mRNA pathway regulatory network. Conclusion Six key genes and two important miRNAs that could regulate them were screened out by mRNA sequencing. The 6 key genes and 2 important miRNAs may participate in the pathogenesis of infection and invasion of Mycobacterium tuberculosis through herpes simplex virus 1 infection, endocytosis and B cell receptor signaling pathways.
Collapse
|
40
|
Han F, Chen Y, Zhu Y, Huang Z. Antigen receptor structure and signaling. Adv Immunol 2023; 157:1-28. [PMID: 37061286 DOI: 10.1016/bs.ai.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
The key to mounting an immune response is that the host cells must be coordinated to generate an appropriate immune response against the pathogenic invaders. Antigen receptors recognize specific molecular structures and recruit adaptors through their effector domains, triggering trans-membrane transduction signaling pathway to exert immune response. The T cell antigen receptor (TCR) and B cell antigen receptor (BCR) are the primary determinant of immune responses to antigens. Their structure determines the mode of signaling and signal transduction determines cell fate, leading to changes at the molecular and cellular level. Studies of antigen receptor structure and signaling revealed the basis of immune response triggering, providing clues to antigen receptor priming and a foundation for the rational design of immunotherapies. In recent years, the increased research on the structure of antigen receptors has greatly contributed to the understanding of immune response, different immune-related diseases and even tumors. In this review, we describe in detail the current view and advances of the antigen structure and signaling.
Collapse
Affiliation(s)
- Fang Han
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yan Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yuwei Zhu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhiwei Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
41
|
Fosdick MG, Loftus S, Phillips I, Zacharias ZR, Houtman JCD. Glycerol monolaurate inhibition of human B cell activation. Sci Rep 2022; 12:13506. [PMID: 35931746 PMCID: PMC9355977 DOI: 10.1038/s41598-022-17432-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
Glycerol monolaurate (GML) is a naturally occurring antimicrobial agent used commercially in numerous products and food items. GML is also used as a homeopathic agent and is being clinically tested to treat several human diseases. In addition to its anti-microbial function, GML suppresses immune cell proliferation and inhibits primary human T cell activation. GML suppresses T cell activation by altering membrane dynamics and disrupting the formation of protein clusters necessary for intracellular signaling. The ability of GML to disrupt cellular membranes suggests it may alter other cell types. To explore this possibility, we tested how GML affects human B cells. We found that GML inhibits BCR-induced cytokine production, phosphorylation of signaling proteins, and protein clustering, while also changing cellular membrane dynamics and dysregulating cytoskeleton rearrangement. Although similar, there are also differences between how B cells and T cells respond to GML. These differences suggest that unique intrinsic features of a cell may result in differential responses to GML treatment. Overall, this study expands our understanding of how GML impacts the adaptive immune response and contributes to a broader knowledge of immune modulating monoglycerides.
Collapse
Affiliation(s)
- Micaela G Fosdick
- Biomedical Sciences Graduate Program, Subprogram in Molecular Medicine, Carver College of Medicine, University of Iowa, 2110 MERF, Iowa City, IA, 52242, USA
| | - Shannon Loftus
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Isabella Phillips
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Zeb R Zacharias
- Human Immunology Core, Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Jon C D Houtman
- Biomedical Sciences Graduate Program, Subprogram in Molecular Medicine, Carver College of Medicine, University of Iowa, 2110 MERF, Iowa City, IA, 52242, USA.
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA.
- Human Immunology Core, Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, USA.
| |
Collapse
|
42
|
Abstract
Histone lysine methylation plays a key role in gene activation and repression. The trimethylation of histone H3 on lysine-27 (H3K27me3) is a critical epigenetic event that is controlled by Jumonji domain-containing protein-3 (JMJD3). JMJD3 is a histone demethylase that specifically removes methyl groups. Previous studies have suggested that JMJD3 has a dual role in cancer cells. JMJD3 stimulates the expression of proliferative-related genes and increases tumor cell growth, propagation, and migration in various cancers, including neural, prostate, ovary, skin, esophagus, leukemia, hepatic, head and neck, renal, lymphoma, and lung. In contrast, JMJD3 can suppress the propagation of tumor cells, and enhance their apoptosis in colorectal, breast, and pancreatic cancers. In this review, we summarized the recent advances of JMJD3 function in cancer cells.
