1
|
Moawd SA, Nasr Abdelhalim EH, Abdelaziz M, Farghaly A, Ibrahim AM. Relationship between Cardio-respiratory Capacity and Academic Performance among Medical Female Ex-Students: Body Mass Index Effect. SALUD, CIENCIA Y TECNOLOGÍA 2025; 5:1110. [DOI: 10.56294/saludcyt20251110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Introduction: This study examined the effects of Body Mass Index (BMI) on Cardiorespiratory Capacity (CRC) and explored the relationship between CRC and Academic Performance (AP) among female medical ex-students at Prince Sattam bin Abdul Aziz University (PSAU). Understanding these associations could highlight the role of physical fitness in academic success.Methods: A sample of 150 female ex-students, aged 23.3±0.6 years, was categorized into normal weight (BMI 18.5–24.9 kg/m²) and overweight (BMI 25–29.9 kg/m²) groups. BMI was calculated to determine weight status, CRC was assessed using the 20-m shuttle run test (VO2max), and AP was evaluated through academic grades (AG) and academic abilities (AA) using the Spanish Test of Educational Abilities. Statistical analyses included independent t-tests and Pearson’s correlation.Results: Normal-weight participants demonstrated significantly higher CRC (VO2max = 55.3 ±4.9 mL.kg⁻¹.min⁻¹) than overweight participants (50.8 ±4.2 mL.kg⁻¹.min⁻¹, p=0.03). Additionally, normal-weight participants scored higher in both AA (58.82 ±9.7 vs. 59.64 ±10.04, p=0.04) and AG (3.4 ±0.6 vs. 3.7 ±0.5, p=0.032). BMI negatively correlated with CRC (r = -0.20, p=0.024), while CRC positively correlated with AA (r = 0.18, p=0.015) and AG (r = 0.24, p=0.043).Conclusions: Higher CRC was associated with better academic performance, while increased BMI correlated with lower CRC. The findings suggest that promoting physical fitness may be beneficial for academic success among female medical students at PSAU.
Collapse
|
2
|
Song W, Chen X, Wu H, Rahimian N. Circular RNAs as a novel class of potential therapeutic and diagnostic biomarkers in reproductive biology/diseases. Eur J Med Res 2024; 29:643. [PMID: 39741306 DOI: 10.1186/s40001-024-02230-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
Infertility is a prevalent problem among 10% of people within their reproductive years. Sometimes, even advanced treatment options like assisted reproduction technology have the potential to result in failed implantation. Because of the expected changes in gene expression during both in vitro and in vivo fertilization processes, these methods of assisting fertility have also been associated with undesirable pregnancy outcomes related to infertility. In this aspect, Circular RNAs (circRNAs) play a crucial role as epigenetic modifiers in a wide range of biological and pathological activities, including problems with fertility. CircRNAs are integral pieces in multiple cellular functions, including moving substances within the nucleus, silencing one X chromosome, cell death, the ability of stem cells to differentiate into different cell types, and the process of gene expression inherited from parental genes. Due to the progress made in high-speed gene sequencing, a large amount of circRNA molecules have been detected, revealing their significant functions in diverse biological functions like enhancing testicular development, preserving the differentiation and renewal of spermatogonial cells, and controlling spermatocyte meiosis. Moreover, these non-coding RNAs contribute in different aspects of female reproductive system including pregnancy-related diseases, gynecologic cancers, and endometriosis. In conclusion, there is no denying that circRNAs have immense potential to be used as biomarkers and treatments for reproductive disorders in males and females. In this research, we provide a comprehensive analysis of the multiple circRNAs associated with women's infertility.
Collapse
Affiliation(s)
- Wanyu Song
- Department of Obstetrics, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
- People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Xiuli Chen
- Department of Obstetrics, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
- People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Haiying Wu
- Department of Obstetrics, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China.
