1
|
Cadet J, Angelov D, Di Mascio P, Wagner JR. Contribution of oxidation reactions to photo-induced damage to cellular DNA. Photochem Photobiol 2024; 100:1157-1185. [PMID: 38970297 DOI: 10.1111/php.13990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/08/2024]
Abstract
This review article is aimed at providing updated information on the contribution of immediate and delayed oxidative reactions to the photo-induced damage to cellular DNA/skin under exposure to UVB/UVA radiations and visible light. Low-intensity UVC and UVB radiations that operate predominantly through direct excitation of the nucleobases are very poor oxidizing agents giving rise to very low amounts of 8-oxo-7,8-dihydroguanine and DNA strand breaks with respect to the overwhelming bipyrimidine dimeric photoproducts. The importance of these two classes of oxidatively generated damage to DNA significantly increases together with a smaller contribution of oxidized pyrimidine bases upon UVA irradiation. This is rationalized in terms of sensitized photooxidation reactions predominantly mediated by singlet oxygen together with a small contribution of hydroxyl radical that appear to also be implicated in the photodynamic effects of the blue light component of visible light. Chemiexcitation-mediated formation of "dark" cyclobutane pyrimidine dimers in UVA-irradiated melanocytes is a recent major discovery that implicates in the initial stage, a delayed generation of reactive oxygen and nitrogen species giving rise to triplet excited carbonyl intermediate and possibly singlet oxygen. High-intensity UVC nanosecond laser radiation constitutes a suitable source of light to generate pyrimidine and purine radical cations in cellular DNA via efficient biphotonic ionization.
Collapse
Affiliation(s)
- Jean Cadet
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Dimitar Angelov
- Laboratoire de Biologie et de Modélisation de la Cellule LMBC, Ecole Normale Supérieure de Lyon, CNRS, Université de Lyon, Lyon, France
- Izmir Biomedicine and Genome Center IBG, Dokuz Eylul University, Balçova, Izmir, Turkey
| | - Paolo Di Mascio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - J Richard Wagner
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
2
|
Robert G, Wagner JR, Cadet J. Oxidatively generated tandem DNA modifications by pyrimidinyl and 2-deoxyribosyl peroxyl radicals. Free Radic Biol Med 2023; 196:22-36. [PMID: 36603668 DOI: 10.1016/j.freeradbiomed.2022.12.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Molecular oxygen sensitizes DNA to damage induced by ionizing radiation, Fenton-like reactions, and other free radical-mediated reactions. It rapidly converts carbon-centered radicals within DNA into peroxyl radicals, giving rise to a plethora of oxidized products consisting of nucleobase and 2-deoxyribose modifications, strand breaks and abasic sites. The mechanism of formation of single oxidation products has been extensively studied and reviewed. However, much evidence shows that reactive peroxyl radicals can propagate damage to vicinal components in DNA strands. These intramolecular reactions lead to the dual alteration of two adjacent nucleotides, designated as tandem or double lesions. Herein, current knowledge about the formation and biological implications of oxidatively generated DNA tandem lesions is reviewed. Thus far, most reported tandem lesions have been shown to arise from peroxyl radicals initially generated at pyrimidine bases, notably thymine, followed by reaction with 5'-flanking bases, especially guanine, although contiguous thymine lesions have also been characterized. Proper biomolecular processing is impaired by several tandem lesions making them refractory to base excision repair and potentially more mutagenic.
Collapse
Affiliation(s)
- Gabriel Robert
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - J Richard Wagner
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada.
| | - Jean Cadet
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada.
| |
Collapse
|
3
|
Wan J, Brož B, Liu Y, Huang SR, Marek A, Tureček F. The DNA Radical Code. Resolution of Identity in Dissociations of Trinucleotide Codon Cation Radicals in the Gas Phase. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:304-319. [PMID: 36596259 DOI: 10.1021/jasms.2c00322] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Sixty DNA trinucleotide cation radicals covering a large part of the genetic code alphabet were generated by electron transfer in the gas phase, and their chemistry was studied by collision-induced dissociation tandem mass spectrometry and theoretical calculations. The major dissociations involved loss of nucleobase molecules and radicals, backbone cleavage, and cross-ring fragmentations that depended on the nature and position of the nucleobases. Mass identity in dissociations of symmetrical trinucleotide cation radicals of the (XXX+2H)+• and (XYX+2H)+• type was resolved by specific 15N labeling. The specific features of trinucleotide cation radical dissociations involved the dominant formation of d2+ ions, hydrogen atom migrations accompanying the formation of (w2+H)+•, (w2+2H)+, and (d2+2H)+ sequence ions, and cross-ring cleavages in the 3'- and 5'-deoxyribose moieties that depended on the nucleobase type and its position in the ion. Born-Oppenheimer molecular dynamics (BOMD) and density functional theory calculations were used to obtain structures and energies of several cation-radical protomers and conformers for (AAA+2H)+•, (CCC+2H)+•, (GGG+2H)+•, (ACA+2H)+•, and (CAA+2H)+• that were representative of the different types of backbone dissociations. The ion electronic structure, protonation and radical sites, and hydrogen bonding were used to propose reaction mechanisms for the dissociations.