Collapse
|
43
|
Luo L, Jiang P, Chen Q, Chang J, Jing Y, Luo X, Gu H, Huang Y, Chen R, Liu J, Kang D, Liu Q, Wang Y, Fang G, Zhu Y, Guan F, Lei J, Yang L, Liu C, Dai X. c-Abl controls BCR signaling and B cell differentiation by promoting B cell metabolism. Immunology 2022; 167:181-196. [PMID: 35753034 DOI: 10.1111/imm.13525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/15/2022] [Indexed: 11/30/2022] Open
Abstract
As a non-receptor tyrosine kinase, c-Abl was first studied in chronic myelogenous leukemia, and its role in lymphocytes has been well characterized. c-Abl is involved in B cell development and CD19 associated B cell antigen receptor (BCR) signaling. Although c-Abl regulates different metabolic pathways, the role of c-Abl is still unknown in B cell metabolism. In this study, B cell specific c-Abl knockout (KO) mice (Mb1Cre+/- c-Ablfl/fl ) were used to investigate how c-Abl regulates B cell metabolism and BCR signaling. We found that the levels of activation positive BCR signaling proximal molecules, phosphorylated spleen tyrosine kinase (pSYK) and phosphorylated Bruton tyrosine kinase (pBTK), were decreased, while the level of key negative regulator, phosphorylated SH2-containing inositol phosphatase (pSHIP1), was increased in Mb1Cre+/- c-Ablfl/fl mice. Furthermore, we found c-Abl deficiency weakened the B cell spreading, formation of BCR signalosomes, and the polymerization of actin during BCR activation, and also impaired the differentiation of germinal center (GC) B cells both in quiescent condition and after immunization. Moreover, B cell mitochondrial respiration and the expression of B cell metabolism regulating molecules were downregulated in c-Abl deficiency mice. Overall, c-Abl, which involved in actin remodeling and B cell metabolism, positively regulates BCR signaling and promotes GC differentiation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Li Luo
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Panpan Jiang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianglin Chen
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Jiang Chang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukai Jing
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Luo
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Gu
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanmei Huang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran Chen
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ju Liu
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danqing Kang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Liu
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Yi Wang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guofeng Fang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingzi Zhu
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Guan
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Lei
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Yang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaohong Liu
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Dai
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
44
|
Huang S, Lu B, Zhu M, Liu M, Sun Z, Pan X, Wei M. Long non-coding RNA LOC644135 is a potential prognostic indicator in cytogenetically normal acute myeloid leukemia. Expert Rev Hematol 2022; 15:657-665. [PMID: 35713000 DOI: 10.1080/17474086.2022.2091542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Acute myeloid leukemia (AML) is a hematological malignancy with highly clinical heterogeneity resulting in poor outcomes. We aim to identify novel prognostic lncRNA in AML expecting to provide new clues for therapy in AML. METHODS Three cohorts were enrolled in this study. Differentially expressed lncRNAs between TCGA-AML cohort and GTEx cohort was identified by DESeq2. The relationship between expression level of LOC644135 and prognosis in AML was analyzed by multiple methods. RESULTS Pan-cancer analysis indicated that LOC644135 was most highly expressed in AML across 33 types of cancer. Patients with high expression of LOC644135 had poor overall prognosis in both TCGA-AML cohort and the TARGET-AML cohort. Especially, high expression of LOC644135 indicated inferior overall survival and event-free survival in CN-AML patients in the TCGA-AML cohort. Besides, CN-AML patients had higher expression of LOC644135 than normal samples. Multivariable analysis suggested that LOC644135 was an independent prognostic factor in AML. GSEA analysis showed that LOC644135 was associated with some immune-related pathways. Besides, high expression of LOC644135 was associated with less infiltration of CD8+ T cell. CONCLUSION Our findings indicated that LOC644135 was an independent prognostic factor in AML and provided a new idea in the development of therapy in AML.