- People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China.
| | - Neda Rahimian
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Taib IS, Jayusman PA. The Role of Bone-Derived Osteocalcin in Testicular Steroidogenesis: Contributing Factor to Male Fertility. Diseases 2024; 12:335. [PMID: 39727665 DOI: 10.3390/diseases12120335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Osteocalcin (OCN), a protein predominantly produced by osteoblasts in bone, has emerged as a significant factor in bone metabolism and reproductive function. This article reviews the latest research on the role of OCN beyond its traditional functions in bone mineralisation, particularly its influence on testicular steroidogenesis and male fertility. The structure and modifications of OCN are elaborated upon, highlighting its uncarboxylated form (ucOCN), which is becoming increasingly recognised for its bioactive properties. The impact of OCN on bone quantity, quality and strength is summarised, emphasising its role as a regulator of bone metabolism. Furthermore, the influence of ucOCN on testicular steroidogenesis and the involvement of GPRC6A, a G protein-coupled receptor, in mediating these effects are also explored. Evidence suggests that ucOCN regulates testosterone synthesis and spermatogenesis, which indirectly have the potential to influence bone metabolism integrity. In conclusion, OCN, particularly in its uncarboxylated form, plays a crucial role in bone metabolism and male fertility by regulating testicular steroidogenesis, with GPRC6A mediating these effects, thereby linking bone health and reproductive functions.
Collapse
Affiliation(s)
- Izatus Shima Taib
- Centre of Diagnostics, Therapeutics and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Putri Ayu Jayusman
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
4
|
Tricotteaux-Zarqaoui S, Lahimer M, Abou Diwan M, Corona A, Candela P, Cabry R, Bach V, Khorsi-Cauet H, Benkhalifa M. Endocrine disruptor chemicals exposure and female fertility declining: from pathophysiology to epigenetic risks. Front Public Health 2024; 12:1466967. [PMID: 39735741 PMCID: PMC11672798 DOI: 10.3389/fpubh.2024.1466967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/19/2024] [Indexed: 12/31/2024] Open
Abstract
Over the last decades, human infertility has become a major concern in public health, with severe societal and health consequences. Growing evidence shows that endocrine disruptors chemicals (EDCs) have been considered as risk factors of infertility. Their presence in our everyday life has become ubiquitous because of their universal use in food and beverage containers, personal care products, cosmetics, phytosanitary products. Exposure to these products has an impact on human reproductive health. Recent studies suggest that women are more exposed to EDCs than men due to higher chemical products use. The aim of this review is to understand the possible link between reproductive disorders and EDCs such as phthalates, bisphenol, dioxins, and pesticides. In women, the loss of endocrine balance leads to altered oocyte maturation, competency, anovulation and uterine disorders, endometriosis, premature ovarian insufficiency (POI) or embryonic defect and decreases the in vitro fertilization outcomes. In this review, we consider EDCs effects on the women's reproductive system, embryogenesis, with a focus on associated reproductive pathologies.
Collapse
Affiliation(s)
- Sophian Tricotteaux-Zarqaoui
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, Amiens, France
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Amiens, France
| | - Marwa Lahimer
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, Amiens, France
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Amiens, France
| | - Maria Abou Diwan
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, Amiens, France
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, University of Artois, Lens, France
| | - Aurélie Corona
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, Amiens, France
| | - Pietra Candela
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, University of Artois, Lens, France
| | - Rosalie Cabry
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, Amiens, France
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Amiens, France
| | - Véronique Bach
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, Amiens, France
| | - Hafida Khorsi-Cauet
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, Amiens, France
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Amiens, France
| | - Moncef Benkhalifa
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, Amiens, France
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Amiens, France
| |
Collapse
|
5
|
Han Y, Lin X. The relationship between psychological stress and ovulatory disorders and its molecular mechanisms: a narrative review. J Psychosom Obstet Gynaecol 2024; 45:2418110. [PMID: 39436713 DOI: 10.1080/0167482x.2024.2418110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/05/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
This narrative review explores the relationship between psychological stress and ovulatory disorders, focusing on the molecular mechanisms involved. Ovulation is regulated by the hypothalamus-pituitary-ovarian (HPO) axis, and disruptions in this axis can lead to ovulatory dysfunction. Chronic psychological stress affects the HPO axis, resulting in abnormalities in hypothalamus hormone secretion, pituitary hormone release, and ovarian function. These disruptions cause ovulation disorders and menstrual irregularities. The mechanisms by which psychological stress affects ovulation involve alterations in neuropeptides and hormones, activation of the hypothalamic-pituitary-adrenal (HPA) axis, impairment of follicular development, generation of oxidative stress, and the decline in ovarian reserve function. Understanding these mechanisms is crucial for developing interventions to restore reproductive health. Psychological interventions, such as cognitive-behavioral therapy, have shown promise in improving ovulation and pregnancy rates in women with ovulatory disorders. Further research is needed to explore the specific mechanisms of these interventions and optimize treatment strategies. Addressing psychological factors is essential in managing reproductive health and ovulatory disorders.