Collapse
Affiliation(s)
- Jiahao Wan
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, United States
| | - Břetislav Brož
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague 6, Czech Republic
| | - Yue Liu
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, United States
| | - Shu R Huang
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, United States
| | - Aleš Marek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague 6, Czech Republic
| | - František Tureček
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
4
|
Cadet J, Angelov D, Wagner JR. Hydroxyl radical is predominantly involved in oxidatively generated base damage to cellular DNA exposed to ionizing radiation. Int J Radiat Biol 2022; 98:1-7. [PMID: 35475423 DOI: 10.1080/09553002.2022.2067363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 12/28/2022]
Affiliation(s)
- Jean Cadet
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Canada
| | - Dimitar Angelov
- Laboratoire de Biologie et de Modélisation de la Cellule LBMC, Ecole Normale Supérieure de Lyon, CNRS, Université de Lyon, Lyon, France
- Izmir Biomedicine and Genome Center IBG, Dokuz Eylul University Health Campus, Balçova, Izmir, Turkey
| | - J Richard Wagner
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
5
|
Huang SR, Tureček F. Noncanonical Isomers of Nucleoside Cation Radicals: An Ab Initio Study of the Dark Matter of DNA Ionization. J Phys Chem A 2022; 126:2480-2497. [PMID: 35439003 DOI: 10.1021/acs.jpca.2c00894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cation radicals of DNA nucleosides, 2'-deoxyadenosine, 2'-deoxyguanosine, 2'-deoxycytidine, and 2'-deoxythymidine, can exist in standard canonical forms or as noncanonical isomers in which the charge is introduced by protonation of the nucleobase, whereas the radical predominantly resides in the deoxyribose moiety. Density functional theory as well as correlated ab initio calculations with coupled clusters (CCSD(T)) that were extrapolated to the complete basis set limit showed that noncanonical nucleoside ion isomers were thermodynamically more stable than their canonical forms in both the gas phase and as water-solvated ions. This indicated the possibility of exothermic conversion of canonical to noncanonical forms. The noncanonical isomers were calculated to have very low adiabatic ion-electron recombination energies (REad) for the lowest-energy isomers 2'-deoxy-(N-3H)adenos-1'-yl (4.74 eV), 2'-deoxy-(N-7H)guanos-1'-yl (4.66 eV), 2'-deoxy-(N-3H)cytid-1'-yl (5.12 eV), and 2'-deoxy-5-methylene-(O-2H)uridine (5.24 eV). These were substantially lower than the REad value calculated for the canonical 2'-deoxyadenosine, 2'-deoxy guanosine, 2'-deoxy cytidine, and 2'-deoxy thymidine cation radicals, which were 7.82, 7.46, 8.14, and 8.20 eV, respectively, for the lowest-energy ion conformers of each type. Charge and spin distributions in noncovalent cation-radical dA⊂dT and dG⊂dC nucleoside pairs and dAT, dCT, dTC, and dGC dinucleotides were analyzed to elucidate the electronic structure of the cation radicals. Born-Oppenheimer molecular dynamics trajectory calculations of the dinucleotides and nucleoside pairs indicated rapid exothermic proton transfer from noncanonical T+· to A in both dAT+· and dA⊂dT+·, leading to charge and radical separation. Noncanonical T+· in dCT+· and dTC+· initiated rapid proton transfer to cytosine, whereas the canonical dCT+· dinucleotide ion retained the cation radical structure without isomerization. No spontaneous proton transfer was found in dGC+· and dG⊂dC+· containing canonical neutral and noncanonical ionized deoxycytidine.
Collapse
Affiliation(s)
- Shu R Huang
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 98195-1700, United States
| | - František Tureček
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
6
|
Angelov D, Lone IN, Menoni H, Cadet J. Interstrand Crosslinking Involving Guanine: A New Major UVC Laser-Induced Biphotonic Oxidatively Generated DNA Damage. Photochem Photobiol 2021; 98:662-670. [PMID: 34958483 DOI: 10.1111/php.13587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022]
Abstract
Several classes of oxidatively generated DNA damage including oxidized purine and pyrimidine bases, interstrand base crosslinks and DNA-protein crosslinks have been previously shown to be generated in both isolated DNA and cellular DNA upon exposure to either 266 nm laser irradiation or one-electron oxidants. In this study, we provide evidence that biphotonic ionization of guanine bases by UVC laser irradiation of double-stranded deoxyoligonucleotides in aerated aqueous solutions induces the formation of interstrand cross-links (ICLs). This is supported by various experiments including sequencing gel analyses of formed photoproducts and effects of UVC laser intensity on their formation. This constitutes a novel example of the diversity of reactions of guanine radical cation that can be generated by various one-electron oxidants including UVC laser biphotonic ionization, direct effect of ionization radiation and type I photosensitizers. However, the exact structure of the interstrand base adducts that is a challenging analytical issue remains to be further established. Examples of relevant biochemical/structural applications of biphotonic induction of ICLs in DNA samples by high-intensity UVC laser pulses are provided.
Collapse
Affiliation(s)
- Dimitar Angelov
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Biologie et de Modélisation de la Cellule LBMC, 46 Allée d'Italie, 69007, Lyon, France.,Izmir Biomedicine and Genome Center IBG, Dokuz Eylul University Health Campus, Balçova, Izmir, 35330, Turkey
| | - Imtiaz Nisar Lone
- Izmir Biomedicine and Genome Center IBG, Dokuz Eylul University Health Campus, Balçova, Izmir, 35330, Turkey
| | - Hervé Menoni
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences IAB, Site Santé - Allée des Alpes, 38700, La Tronche, France
| | - Jean Cadet
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4
| |
Collapse
|
7
|
Bull GD, Thompson KC. The oxidation of guanine by photoionized 2-aminopurine. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
8
|
Cadet J, Wagner JR, Angelov D. Biphotonic Ionization of DNA: From Model Studies to Cell. Photochem Photobiol 2018; 95:59-72. [PMID: 30380156 DOI: 10.1111/php.13042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022]
Abstract
Oxidation reactions triggered by low-intensity UV photons represent a minor contribution with respect to the overwhelming pyrimidine base dimerization in both isolated and cellular DNA. The situation is totally different when DNA is exposed to high-intensity UVC radiation under conditions where biphotonic ionization of the four main purine and pyrimidine bases becomes predominant at the expense of singlet excitation processes. The present review article provides a critical survey of the main chemical reactions of the base radical cations thus generated by one-electron oxidation of nucleic acids in model systems and cells. These include oxidation of the bases with the predominant formation of 8-oxo-7,8-dihydroguanine as the result of preferential hole transfer to guanine bases that act as sinks in isolated and cellular DNA. In addition to hydration, other nucleophilic addition reactions involving the guanine radical cation give rise to intra- and interstrand cross-links together with DNA-protein cross-links. Information is provided on the utilization of high-intensity UV laser pulses as molecular biology tools for studying DNA conformational features, nucleic acid-protein interactions and nucleic acid reactivity through DNA-protein cross-links and DNA footprinting experiments.
