1
|
Wang S, Zheng C, Guo D, Chen W, Xie Q, Zhai Q. Dose-related effects of early-life intake of sn-2 palmitate, a specific positionally distributed human milk fatty acid, on the composition and metabolism of the intestinal microbiota. J Dairy Sci 2023; 106:8272-8286. [PMID: 37678794 DOI: 10.3168/jds.2023-23361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/12/2023] [Indexed: 09/09/2023]
Abstract
sn2 Palmitate in human milk plays an important role in the physiological health of infants by reducing mineral loss, improving stool hardness, and relieving constipation. Also, sn-2 palmitate modulates intestinal microbiota. However, it remains unclear whether the effects of sn-2 palmitate on infant gut microbiota are dose-dependent. In this study, we investigated the effects of low, medium, and high doses (600, 1,800, and 5,400 mg/kg body weight, respectively) of sn-2 palmitate on the structure, composition, and metabolic function of intestinal microbes in mice. Our results showed that high doses of sn-2 palmitate significantly modulated α- and β-diversity of the intestinal microbiota. The relative abundance of Lachnospiraceae_NK4A136_group decreased with increasing doses of sn-2 palmitate. In contrast, the abundances of Bacteroidetes phylum, Bacteroides, uncultured_Lachnospiraceae, and uncultured_Muribaculaceae were positively correlated with sn-2 palmitate doses. The number of genes predicted encoding autophagy-yeast, phospholipase D signaling pathway, and pentose and glucuronate interconversion metabolic functions of intestinal microbiota increased with increasing doses of sn-2 palmitate. In addition, low and medium doses of sn-2 palmitate significantly upregulated the arginine and proline metabolic pathways, and high doses of sn-2 palmitate significantly increased purine metabolism. Our results revealed that the effects of sn-2 palmitate intake early in life on the composition and metabolism of the intestinal microbiota of mice showed dose-related differences. The study is expected to provide a scientific basis for the development of infant formulas.
Collapse
Affiliation(s)
- S Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - C Zheng
- Heilongjiang Feihe Dairy Co. Ltd., Chaoyang, Beijing 100015, China; PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Haidian, Beijing 100083, China
| | - D Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - W Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Q Xie
- Heilongjiang Feihe Dairy Co. Ltd., Chaoyang, Beijing 100015, China; PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Haidian, Beijing 100083, China.
| | - Q Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Ahmed RO, Ali A, Leeds T, Salem M. Fecal Microbiome Analysis Distinguishes Bacterial Taxa Biomarkers Associated with Red Fillet Color in Rainbow Trout. Microorganisms 2023; 11:2704. [PMID: 38004716 PMCID: PMC10673235 DOI: 10.3390/microorganisms11112704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
The characteristic reddish-pink fillet color of rainbow trout is an important marketing trait. The gastrointestinal microbiome is vital for host health, immunity, and nutrient balance. Host genetics play a crucial role in determining the gut microbiome, and the host-microbiome interaction impacts the host's phenotypic expression. We hypothesized that fecal microbiota could be used to predict fillet color in rainbow trout. Fish were fed Astaxanthin-supplemented feed for six months, after which 16s rDNA sequencing was used to investigate the fecal microbiome composition in rainbow trout families with reddish-pink fillet coloration (red fillet group, average saturation index = 26.50 ± 2.86) compared to families with pale white fillet color (white fillet group, average saturation index = 21.21 ± 3.53). The linear discriminant analysis effect size (LEFse) tool was used to identify bacterial biomarkers associated with fillet color. The alpha diversity measure shows no difference in the red and white fillet groups. Beta diversity principal component analysis showed clustering of the samples along the white versus red fillet group. The red fillet group has enrichment (LDA score > 1.5) of taxa Leuconostoc lactis, Corynebacterium variabile, Jeotgalicoccus halotolerans, and Leucobacter chromiireducens. In contrast, the white fillet group has an enriched presence of mycoplasma, Lachnoclostridium, and Oceanobacillus indicireducens. The enriched bacterial taxa in the red fillet group have probiotic functions and can generate carotenoid pigments. Bacteria taxa enriched in the white fillet group are either commensal, parasitic, or capable of reducing indigo dye. The study identified specific bacterial biomarkers differentially abundant in fish families of divergent fillet color that could be used in genetic selection to improve feed carotenoid retention and reddish-pink fillet color. This work extends our understanding of carotenoid metabolism in rainbow trout through the interaction between gut microbiota and fillet color.