Collapse
Affiliation(s)
- Yichen Han
- Assisted Reproduction Unit, Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Xiaona Lin
- Assisted Reproduction Unit, Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, Hangzhou, China
| |
Collapse
|
6
|
Skowrońska M, Pawłowski M, Buczyńska A, Wiatr A, Dyszkiewicz A, Wenta A, Gryko K, Zbucka-Krętowska M, Milewski R. The Relationship Between Body Composition Parameters and the Intake of Selected Nutrients, and Serum Anti-Müllerian Hormone (AMH) Levels in the Context of Ovulatory Infertility. Nutrients 2024; 16:4149. [PMID: 39683543 DOI: 10.3390/nu16234149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objective: The aim of this study was to outline the relationships between selected parameters connected with lifestyle and serum anti-Müllerian hormone (AMH) levels, i.e., a marker of ovarian reserve. By examining AMH levels in connection with nutrient intake and body composition parameters, this study aimed to provide a preliminary background for further studies focused on establishing dietary and lifestyle recommendations that could lead to improvements in fertility outcomes. Methods: The research involved 28 women, aged 26 to 42-both with and without ovulatory infertility-who were patients of the Reproductive Health Clinic at the Medical University of Białystok. The participants underwent a number of tests consisting of hormonal profiling, including AMH measurements, body composition analyses, and dietary assessments based on a 3-day food diary. Results: The findings of the study indicate that certain lifestyle factors are associated with changes in AMH levels. Most importantly, the multivariate linear regression model designed in the study shows that age, waist-to-hip ratio (WHR), as well as the intake of sucrose, iodine, and erucic acid explain variations in serum AMH levels. These results support the hypothesis that modifiable lifestyle factors can influence AMH levels, and thus ovarian reserve. Conclusions: The study underscores the potential for targeted lifestyle interventions to support fertility and calls for further research in the form of prospective studies performed in larger groups of patients to substantiate these associations and inform fertility care strategies. Based on the preliminary results of this study, certain dietary ideas that could positively influence fertility have been proposed, focused on the normalization of body weight and the reduction in excess fat tissue.
Collapse
Affiliation(s)
| | - Michał Pawłowski
- Department of Biostatistics and Medical Informatics, Medical University of Bialystok, 15-295 Bialystok, Poland
| | - Angelika Buczyńska
- Clinical Research Center, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Aleksandra Wiatr
- Clinical Research Center, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Aleksandra Dyszkiewicz
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Aleksandra Wenta
- Department of Gynecological Endocrinology and Adolescent Gynecology, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Kamila Gryko
- Department of Gynecological Endocrinology and Adolescent Gynecology, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Monika Zbucka-Krętowska
- Department of Gynecological Endocrinology and Adolescent Gynecology, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Robert Milewski
- Department of Biostatistics and Medical Informatics, Medical University of Bialystok, 15-295 Bialystok, Poland
| |
Collapse
|
7
|
Wuri L, Burghardt RC, Arosh JA, Long CR, Banu SK. Hexavalent Chromium Disrupts Oocyte Development in Rats by Elevating Oxidative Stress, DNA Double-Strand Breaks, Microtubule Disruption, and Aberrant Segregation of Chromosomes. Int J Mol Sci 2023; 24:10003. [PMID: 37373153 DOI: 10.3390/ijms241210003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Environmental and occupational exposure to hexavalent chromium, Cr(VI), causes female reproductive failures and infertility. Cr(VI) is used in more than 50 industries and is a group A carcinogen, mutagenic and teratogenic, and a male and female reproductive toxicant. Our previous findings indicate that Cr(VI) causes follicular atresia, trophoblast cell apoptosis, and mitochondrial dysfunction in metaphase II (MII) oocytes. However, the integrated molecular mechanism of Cr(VI)-induced oocyte defects is not understood. The current study investigates the mechanism of Cr(VI) in causing meiotic disruption of MII oocytes, leading to oocyte incompetence in superovulated rats. Postnatal day (PND) 22 rats were treated with potassium dichromate (1 and 5 ppm) in drinking water from PND 22-29 and superovulated. MII oocytes were analyzed by immunofluorescence, and images were captured by confocal microscopy and quantified by Image-Pro Plus software, Version 10.0.5. Our data showed that Cr(VI) increased microtubule misalignment (~9 fold), led to missegregation of chromosomes and bulged and folded actin caps, increased oxidative DNA (~3 fold) and protein (~9-12 fold) damage, and increased DNA double-strand breaks (~5-10 fold) and DNA repair protein RAD51 (~3-6 fold). Cr(VI) also induced incomplete cytokinesis and delayed polar body extrusion. Our study indicates that exposure to environmentally relevant doses of Cr(VI) caused severe DNA damage, distorted oocyte cytoskeletal proteins, and caused oxidative DNA and protein damage, resulting in developmental arrest in MII oocytes.