Collapse
Affiliation(s)
- Jean Cadet
- Département de Médecine Nucléaire et Radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - J Richard Wagner
- Département de Médecine Nucléaire et Radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Dimitar Angelov
- Laboratoire de Biologie et Modélisation de la Cellule LBMC, CNRS-UMR 5239, Université de Lyon, École Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
9
|
Liu Y, Korn JA, Dang A, Tureček F. Hydrogen-Rich Cation Radicals of DNA Dinucleotides: Generation and Structure Elucidation by UV-Vis Action Spectroscopy. J Phys Chem B 2018; 122:9665-9680. [PMID: 30269486 DOI: 10.1021/acs.jpcb.8b07925] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydrogen-rich DNA dinucleotide cation radicals (dGG + 2H)+•, (dCG + 2H)+•, and (dGC + 2H)+• represent transient species comprising protonated and hydrogen atom adducted nucleobase rings that serve as models for proton and radical migrations in ionized DNA. These DNA cation radicals were generated in the gas phase by electron-transfer dissociation of dinucleotide dication-crown-ether complexes and characterized by UV-vis photodissociation action spectra, ab initio calculations of structures and relative energies, and time-dependent density functional theory calculations of UV-vis absorption spectra. Theoretical calculations indicate that (dGG + 2H)+• cation radicals formed by electron transfer underwent an exothermic conformational collapse that was accompanied by guanine ring stacking and facile internucleobase hydrogen atom transfer, forming 3'-guanine C-8-H radicals. In contrast, exothermic hydrogen transfer from the 5'-cytosine radical onto the guanine ring in (dCG + 2H)+• was kinetically hampered, resulting in the formation of a mixture of 5'-cytosine and 3'-guanine radicals. Conformational folding and nucleobase stacking were energetically unfavorable in (dGC + 2H)+• that retained its structure of a 3'-cytosine radical, as formed by one-electron reduction of the dication. Hydrogen-rich guanine (G + H)• and cytosine (C + H)• radicals were calculated to have vastly different basicities in water, as illustrated by the respective p Ka values of 20.0 and 4.6, which is pertinent to their different abilities to undergo proton-transfer reactions in solution.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemistry, Bagley Hall , University of Washington , P.O. Box 351700, Seattle , Washington 98195-1700 , United States
| | - Joseph A Korn
- Department of Chemistry, Bagley Hall , University of Washington , P.O. Box 351700, Seattle , Washington 98195-1700 , United States
| | - Andy Dang
- Department of Chemistry, Bagley Hall , University of Washington , P.O. Box 351700, Seattle , Washington 98195-1700 , United States
| | - František Tureček
- Department of Chemistry, Bagley Hall , University of Washington , P.O. Box 351700, Seattle , Washington 98195-1700 , United States
| |
Collapse
|
10
|
Dang A, Nguyen HTH, Ruiz H, Piacentino E, Ryzhov V, Tureček F. Experimental Evidence for Noncanonical Thymine Cation Radicals in the Gas Phase. J Phys Chem B 2017; 122:86-97. [DOI: 10.1021/acs.jpcb.7b09872] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Andy Dang
- Department
of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 98195-1700, United States
| | - Huong T. H. Nguyen
- Department
of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 98195-1700, United States
| | - Heather Ruiz
- Department
of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Elettra Piacentino
- Department
of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Victor Ryzhov
- Department
of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - František Tureček
- Department
of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
11
|
Cadet J, Wagner JR. Oxidatively generated base damage to cellular DNA by hydroxyl radical and one-electron oxidants: similarities and differences. Arch Biochem Biophys 2014; 557:47-54. [PMID: 24820329 DOI: 10.1016/j.abb.2014.05.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/23/2014] [Accepted: 05/01/2014] [Indexed: 01/05/2023]
Abstract
Hydroxyl radical (OH) and one-electron oxidants that may be endogenously formed through oxidative metabolism, phagocytosis, inflammation and pathological conditions constitute the main sources of oxidatively generated damage to cellular DNA. It is worth mentioning that exposure of cells to exogenous physical agents (UV light, high intensity UV laser, ionizing radiation) and chemicals may also induce oxidatively generated damage to DNA. Emphasis is placed in this short review article on the mechanistic aspects of OH and one-electron oxidant-mediated formation of single and more complex damage (tandem lesions, intra- and interstrand cross-links, DNA-protein cross-links) in cellular DNA arising from one radical hit. This concerns DNA modifications that have been accurately measured using suitable analytical methods such as high performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Evidence is provided that OH and one-electron oxidants after generating neutral radicals and base radical cations respectively may partly induce common degradation pathways. In addition, selective oxidative reactions giving rise to specific degradation products of OH and one-electron oxidation reactions that can be used as representative biomarkers of these oxidants have been identified.