Collapse
Affiliation(s)
- Ridwan O. Ahmed
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (R.O.A.); (A.A.)
| | - Ali Ali
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (R.O.A.); (A.A.)
| | - Tim Leeds
- United States Department of Agriculture Kearneysville, National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, Kearneysville, WV 25430, USA;
| | - Mohamed Salem
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (R.O.A.); (A.A.)
| |
Collapse
|
3
|
Lin Z, Ali MM, Yi X, Zhang L, Wang S. Fast and High-Efficiency Synthesis of Capsanthin in Pepper by Transient Expression of Geminivirus. Int J Mol Sci 2023; 24:15008. [PMID: 37834456 PMCID: PMC10573693 DOI: 10.3390/ijms241915008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023] Open
Abstract
The color of the chili fruit is an important factor that determines the quality of the chili, as red chilies are more popular among consumers. The accumulation of capsanthin is the main cause of reddening of the chili fruit. Capsanthin is an important metabolite in carotenoid metabolism, and its production level is closely linked to the expression of the genes for capsanthin/capsorubin synthase (CCS) and carotenoid hydroxylase (CrtZ). We reported for the first time that the synthesis of capsanthin in chili was enhanced by using a geminivirus (Bean Yellow Dwarf Virus). By expressing heterologous β-carotenoid hydroxylase (CrtZ) and β-carotenoid ketolase (CrtW) using codon optimization, the transcription level of the CCS gene and endogenous CrtZ was directly increased. This leads to the accumulation of a huge amount of capsanthin in a very short period of time. Our results provide a platform for the rapid enhancement of endogenous CCS activity and capsanthin production using geminivirus in plants.
Collapse
Affiliation(s)
- Zhimin Lin
- Fujian Academy of Agricultural Sciences Biotechnology Institute, Fuzhou 350003, China
| | - Muhammad Moaaz Ali
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China (X.Y.); (L.Z.); (S.W.)
| | - Xiaoyan Yi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China (X.Y.); (L.Z.); (S.W.)
| | - Lijuan Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China (X.Y.); (L.Z.); (S.W.)
| | - Shaojuan Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China (X.Y.); (L.Z.); (S.W.)
| |
Collapse
|
4
|
Naz T, Ullah S, Nazir Y, Li S, Iqbal B, Liu Q, Mohamed H, Song Y. Industrially Important Fungal Carotenoids: Advancements in Biotechnological Production and Extraction. J Fungi (Basel) 2023; 9:jof9050578. [PMID: 37233289 DOI: 10.3390/jof9050578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Carotenoids are lipid-soluble compounds that are present in nature, including plants and microorganisms such as fungi, certain bacteria, and algae. In fungi, they are widely present in almost all taxonomic classifications. Fungal carotenoids have gained special attention due to their biochemistry and the genetics of their synthetic pathway. The antioxidant potential of carotenoids may help fungi survive longer in their natural environment. Carotenoids may be produced in greater quantities using biotechnological methods than by chemical synthesis or plant extraction. The initial focus of this review is on industrially important carotenoids in the most advanced fungal and yeast strains, with a brief description of their taxonomic classification. Biotechnology has long been regarded as the most suitable alternative way of producing natural pigment from microbes due to their immense capacity to accumulate these pigments. So, this review mainly presents the recent progress in the genetic modification of native and non-native producers to modify the carotenoid biosynthetic pathway for enhanced carotenoid production, as well as factors affecting carotenoid biosynthesis in fungal strains and yeast, and proposes various extraction methods to obtain high yields of carotenoids in an attempt to find suitable greener extraction methods. Finally, a brief description of the challenges regarding the commercialization of these fungal carotenoids and the solution is also given.
Collapse
Affiliation(s)
- Tahira Naz
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Samee Ullah
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
- Faculty of Allied Health Sciences, University Institute of Food Science and Technology, The University of Lahore, Lahore 54000, Pakistan
| | - Yusuf Nazir
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Shaoqi Li
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Bushra Iqbal
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Qing Liu
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Hassan Mohamed
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
5
|
Lin D, Medeiros DM. The microbiome as a major function of the gastrointestinal tract and its implication in micronutrient metabolism and chronic diseases. Nutr Res 2023; 112:30-45. [PMID: 36965327 DOI: 10.1016/j.nutres.2023.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
The composition and function of microbes harbored in the human gastrointestinal lumen have been underestimated for centuries because of the underdevelopment of nucleotide sequencing techniques and the lack of humanized gnotobiotic models. Now, we appreciate that the gut microbiome is an integral part of the human body and exerts considerable roles in host health and diseases. Dietary factors can induce changes in the microbial community composition, metabolism, and function, thereby altering the host immune response, and consequently, may influence disease risks. An imbalance of gut microbiome homeostasis (i.e., dysbiosis) has been linked to several chronic diseases, such as inflammatory bowel diseases, obesity, and diabetes. Remarkable progress has recently been made in better understanding the extent to which the influence of the diet-microbiota interaction on host health outcomes in both animal models and human participants. However, the exact causality of the gut microbiome on the development of diseases is still controversial. In this review, we will briefly describe the general structure and function of the intestine and the process of nutrient absorption in humans. This is followed by a summarization of the recent updates on interactions between gut microbiota and individual micronutrients, including carotenoids, vitamin A, vitamin D, vitamin C, folate, iron, and zinc. In the opinion of the authors, these nutrients were identified as representative of vitamins and minerals with sufficient research on their roles in the microbiome. The host responses to the gut microbiome will also be discussed. Future direction in microbiome research, for example, precision microbiome, will be proposed.