Collapse
Affiliation(s)
- Shan Huang
- Department of Oncology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Bo Lu
- Department of Oncology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Mengyuan Zhu
- Department of Oncology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Minling Liu
- Department of Oncology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Ziyi Sun
- Department of Oncology, Taikang Tongji (Wuhan) Hospital, Wuhan, Hubei, China
| | - Xiaofen Pan
- Department of Oncology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Min Wei
- Department of Oncology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
45
|
Lu Z, Wang Z, Tu Z, Liu H. HSP90 Inhibitor Ganetespib Enhances the Sensitivity of Mantle Cell Lymphoma to Bruton’s Tyrosine Kinase Inhibitor Ibrutinib. Front Pharmacol 2022; 13:864194. [PMID: 35721157 PMCID: PMC9204102 DOI: 10.3389/fphar.2022.864194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a highly aggressive and heterogeneous B-cell lymphoma. Though Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib has shown great efficacy as a single agent for MCL treatment, the real-world use of ibrutinib is still subject to limitations. Our previous study has shown the treatment with HSP90 inhibitor ganetespib can attack major targets of MCL, luckily complementary to ibrutinib’s targets. In this study, transient ganetespib treatment sensitizes MCL cells to ibrutinib as manifested by the significant decrease of IC50 values, percentages of EdU (5-Ethynyl-2′-deoxyuridine) positive cells, and levels of p-AKT and NF-κB after combinational treatment. Additionally, pretreatment with ganetespib enhanced cell cycle arrest induced by ibrutinib at G0/G1 phase and significantly decreased levels of cell cycle promoting proteins CDK2, 4, and 6. Pretreatment with ganetespib also enhanced cell apoptosis induced by ibrutinib through the upregulation of cleaved-caspase 9 and downregulation of BCL-2 in MCL cells at the molecular level. The sequential administration of ganetespib and ibrutinib had similar effects on increasing DNA damage as the transient treatment with ganetespib as demonstrated by the improved percentage of γH2AX and 53BP1 foci. Furthermore, ganetespib significantly increased inhibition of tumor growth mediated by ibrutinib in vivo, confirmed by the changes of the expression levels of Ki-67 and BCL-2 through immunohistochemistry assays. This study indicates that HSP90 inhibitor ganetespib maybe ideal for the combinational use with BTK inhibitor ibrutinib to target major pathogenesis-associated signaling pathways for MCL treatment which may help identify new possibilities for clinical trials.
Collapse
Affiliation(s)
- Ziwen Lu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Zhixin Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Zhigang Tu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- *Correspondence: Zhigang Tu, ; Hanqing Liu,
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
- *Correspondence: Zhigang Tu, ; Hanqing Liu,
| |
Collapse
|
46
|
Wang JC, Yim YI, Wu X, Jaumouille V, Cameron A, Waterman CM, Kehrl JH, Hammer JA. A B-cell actomyosin arc network couples integrin co-stimulation to mechanical force-dependent immune synapse formation. eLife 2022; 11:e72805. [PMID: 35404237 PMCID: PMC9142150 DOI: 10.7554/elife.72805] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 04/10/2022] [Indexed: 11/13/2022] Open
Abstract
B-cell activation and immune synapse (IS) formation with membrane-bound antigens are actin-dependent processes that scale positively with the strength of antigen-induced signals. Importantly, ligating the B-cell integrin, LFA-1, with ICAM-1 promotes IS formation when antigen is limiting. Whether the actin cytoskeleton plays a specific role in integrin-dependent IS formation is unknown. Here, we show using super-resolution imaging of mouse primary B cells that LFA-1:ICAM-1 interactions promote the formation of an actomyosin network that dominates the B-cell IS. This network is created by the formin mDia1, organized into concentric, contractile arcs by myosin 2A, and flows inward at the same rate as B-cell receptor (BCR):antigen clusters. Consistently, individual BCR microclusters are swept inward by individual actomyosin arcs. Under conditions where integrin is required for synapse formation, inhibiting myosin impairs synapse formation, as evidenced by reduced antigen centralization, diminished BCR signaling, and defective signaling protein distribution at the synapse. Together, these results argue that a contractile actomyosin arc network plays a key role in the mechanism by which LFA-1 co-stimulation promotes B-cell activation and IS formation.