Collapse
Affiliation(s)
- Jean Cadet
- Institut Nanosciences et Cryogénie, CEA/Grenoble, F-38054 Grenoble Cedex 9, France; Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine des Sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | - J Richard Wagner
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine des Sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| |
Collapse
|
12
|
Cadet J, Wagner JR, Shafirovich V, Geacintov NE. One-electron oxidation reactions of purine and pyrimidine bases in cellular DNA. Int J Radiat Biol 2014; 90:423-32. [PMID: 24369822 DOI: 10.3109/09553002.2013.877176] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE The aim of this survey is to critically review the available information on one-electron oxidation reactions of nucleobases in cellular DNA with emphasis on damage induced through the transient generation of purine and pyrimidine radical cations. Since the indirect effect of ionizing radiation mediated by hydroxyl radical is predominant in cells, efforts have been made to selectively ionize bases using suitable one-electron oxidants that consist among others of high intensity UVC laser pulses. Thus, the main oxidation product in cellular DNA was found to be 8-oxo-7,8-dihydroguanine as a result of direct bi-photonic ionization of guanine bases and indirect formation of guanine radical cations through hole transfer reactions from other base radical cations. The formation of 8-oxo-7,8-dihydroguanine and other purine and pyrimidine degradation products was rationalized in terms of the initial generation of related radical cations followed by either hydration or deprotonation reactions in agreement with mechanistic pathways inferred from detailed mechanistic studies. The guanine radical cation has been shown to be implicated in three other nucleophilic additions that give rise to DNA-protein and DNA-DNA cross-links in model systems. Evidence was recently provided for the occurrence of these three reactions in cellular DNA. CONCLUSION There is growing evidence that one-electron oxidation reactions of nucleobases whose mechanisms have been characterized in model studies involving aqueous solutions take place in a similar way in cells. It may also be pointed out that the above cross-linked lesions are only produced from the guanine radical cation and may be considered as diagnostic products of the direct effect of ionizing radiation.
Collapse
Affiliation(s)
- Jean Cadet
- Institut Nanosciences & Cryogénie, CEA/Grenoble , Grenoble , France
| | | | | | | |
Collapse
|
13
|
Cadet J, Mouret S, Ravanat JL, Douki T. Photoinduced damage to cellular DNA: direct and photosensitized reactions. Photochem Photobiol 2012; 88:1048-65. [PMID: 22780837 DOI: 10.1111/j.1751-1097.2012.01200.x] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The survey focuses on recent aspects of photochemical reactions to cellular DNA that are implicated through the predominant formation of mostly bipyrimidine photoproducts in deleterious effects of human exposure to sunlight. Recent developments in analytical methods have allowed accurate and quantitative measurements of the main DNA photoproducts in cells and human skin. Highly mutagenic CC and CT bipyrimidine photoproducts, including cyclobutane pyrimidine dimers and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs) are generated in low yields with respect to TT and TC photoproducts. Another striking finding deals with the formation of Dewar valence isomers, the third class of bipyrimidine photoproducts that is accounted for by UVA-mediated isomerization of initially UVB generated 6-4PPs. Cyclobutadithymine (T<>T) has been unambiguously shown to be involved in the genotoxicity of UVA radiation. Thus, T<>T is formed in UVA-irradiated cellular DNA according to a direct excitation mechanism with a higher efficiency than oxidatively generated DNA damage that arises mostly through the Type II photosensitization mechanism. C<>C and C<>T are repaired at rates intermediate between those of T<>T and 6-4TT. Evidence has been also provided for the occurrence of photosensitized reactions mediated by exogenous agents that act either in an independent way or through photodynamic effects.
Collapse
Affiliation(s)
- Jean Cadet
- Laboratoire Lésions des Acides Nucléiques, SCIB-UMR-E n°3, CEA/UJF, Institut Nanosciences et Cryogénie, CEA/Grenoble, Grenoble Cedex, France
| | | | | | | |
Collapse
|
14
|
Oxidatively generated complex DNA damage: tandem and clustered lesions. Cancer Lett 2012; 327:5-15. [PMID: 22542631 DOI: 10.1016/j.canlet.2012.04.005] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/02/2012] [Accepted: 04/15/2012] [Indexed: 11/22/2022]
Abstract
There is an increasing interest for oxidatively generated complex lesions that are potentially more detrimental than single oxidized nucleobases. In this survey, the recently available information on the formation and processing of several classes of complex DNA damage formed upon one radical hit including mostly hydroxyl radical and one-electron oxidants is critically reviewed. The modifications include tandem base lesions, DNA-protein cross-links and intrastrand (purine 5',8-cyclonucleosides, adjacent base cross-links) and interstrand cross-links. Information is also provided on clustered lesions produced essentially by exposure of cells to ionizing radiation and high energetic heavy ions through the involvement of multiple radical events that induce several lesions DNA in a close spatial vicinity. These consist mainly of double strand breaks (DSBs) and non-DSB clustered lesions that are referred as to oxidatively generated clustered DNA lesions (OCDLs).
Collapse
|
15
|
Cadet J, Douki T, Ravanat JL, Wagner JR. Measurement of oxidatively generated base damage to nucleic acids in cells: facts and artifacts. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s12566-012-0029-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
Cadet J, Loft S, Olinski R, Evans MD, Bialkowski K, Richard Wagner J, Dedon PC, Møller P, Greenberg MM, Cooke MS. Biologically relevant oxidants and terminology, classification and nomenclature of oxidatively generated damage to nucleobases and 2-deoxyribose in nucleic acids. Free Radic Res 2012; 46:367-81. [PMID: 22263561 DOI: 10.3109/10715762.2012.659248] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A broad scientific community is involved in investigations aimed at delineating the mechanisms of formation and cellular processing of oxidatively generated damage to nucleic acids. Perhaps as a consequence of this breadth of research expertise, there are nomenclature problems for several of the oxidized bases including 8-oxo-7,8-dihydroguanine (8-oxoGua), a ubiquitous marker of almost every type of oxidative stress in cells. Efforts to standardize the nomenclature and abbreviations of the main DNA degradation products that arise from oxidative pathways are reported. Information is also provided on the main oxidative radicals, non-radical oxygen species, one-electron agents and enzymes involved in DNA degradation pathways as well in their targets and reactivity. A brief classification of oxidatively generated damage to DNA that may involve single modifications, tandem base modifications, intrastrand and interstrand cross-links together with DNA-protein cross-links and base adducts arising from the addition of lipid peroxides breakdown products is also included.