Collapse
Affiliation(s)
- Liga Wuri
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Joe A Arosh
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Charles R Long
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Sakhila K Banu
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
8
|
Meng K, Lin X, Liu H, Chen H, Liu F, Xu Z, Sun Y, Luo D. Gonadal bacterial community composition is associated with sex-specific differences in swamp eels (Monopterus albus). Front Immunol 2022; 13:938326. [PMID: 36091072 PMCID: PMC9449807 DOI: 10.3389/fimmu.2022.938326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Organisms are colonized by microorganism communities and play a pivotal role in host function by influencing physiology and development. In mammals, bacterial community may alter gonadal maturation and drive sex-specific differences in gene expression and metabolism. However, bacterial microbiota diversity in the gonads of early vertebrates has not been fully elucidated. Here, we focused on the swamp eel (Monopterus albus), which naturally undergoes sex reversal, and systematically analyzed the bacterial microbiota profiles between females and males using 16S rRNA gene sequences. Specifically, the microbial abundance and community diversity of gonads in males were higher than in females. Although Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria were characterized as the dominating phyla in ovary and testis, the relative abundance of Firmicutes was significantly higher in males than females. Detailed analysis of the microbial community revealed that Bacilli were the dominant bacteria in ovaries and Clostridium in testes of M. albus. More importantly, we proposed that differences in the microbial composition and distribution between ovaries and testes may be linked to functional categories in M. albus, especially metabolism. These findings represent a unique resource of bacterial community in gonads to facilitate future research about the mechanism of how microbiota influence sex-specific differences and sex reversal in vertebrates.
Collapse
Affiliation(s)
- Kaifeng Meng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xing Lin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hairong Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Huijie Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Fei Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Daji Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Daji Luo,
| |
Collapse
|
9
|
Zuo QQ, Yu ZF, Liu MR, Du HL. Clinical efficacy of Wenjing decoction in the treatment of ovulatory disorder infertility: A systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e29640. [PMID: 35838989 PMCID: PMC11132400 DOI: 10.1097/md.0000000000029640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES Wenjing decoction (WJD) was widely used in the treatment for ovulatory disorder infertility (ODI) in China, while its efficacy was not clearly known. In this study, we evaluated the clinical efficacy of WJD by meta-analysis. METHODS Eight electronic databases including Cochrane Library, PubMed, Embase, Web of Science, China National Knowledge Infrastructure, WanFang Data, VIP Database, and China Biology Medicine were searched for randomized controlled trials (RCTs) published from the inception of each database to July 1, 2021, of which the interventions involve WJD and clomiphene. Outcomes included clinical efficacy rate, pregnancy rate, ovulation rate, dominant follicle diameter, endometrial thickness, estradiol, follicle-stimulating hormone, and luteinizing hormone. Meta-analysis and risk of bias were performed by RevMan 5.3 software. RESULTS Eleven RCTs including 915 patients, of which 476 in the intervention group and 439 in the control group. Meta-analysis showed that WJD was better than clomiphene for patients with ODI in terms of clinical effective rate (odds ratio [OR] = 1.22, 95% confidence interval [CI]: 1.08-1.34), pregnancy rate (OR = 1.54, 95% CI: 1.15-2.07), ovulation rate (OR = 1.34, 95% CI: 1.07-1.67), endometrial thickness (mean difference [MD] = 1.50, 95% CI: 0.90-2.10), and dominant follicle diameter (MD = 1.85, 95% CI: 0.68-3.02). The estradiol level (MD = 91.0, 95% CI: 80.3-101.88) in patients taking WJD was significantly higher than those taking clomiphene, while the follicle-stimulating hormone level (MD = -0.93, 95% CI: -1.13 to -0.72) and the luteinizing hormone level (MD = -4.41, 95% CI: -4.80 to -4.03) in patients taking WJD was significantly lower than those taking clomiphene. Our results also indicated that WJD combined with clomiphene was better than clomiphene alone for patients with ODI in terms of pregnancy rate (OR = 1.79, 95% CI: 1.37-2.35). CONCLUSIONS WJD may be effective in the treatment of patients with ODI. Due to the quality and quantity of literature, RCT with large sample size and high quality need to be performed to verify our conclusion.