Collapse
Affiliation(s)
- Jia C Wang
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of HealthBethesdaUnited States
| | - Yang-In Yim
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of HealthBethesdaUnited States
| | - Xufeng Wu
- Light Microscopy Core, National Heart, Lung and Blood Institute, National Institutes of HealthBethesdaUnited States
| | - Valentin Jaumouille
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of HealthBethesdaUnited States
| | - Andrew Cameron
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of HealthBethesdaUnited States
| | - Clare M Waterman
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of HealthBethesdaUnited States
| | - John H Kehrl
- B Cell Molecular Immunology Section, National Institutes of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - John A Hammer
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
47
|
An Q, Chen S, Zhang L, Zhang Z, Cheng Y, Wu H, Liu A, Chen Z, Li B, Chen J, Zheng Y, Man C, Wang F, Chen Q, Du L. The mRNA and miRNA profiles of goat bronchial epithelial cells stimulated by Pasteurella multocida strains of serotype A and D. PeerJ 2022; 10:e13047. [PMID: 35321408 PMCID: PMC8935994 DOI: 10.7717/peerj.13047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/11/2022] [Indexed: 01/11/2023] Open
Abstract
Pasteurella multocida (P. multocida) is a zoonotic bacterium that predominantly colonizes the respiratory tract and lungs of a variety of farmed and wild animals, and causes severe respiratory disease. To investigate the characteristics of the host immune response induced by P. multocida strains of serotype A and D, high-throughput mRNA-Seq and miRNA-Seq were performed to analyze the changes in goat bronchial epithelial cells stimulated by these two serotypes of P. multocida for 4 h. Quantitative RT-PCR was used to validate the randomly selected genes and miRNAs. The results revealed 204 and 117 differentially expressed mRNAs (|log2(Fold-change)| ≥ 1, p-value < 0.05) in the P. multocida serotype A and D stimulated groups, respectively. Meanwhile, the number of differentially expressed miRNAs (|log2(Fold-change)| > 0.1, p-value < 0.05) were 269 and 290, respectively. GO and KEGG enrichment analyses revealed 13 GO terms (p-value < 0.05) and four KEGG pathways (p-value < 0.05) associated with immunity. In the serotype A-stimulated group, the immune-related pathways were the GABAergic synapse and Toll-like receptor signaling pathways, while in the serotype D-stimulated group, the immune-related pathways were the phagosome and B cell receptor signaling pathways. Based on the predicted results of TargetScan and miRanda, the differentially expressed mRNA-miRNA network of immune-related GO terms and KEGG pathways was constructed. According to the cell morphological changes and the significant immune-related KEGG pathways, it was speculated that the P. multocida serotype D strain-stimulated goat bronchial epithelial cells may induce a cellular immune response earlier than serotype A-stimulated cells. Our study provides valuable insight into the host immune response mechanism induced by P. multocida strains of serotype A and D.
Collapse
Affiliation(s)
- Qi An
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Si Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Luyin Zhang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Zhenxing Zhang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Yiwen Cheng
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Haotian Wu
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Ang Liu
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Zhen Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Bin Li
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Jie Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Yiying Zheng
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Churiga Man
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Fengyang Wang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Qiaoling Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Li Du
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| |
Collapse
|
48
|
Mohammadi A, Mashayekhi K, Navashenaq JG, Haftcheshmeh SM. Curcumin as a Natural Modulator of B Lymphocytes: Evidence from In Vitro and In Vivo Studies. Mini Rev Med Chem 2022; 22:2361-2370. [DOI: 10.2174/1389557522666220304122916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/12/2021] [Accepted: 12/22/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
B cells are the only player of humoral immune responses by the production of various types of antibodies. However, B cells are also involved in the pathogenesis of several immune-mediated diseases. Moreover, different types of B cell lymphoma have also been characterized. Selective depletion of B cells by anti-CD20 and other B cell-depleting agents in the clinic can improve a wide range of immune-mediated diseases. B cells' capacity to act as cytokine-producing cells explains how they can control immune cells' activity and contribute to disease pathogenesis. Thus, researchers investigated a safe, low-cost, and effective treatment modality for targeting B cells. In this respect, curcumin, the biologically active ingredient of turmeric, has a wide range of pharmacological activities. Evidence showed that curcumin could affect various immune cells, such as monocytes and macrophages, dendritic cells, and T lymphocytes. However, there are few pieces of evidence about the effects of curcumin on B cells. This study aims to review the available evidence about curcumin's modulatory effects on B cells' proliferation, differentiation, and function in different states. Apart from normal B cells, the modulatory effects of curcumin on B cell lymphoma will also discuss.