Collapse
Affiliation(s)
- Jean Cadet
- Direction des Sciences de Matière, Institut Nanosciences et Cryogénie, CEA/Grenoble, Grenoble Cedex 9, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cuesta-López S, Menoni H, Angelov D, Peyrard M. Guanine radical chemistry reveals the effect of thermal fluctuations in gene promoter regions. Nucleic Acids Res 2011; 39:5276-83. [PMID: 21398632 PMCID: PMC3130270 DOI: 10.1093/nar/gkr096] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 02/02/2011] [Accepted: 02/04/2011] [Indexed: 11/24/2022] Open
Abstract
DNA is not the static entity that structural pictures suggest. It has been longly known that it 'breathes' and fluctuates by local opening of the bases. Here we show that the effect of structural fluctuations, exhibited by AT-rich low stability regions present in some common transcription initiation regions, influences the properties of DNA in a distant range of at least 10 bp. This observation is confirmed by experiments on genuine gene promoter regions of DNA. The spatial correlations revealed by these experiments throw a new light on the physics of DNA and could have biological implications, for instance by contributing to the cooperative effects needed to assemble the molecular machinery that forms the transcription complex.
Collapse
Affiliation(s)
- Santiago Cuesta-López
- Université de Lyon, Laboratoire de Physique CNRS UMR 5672 and Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS UMR 5239, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 7, France
| | - Hervé Menoni
- Université de Lyon, Laboratoire de Physique CNRS UMR 5672 and Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS UMR 5239, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 7, France
| | - Dimitar Angelov
- Université de Lyon, Laboratoire de Physique CNRS UMR 5672 and Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS UMR 5239, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 7, France
| | - Michel Peyrard
- Université de Lyon, Laboratoire de Physique CNRS UMR 5672 and Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS UMR 5239, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 7, France
| |
Collapse
|
18
|
Cadet J, Douki T, Ravanat JL. Oxidatively generated base damage to cellular DNA. Free Radic Biol Med 2010; 49:9-21. [PMID: 20363317 DOI: 10.1016/j.freeradbiomed.2010.03.025] [Citation(s) in RCA: 380] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 03/16/2010] [Accepted: 03/26/2010] [Indexed: 12/17/2022]
Abstract
Search for the formation of oxidatively base damage in cellular DNA has been a matter of debate for more than 40 years due to the lack of accurate methods for the measurement of the lesions. HPLC associated with either tandem mass spectrometry (MS/MS) or electrochemical detector (ECD) together with optimized DNA extraction conditions constitutes a relevant analytical approach. This has allowed the accurate measurement of oxidatively generated single and clustered base damage in cellular DNA following exposure to acute oxidative stress conditions mediated by ionizing radiation, UVA light and one-electron oxidants. In this review the formation of 11 single base lesions that is accounted for by reactions of singlet oxygen, hydroxyl radical or high intensity UVC laser pulses with nucleobases is discussed on the basis of the mechanisms available from model studies. In addition several clustered lesions were found to be generated in cellular DNA as the result of one initial radical hit on either a vicinal base or the 2-deoxyribose. Information on nucleobase modifications that are formed upon addition of reactive aldehydes arising from the breakdown of lipid hydroperoxides is also provided.
Collapse
Affiliation(s)
- Jean Cadet
- Laboratoire Lésions des Acides Nucléiques, SCIB-UMR-E (CEA/UJF) Institut Nanosciences et Cryogénie, CEA/Grenoble, F-38054 Grenoble Cedex 9, France.
| | | | | |
Collapse
|
19
|
Reactive Simulations for Biochemical Processes. ADVANCES IN THE ATOMIC-SCALE MODELING OF NANOSYSTEMS AND NANOSTRUCTURED MATERIALS 2010. [DOI: 10.1007/978-3-642-04650-6_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Jaeger HM, Schaefer HF. Characterizing radiation-induced oxidation of DNA by way of the monohydrated guanine-cytosine radical cation. J Phys Chem B 2009; 113:8142-8. [PMID: 19445496 DOI: 10.1021/jp900444k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interaction of one water molecule with the guanine-cytosine radical cation has been studied with ab initio and density functional methods in order to help elucidate the nature of oxidized aqueous DNA. The theoretical spin density of [GC]*(+) reveals that the radical center is localized on guanine. The adiabatic ionization potential lowers from 7.63 to 6.71 eV in concurrence with the formation of the Watson-Crick base pair and hydration by one water molecule. A natural bond orbital analysis of partial charges shows that approximately 80% of the positive charge persists on guanine upon hydration and formation of the Watson-Crick base pair with cytosine. Hydration energies were computed with second-order Z-averaged perturbation theory (ZAPT2) using the aug-cc-pVDZ basis set at 11 stationary points on the B3LYP/DZP++ potential energy surface. The hydration energy at the global minimum is 14.2 kcal mol(-1). The lowest energy structures correspond to hydration near the glycosidic bond sites. Structural changes in the Watson-Crick base pair are predominantly seen for monohydration in the groove regions of double-helix DNA.
Collapse
Affiliation(s)
- Heather M Jaeger
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602-2556, USA.
| | | |
Collapse
|
21
|
Peyrard M, Cuesta-López S, Angelov D. Experimental and theoretical studies of sequence effects on the fluctuation and melting of short DNA molecules. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2009; 21:034103. [PMID: 21817248 DOI: 10.1088/0953-8984/21/3/034103] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Understanding the melting of short DNA sequences probes DNA at the scale of the genetic code and raises questions which are very different from those posed by very long sequences, which have been extensively studied. We investigate this problem by combining experiments and theory. A new experimental method allows us to make a mapping of the opening of the guanines along the sequence as a function of temperature. The results indicate that non-local effects may be important in DNA because an AT-rich region is able to influence the opening of a base pair which is about 10 base pairs away. An earlier mesoscopic model of DNA is modified to correctly describe the timescales associated with the opening of individual base pairs well below melting, and to properly take into account the sequence. Using this model to analyze some characteristic sequences for which detailed experimental data on the melting is available (Montrichok et al 2003 Europhys. Lett. 62 452), we show that we have to introduce non-local effects of AT-rich regions to get acceptable results. This brings a second indication that the influence of these highly fluctuating regions of DNA on their neighborhood can extend to some distance.