Collapse
Affiliation(s)
- Dingbo Lin
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078.
| | - Denis M Medeiros
- Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City, Kansas City, MO 64108
| |
Collapse
|
6
|
Liu C, Han M, Lv F, Gao Y, Wang X, Zhang X, Guo Y, Cheng Y, Qian H. Study on the Cellular Anti-Inflammatory Effect of Torularhodin Produced by Sporidiobolus pararoseus ZQHL Isolated from Vinegar Fungus. Molecules 2023; 28:molecules28031436. [PMID: 36771110 PMCID: PMC9920945 DOI: 10.3390/molecules28031436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The red stretcher bacterium Sporidiobolus pararoseus is a high producer of carotenoids such as torularhodin, but its presence in vinegar has not been detected. Moreover, torularhodin has several biological activities, but its effect on the LPS-induced RAW 264.7 inflammatory cell model has also yet to be elucidated. In this study, S. pararoseus was identified in different vinegar samples from China by ITS sequencing. Meanwhile, one of the strains was deeply resolved by whole genome sequencing and functional annotation and named S. pararoseus ZQHL. Subsequently, the antioxidant effect of the fungal carotenoid torularhodin was investigated using in vitro DPPH, ABTS, and cellular models. Finally, LPS-induced RAW 264.7 cells were used as an inflammation model to assess torularhodin's protective effect on inflammatory cells and to determine whether the TLR4 pathway is associated with this process. The results indicate that torularhodin has good free radical scavenging ability in vitro and can contribute to cell viability. More importantly, torularhodin alleviated LPS-induced cellular inflammatory damage and reduced the expression of inflammatory factors such as TLR4, MyD88, and TNF-a. The mechanism may attenuate the cellular inflammatory response by inhibiting the TLR4 inflammatory pathway. In conclusion, torularhodin produced by S. pararoseus fungi in vinegar samples significantly scavenged free radicals in vitro and alleviated RAW 264.7 cellular inflammation by modulating the TLR4 pathway.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Mei Han
- Department of Food Science, Shanghai Business School, Shanghai 200235, China
| | - Fuqiang Lv
- Jiangsu Hengshun Vinegar-Industry Co., Ltd., No. 66 Hengshun Road, Zhenjiang 212143, China
| | - Yaobin Gao
- Shanxi Mature Vinegar Group Co., Ltd., No. 26 Madaopo, Xinghua District, Taiyuan 030013, China
| | - Xiaoyun Wang
- Shanxi Mature Vinegar Group Co., Ltd., No. 26 Madaopo, Xinghua District, Taiyuan 030013, China
| | - Xujiao Zhang
- Shanxi Zilin Vinegar Industry Co., Ltd., No. 550 Gaohua Duan, Taimao Road, Taiyuan 030100, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Correspondence: (Y.C.); (H.Q.)
| | - He Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Correspondence: (Y.C.); (H.Q.)
| |
Collapse
|
7
|
Natural Substrates and Culture Conditions to Produce Pigments from Potential Microbes in Submerged Fermentation. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pigments from bacteria, fungi, yeast, cyanobacteria, and microalgae have been gaining more demand in the food, leather, and textile industries due to their natural origin and effective bioactive functions. Mass production of microbial pigments using inexpensive and ecofriendly agro-industrial residues is gaining more demand in the current research due to their low cost, natural origin, waste utilization, and high pigment stimulating characteristics. A wide range of natural substrates has been employed in submerged fermentation as carbon and nitrogen sources to enhance the pigment production from these microorganisms to obtain the required quantity of pigments. Submerged fermentation is proven to yield more pigment when added with agro-waste residues. Hence, in this review, aspects of potential pigmented microbes such as diversity, natural substrates that stimulate more pigment production from bacteria, fungi, yeast, and a few microalgae under submerged culture conditions, pigment identification, and ecological functions are detailed for the benefit of industrial personnel, researchers, and other entrepreneurs to explore pigmented microbes for multifaceted applications. In addition, some important aspects of microbial pigments are covered herein to disseminate the knowledge.
Collapse
|
8
|
Carotenoids and Their Biosynthesis in Fungi. Molecules 2022; 27:molecules27041431. [PMID: 35209220 PMCID: PMC8879039 DOI: 10.3390/molecules27041431] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 12/04/2022] Open
Abstract
Carotenoids represent a class of pigmented terpenoids. They are distributed in all taxonomic groups of fungi. Most of the fungal carotenoids differ in their chemical structures to those from other organisms. The general function of carotenoids in heterotrophic organisms is protection as antioxidants against reactive oxygen species generated by photosensitized reactions. Furthermore, carotenoids are metabolized to apocarotenoids by oxidative cleavage. This review presents the current knowledge on fungal-specific carotenoids, their occurrence in different taxonomic groups, and their biosynthesis and conversion into trisporic acids. The outline of the different pathways was focused on the reactions and genes involved in not only the known pathways, but also suggested the possible mechanisms of reactions, which may occur in several non-characterized pathways in different fungi. Finally, efforts and strategies for genetic engineering to enhance or establish pathways for the production of various carotenoids in carotenogenic or non-carotenogenic yeasts were highlighted, addressing the most-advanced producers of each engineered yeast, which offered the highest biotechnological potentials as production systems.
Collapse
|