Collapse
Affiliation(s)
- Qian-qian Zuo
- Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhi-fang Yu
- Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Meng-rui Liu
- Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Hui-lan Du
- Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
10
|
Gallo A. Reprotoxic Impact of Environment, Diet, and Behavior. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1303. [PMID: 35162326 PMCID: PMC8834893 DOI: 10.3390/ijerph19031303] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 02/01/2023]
Abstract
Reproductive health is progressively declining due to multiples endogenous and exogenous factors, such as environmental contaminants, diet and behavior. Accumulated evidences confirm that fertility and reproductive function have been adversely affected by exposure to chemical contaminants released in the environment. Today, the impact of diet and behavior on reproductive processes is also receiving special attention from the scientific community. Indeed, a close relationship between diet and fertility has been proven. Furthermore, a combination of unhealthy behavior, such as exposure to hazardous compounds and stress factors, poses living organisms at higher risk of reprotoxic effects. In particular, it has been described that poor life behaviors are associated with reduced male and female fertility due to decreased gamete quality and function. Most of the erroneous behaviors are, furthermore, a source of oxidative stress that, leading to epigenetic alterations, results in an impaired reproductive fitness. This review reports the detrimental impact of the most common environmental chemical stressors, diet, and behavior on reproductive functionality and success. Although clear evidences are still scarce, reassuring data are provided that a healthy diet and reverting unhealthy lifestyles may be of help to recover physiological reproductive conditions.
Collapse
Affiliation(s)
- Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
11
|
Moreira-Pinto B, Costa L, Felgueira E, Fonseca BM, Rebelo I. Low Doses of Resveratrol Protect Human Granulosa Cells from Induced-Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10040561. [PMID: 33916585 PMCID: PMC8065718 DOI: 10.3390/antiox10040561] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 12/21/2022] Open
Abstract
Resveratrol is a phytoalexin present in plant-derived foods, including grape’s skin, cocoa, and peanuts. Evidence suggests that it has beneficial effects on human health because of its antioxidant properties. However, there is limited knowledge about the part played by resveratrol in ovarian function. In this paper, the influence of resveratrol on granulosa cells (GC) was evaluated. In addition to being the main estradiol producers, GC are in direct contact with the oocyte, playing a fundamental role in its growth and development. The cell line COV434 and human granulosa cells (hGC), obtained from women undergoing assisted reproductive technology (ART), were used. GC were treated with resveratrol (0.001–20 μM) at different times (24–72 h). Low concentrations of this compound suggest a protective role, as they tend to reduce ROS/RNS formation after inducement of stress. On the contrary, high concentrations of resveratrol affect GC viability and steroidogenic function. As it may act as a direct modulator of GC oxidative balance, this work may help to clarify the impact of resveratrol on GC and the usefulness of this antioxidant as adjunct to infertility treatments.
Collapse
Affiliation(s)
- Beatriz Moreira-Pinto
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal; (B.M.-P.); (I.R.)
| | - Lia Costa
- Unidade de Medicina da Reprodução Dra, Ingeborg Chaves-Centro Hospitalar de Vila Nova de Gaia/Espinho, R. Dr. Francisco Sá Carneiro, 4400-129 Vila Nova de Gaia, Portugal; (L.C.); (E.F.)
| | - Eduarda Felgueira
- Unidade de Medicina da Reprodução Dra, Ingeborg Chaves-Centro Hospitalar de Vila Nova de Gaia/Espinho, R. Dr. Francisco Sá Carneiro, 4400-129 Vila Nova de Gaia, Portugal; (L.C.); (E.F.)
| | - Bruno M. Fonseca
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal; (B.M.-P.); (I.R.)
- Correspondence: ; Tel.: +351-220428557
| | - Irene Rebelo
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal; (B.M.-P.); (I.R.)
| |
Collapse
|