Collapse
Affiliation(s)
- M Peyrard
- Université de Lyon, Ecole Normale Supérieure de Lyon, Laboratoire de Physique, CNRS UMR 5672, 46 allée d'Italie, F-69364 Lyon Cedex 07, France
| | | | | |
Collapse
|
22
|
Yamada H, Tanabe K, Ito T, Nishimoto SI. The pH Effect on the Naphthoquinone-Photosensitized Oxidation of 5-Methylcytosine. Chemistry 2008; 14:10453-61. [DOI: 10.1002/chem.200800840] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Labet V, Grand A, Cadet J, Eriksson LA. Deamination of the radical cation of the base moiety of 2'-deoxycytidine: a theoretical study. Chemphyschem 2008; 9:1195-203. [PMID: 18438773 DOI: 10.1002/cphc.200800154] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Five pathways leading to the deamination of cytosine (to uracil) after formation of its deprotonated radical cation are investigated in the gas phase, at the UB3LYP/6-311G(d,p) level of theory, and in bulk aqueous solvent. The most favorable pathway involves hydrogen-atom transfer from a water molecule to the N3 nitrogen of the deprotonated radical cation, followed by addition of the resulting hydroxyl radical to the C4 carbon of the cytosine derivative. Following protonation of the amino group (N4), the C4--N4 bond is broken with elimination of the NH3+(. ) and formation of a protonated uracil. The rate-determining step of this mechanism is hydrogen-atom transfer from a water molecule to the cytosine derivative. The associated free energy barrier is 70.2 kJ mol(-1).
Collapse
Affiliation(s)
- Vanessa Labet
- Laboratoire "Lésions des Acides Nucléiques", INaC/SCIB, UMR-E 3 (CEA/UJF), CEA-Grenoble, 17 avenue des Martyrs, F-38054 Grenoble Cedex 9, France
| | | | | | | |
Collapse
|
24
|
Cadet J, Douki T, Ravanat JL. Oxidatively generated damage to the guanine moiety of DNA: mechanistic aspects and formation in cells. Acc Chem Res 2008; 41:1075-83. [PMID: 18666785 DOI: 10.1021/ar700245e] [Citation(s) in RCA: 414] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nuclear DNA and other molecules in living systems are continuously exposed to endogenously generated oxygen species. Such species range from the unreactive superoxide radical (O2*-)the precursor of hydrogen peroxide (H2O2)to the highly reactive hydroxyl radical (*OH). Exogenous chemical and physical agents, such as ionizing radiation and the UVA component of solar light, can also oxidatively damage both the bases and the 2-deoxyribose moieties of cellular DNA. Over the last two decades, researchers have made major progress in understanding the oxidation degradation pathways of DNA that are most likely to occur from either oxidative metabolism or exposure to various exogenous agents. In the first part of this Account, we describe the mechanistic features of one-electron oxidation reactions of the guanine base in isolated DNA and related model compounds. These reactions illustrate the complexity of the various degradation pathways involved. Then, we briefly survey the analytical methods that can detect low amounts of oxidized bases and nucleosides in cells as they are formed. Recent data on the formation of oxidized guanine residues in cellular DNA following exposure to UVA light, ionizing radiation, and high-intensity UV pulses are also provided. We discuss these chemical reactions in the context of *OH radical, singlet oxygen, and two-quantum photoionization processes.
Collapse
Affiliation(s)
- Jean Cadet
- Laboratoire “Lésions des Acides Nucléiques”, SCIB-UMR-E n3 (CEA/UJF) Institut Nanosciences et Cryogénie, CEA/Grenoble, F-38054 Grenoble Cedex 9, France
- Department of Nuclear Medicine and Health Science, University of Sherbrooke, Quebec J1H 5N4, Canada
| | - Thierry Douki
- Laboratoire “Lésions des Acides Nucléiques”, SCIB-UMR-E n3 (CEA/UJF) Institut Nanosciences et Cryogénie, CEA/Grenoble, F-38054 Grenoble Cedex 9, France
| | - Jean-Luc Ravanat
- Laboratoire “Lésions des Acides Nucléiques”, SCIB-UMR-E n3 (CEA/UJF) Institut Nanosciences et Cryogénie, CEA/Grenoble, F-38054 Grenoble Cedex 9, France
| |
Collapse
|
25
|
Cadet J, Ravanat JL, Martinez GR, Medeiros MHG, Di Mascio P. Singlet oxygen oxidation of isolated and cellular DNA: product formation and mechanistic insights. Photochem Photobiol 2007; 82:1219-25. [PMID: 16808595 DOI: 10.1562/2006-06-09-ir-914] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This survey focuses on recent aspects of the singlet oxygen oxidation of the guanine moiety of nucleosides, oligonucleotides, isolated and cellular DNA that has been shown to be the exclusive DNA target for this biologically relevant photogenerated oxidant. A large body of mechanistic data is now available from studies performed on nucleosides in both aprotic solvents and aqueous solutions. A common process to both reaction conditions is the formation of 8-oxo-7,8-dihydroguanine by reduction of 8-hydroperoxyguanine that arises from the rearrangement of initially formed endoperoxide across the 4,8-bond of the purine moiety. However, in organic solvent the hydroperoxide is converted as a major degradation pathway into a dioxirane that subsequently decomposes into a complex pattern of oxidation products. A different reaction that involved the formation of a highly reactive quinonoid intermediate consecutively to the loss of a water molecule from the 8-hydroperoxide has been shown to occur in aqueous solution. Subsequent addition of a water molecule at C5 leads to the generation of a spiroiminodihy-dantoin compound via a rearrangement that involves an acyl shift. However, in both isolated and cellular DNA the latter decomposition pathway is at the best a minor process, because only 8-oxo-7,8-dihydroguanine has been found to be generated. It is interesting to point out that singlet oxygen has been shown to contribute predominantly to the formation of 8-oxo-7,8-dihydroguanine in the DNA of bacterial and human cells upon exposure to UVA radiation. It may be added that the formation of secondary singlet-oxygen oxidation products of 8-oxo-7,8-dihydroguanine, including spiroiminodihydantoin and oxaluric acid that were characterized in nucleosides and oligonucleotide, respectively, have not yet been found in cellular DNA.