Collapse
Affiliation(s)
- Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Kazem Mashayekhi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Saeed Mohammadian Haftcheshmeh
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
49
|
Druggable Molecular Pathways in Chronic Lymphocytic Leukemia. Life (Basel) 2022; 12:life12020283. [PMID: 35207569 PMCID: PMC8875960 DOI: 10.3390/life12020283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 12/02/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL), the most common type of leukemia in adults, is characterized by a high degree of clinical heterogeneity that is influenced by the disease’s molecular complexity. The genes most frequently affected in CLL cluster into specific biological pathways, including B-cell receptor (BCR) signaling, apoptosis, NF-κB, and NOTCH1 signaling. BCR signaling and the apoptosis pathway have been exploited to design targeted medicines for CLL therapy. Consistently, molecules that selectively inhibit specific BCR components, namely Bruton tyrosine kinase (BTK) and phosphoinositide 3-kinase (PI3K) as well as inhibitors of BCL2, have revolutionized the therapeutic management of CLL patients. Several BTK inhibitors and PI3K inhibitors with different modes of action are currently used or are in development in advanced stage clinical trials. Moreover, the restoration of apoptosis by the BCL2 inhibitor venetoclax offers meaningful clinical activity with a fixed-duration scheme. Inhibitors of the BCR and of BCL2 are able to overcome the chemorefractoriness associated with high-risk genetic features, including TP53 disruption. Other signaling cascades involved in CLL pathogenesis, in particular NOTCH signaling and NF-kB signaling, already provide biomarkers for a precision medicine approach to CLL and may represent potential druggable targets for the future. The aim of the present review is to discuss the druggable pathways of CLL and to provide the biological background of the high efficacy of targeted biological drugs in CLL.
Collapse
|
50
|
Vendramini E, Bomben R, Pozzo F, Bittolo T, Tissino E, Gattei V, Zucchetto A. KRAS and RAS-MAPK Pathway Deregulation in Mature B Cell Lymphoproliferative Disorders. Cancers (Basel) 2022; 14:666. [PMID: 35158933 PMCID: PMC8833570 DOI: 10.3390/cancers14030666] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
KRAS mutations account for the most frequent mutations in human cancers, and are generally correlated with disease aggressiveness, poor prognosis, and poor response to therapies. KRAS is required for adult hematopoiesis and plays a key role in B cell development and mature B cell proliferation and survival, proved to be critical for B cell receptor-induced ERK pathway activation. In mature B cell neoplasms, commonly seen in adults, KRAS and RAS-MAPK pathway aberrations occur in a relevant fraction of patients, reaching high recurrence in some specific subtypes like multiple myeloma and hairy cell leukemia. As inhibitors targeting the RAS-MAPK pathway are being developed and improved, it is of outmost importance to precisely identify all subgroups of patients that could potentially benefit from their use. Herein, we review the role of KRAS and RAS-MAPK signaling in malignant hematopoiesis, focusing on mature B cell lymphoproliferative disorders. We discuss KRAS and RAS-MAPK pathway aberrations describing type, incidence, mutual exclusion with other genetic abnormalities, and association with prognosis. We review the current therapeutic strategies applied in mature B cell neoplasms to counteract RAS-MAPK signaling in pre-clinical and clinical studies, including most promising combination therapies. We finally present an overview of genetically engineered mouse models bearing KRAS and RAS-MAPK pathway aberrations in the hematopoietic compartment, which are valuable tools in the understanding of cancer biology and etiology.
Collapse
Affiliation(s)
- Elena Vendramini
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (R.B.); (F.P.); (T.B.); (E.T.); (V.G.); (A.Z.)
| | | | | | | | | | | | | |
Collapse
|