Collapse
Affiliation(s)
- Jean Cadet
- Laboratoire Lésions des Acides Nucléiques, DRFMC/SCIB-UMR-E No. 3 (CEA/UJF), CEA/Grenoble, F-38054 Grenoble Cedex 9, France.
| | | | | | | | | |
Collapse
|
26
|
Boero M, Gervasio FL, Parrinello M. Charge localisation and hopping in DNA. MOLECULAR SIMULATION 2007. [DOI: 10.1080/08927020601052849] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
|
28
|
Gervasio FL, Boero M, Parrinello M. Double Proton Coupled Charge Transfer in DNA. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200602106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Gervasio FL, Boero M, Parrinello M. Double Proton Coupled Charge Transfer in DNA. Angew Chem Int Ed Engl 2006; 45:5606-9. [PMID: 16888729 DOI: 10.1002/anie.200602106] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Francesco Luigi Gervasio
- Computational Science, Department of Chemistry and Applied Biosciences, ETH Zurich, USI Campus, Via Giuseppe Buffi 13, 6900 Lugano, Switzerland
| | | | | |
Collapse
|
30
|
|
31
|
Evangelista FA, Schaefer HF. Hydrogen Atom and Hydride Anion Addition to Adenine: Structures and Energetics. Chemphyschem 2006; 7:1471-80. [PMID: 16810726 DOI: 10.1002/cphc.200600049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The radicals and anions derived from the 9H tautomer of adenine by adding a hydrogen atom to one of the four double bonds of the adenine framework have been studied. Computations were carried out using a carefully calibrated density functional (B3LYP) method and basis set (DZP++). Optimized geometries, energies, and vibrational frequencies are predicted for eight radicals and anions. The radicals are found to lie in a range of 22 kcal mol(-1), with the radical derived by addition to the C(8) carbon atom being the lowest lying energetically. The anions are predicted to be bound species in the gas phase with an energetic range of 43 kcal mol(-1). Anions produced by addition of a hydride ion to adenine carbon atoms are found to be the most favorable. Six of the anions are predicted to be stable species with respect to electron detachment. The adiabatic electron affinities, vertical electron affinities, and vertical detachment energies are computed for the first time. Electron affinities for these radicals range from 0.0 to 2.0 eV. Radicals produced by addition to a nitrogen atom have near-zero adiabatic electron affinities, while radicals produced by addition at carbon atoms have considerably higher electron affinities.
Collapse
|
32
|
Buchko GW, Cadet J. Identification of the alpha and beta anomers of 1-(2-deoxy-D-erythro-pentofuranosyl)-oxaluric acid at the site of riboflavin-mediated photooxidation of guanine in 2'-deoxyguanosine and thymidylyl-(3'-5')-2'-deoxyguanosine. Photochem Photobiol 2006; 82:191-9. [PMID: 16489851 DOI: 10.1562/2005-06-01-ra-562] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Products of riboflavin-mediated photosensitization of 2'-deoxyguanosine (dG) and thymidylyl-(3'-5')-2'-deoxyguanosine (TpdG) by 350-nm light in oxygen-saturated aqueous solution have been isolated and identified as 1-(2-deoxy-beta-D-erythro-pentofuranosyl) oxaluric acid (beta-dOx) and thymidylyl-(3'-5')-1-(2-deoxy-beta-D-erythro-pentofuranosyl) oxaluric acid (Tpbeta-dOx), respectively. In aqueous solution the modified beta-deoxyribonucleoside is slowly converted to the alpha-anomer, generating alpha-dOx and Tpalpha-dOx. These modified nucleosides and dinucleoside monophosphates have been isolated by HPLC and characterized by proton and carbon NMR spectroscopy, fast atom bombardment mass spectrometry, and enzymatic analyses. Both alpha-dOx and Tpalpha-dOx slowly convert back into the modified beta-deoxyribonucleoside, indicating that the furanosidic anomers are in dynamic equilibrium. Relative to TpdG, the rate of hydrolysis of Tpbeta-dOx and Tpalpha-dOx by spleen phosphodiesterase is greatly reduced. Hot piperidine (1.0 M, 90 degrees C, 30 min) destroys Tpbeta-dOx and Tpalpha-dOx. Riboflavin-mediated photosensitization of TpdG in D2O instead of H2O has no detectable effect on the yield of Tpbeta-dOx, suggesting that oxaluric acid is generated through a Type-I reaction mechanism, likely through the intermediary on initially generated 8-oxo-7,8-dihydro-2'-deoxyguanosine.
Collapse
Affiliation(s)
- Garry W Buchko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | | |
Collapse
|
33
|
Wagenknecht HA. Electron transfer processes in DNA: mechanisms, biological relevance and applications in DNA analytics. Nat Prod Rep 2006; 23:973-1006. [PMID: 17119642 DOI: 10.1039/b504754b] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In principle, DNA-mediated charge transfer processes can be categorized as oxidative hole transfer and reductive electron transfer. With respect to the routes of DNA damage most of the past research has been focused on the investigation of oxidative hole transfer or transport. On the other hand, the transport or transfer of excess electrons has a large potential for biomedical applications, mainly for DNA chip technology.
Collapse
Affiliation(s)
- Hans-Achim Wagenknecht
- University of Regensburg, Institute for Organic Chemistry, D-93040, Regensburg, Germany.
| |
Collapse
|
34
|
Gervasio FL, Laio A, Parrinello M, Boero M. Charge localization in DNA fibers. PHYSICAL REVIEW LETTERS 2005; 94:158103. [PMID: 15904193 DOI: 10.1103/physrevlett.94.158103] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Indexed: 05/02/2023]
Abstract
We study by first-principles molecular dynamics the mechanism of electron hole (positive charge) localization in a laboratory realizable radical cation Z DNA crystal. We find that at room temperature structural deformation does not provide an efficient localization mechanism. Instead, we find evidence for the importance of changes in the protonation state for stabilizing the radical defect.
Collapse
|
35
|
Angelov D, Beylot B, Spassky A. Origin of the heterogeneous distribution of the yield of guanyl radical in UV laser photolyzed DNA. Biophys J 2004; 88:2766-78. [PMID: 15613625 PMCID: PMC1305372 DOI: 10.1529/biophysj.104.049015] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oxidative guanine lesions were analyzed, at the nucleotide level, within DNA exposed to nanosecond ultraviolet (266 nm) laser pulses of variable intensity (0.002-0.1 J/cm(2)). Experiments were carried out, at room temperature, in TE buffer (20 mM Tris-HCl, pH 7.5; 1 mM EDTA) containing 35 mM NaCl, on 5'-end radioactively labeled double-stranded and single-stranded oligomer DNA at a size of 33-37 nucleobases. Lesions were analyzed on polyacrylamide gel electrophoresis by taking advantage of the specific removal of 8-oxodG from DNA by the formamidopyrimidine DNA glycosylase (Fpg protein) and of the differential sensitivity of 8-oxodG and oxazolone to piperidine. The quantum yields of lesions at individual sites, determined from the normalized intensities of bands, were plotted against the irradiation energy levels. Simplified model fitting of the experimental data enabled to evaluate the spectroscopic parameters characterizing excitation and photoionization processes. Results show that the distribution of guanine residues, excited to the lowest triplet state or photoionized, is heterogeneous and depends on the primary and secondary DNA structure. These findings are generalized in terms of excitation energy and charge-migration mediated biphotonic ionization. On the basis of the changes in the yield of the guanyl radical resulting from local helical perturbations in the DNA pi-stack, it can be assessed that the distance range of migration is <6-8 bp.
Collapse
Affiliation(s)
- Dimitar Angelov
- UMR 8113 French National Center for Scientific Research, Institut Gustave Roussy, 94805 Villejuif, France
| | | | | |
Collapse
|
36
|
Crean CW, Camier R, Lawler M, Stevenson C, Davies RJH, Boyle PH, Kelly JM. Synthesis of N3- and 2-NH2-substituted 6,7-diphenylpterins and their use as intermediates for the preparation of oligonucleotide conjugates designed to target photooxidative damage on single-stranded DNA representing the bcr-abl chimeric gene. Org Biomol Chem 2004; 2:3588-601. [PMID: 15592617 DOI: 10.1039/b413655a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two 17-mer oligodeoxynucleotide-5'-linked-(6,7-diphenylpterin) conjugates, 2 and 3, were prepared as photosensitisers for targeting photooxidative damage to a 34-mer DNA oligodeoxynucleotide (ODN) fragment 1 representing the chimeric bcr-abl gene that is implicated in the pathogenesis of chronic myeloid leukaemia (CML). The base sequence in the 17-mer was 3'G G T A G T T A T T C C T T C T T5'. In the first of these ODN conjugates (2) the pterin was attached at its N3 atom, via a -(CH2)3OPO(OH)- linker, to the 5'-OH group of the ODN. Conjugate 2 was prepared from 2-amino-3-(3-hydroxypropyl)-6,7-diphenyl-4(3H)-pteridinone 10, using phosphoramidite methodology. Starting material 10 was prepared from 5-amino-7-methylthiofurazano[3,4-d]pyrimidine 4 via an unusual highly resonance stabilised cation 8, incorporating the rare 2H,6H-pyrimido[6,1-b][1,3]oxazine ring system. In the characterisation of 10 two pteridine phosphazenes, 15 and 29, were obtained, as well as new products containing two uncommon tricyclic ring systems, namely pyrimido[2,1-b]pteridine (20 and 24) and pyrimido[1,2-c]pteridine (27). In the second ODN conjugate the linker was -(CH2)5CONH(CH2)6OPO(OH)- and was attached to the 2-amino group of the pterin. In the preparation of 3, the N-hydroxysuccinimide ester 37 of 2-(5-carboxypentylamino)-6,7-diphenyl-4(3H)-pteridinone was condensed with the hexylamino-modified 17-mer. Excitation of 36 with near UV light in the presence of the single-stranded target 34-mer, 5'T G A C C A T C A A T A A G14 G A A G18 A A G21 C C C T T C A G C G G C C3' 1 caused oxidative damage at guanine bases, leading to alkali-labile sites which were monitored by polyacrylamide gel electrophoresis. Cleavage was observed at all guanine sites with a marked preference for cleavage at G14. In contrast, excitation of ODN-pteridine conjugate 2 in the presence of 1 caused oxidation of the latter predominantly at G18, with a smaller extent of cleavage at G15 and G14 (in the double-stranded portion) and G21. These results contrast with our previous observation of specific cleavage at G21 with ruthenium polypyridyl sensitisers, and suggest that a different mechanism, probably one involving Type 1 photochemical electron transfer, is operative. Much lower yields were found with the ODN-pteridine conjugate 3, perhaps as a consequence of the longer linker between the ODN and the pteridine in this case.
Collapse
Affiliation(s)
- Conor W Crean
- Chemistry Department and Centre for Chemical Synthesis and Chemical Biology, Trinity College, University of Dublin, Dublin 2, Ireland
| | | | | | | | | | | | | |
Collapse
|