1
|
Chen H, Jin J, Hu S, Shen L, Zhang P, Li Z, Fang Z, Liu H. Metabolomics and proteomics reveal the toxicological mechanisms of florfenicol stress on wheat (Triticum aestivum L.) seedlings. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130264. [PMID: 36327828 DOI: 10.1016/j.jhazmat.2022.130264] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/16/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Although the ecological impacts of antibiotics have received attention worldwide, research on the toxicity of florfenicol is still limited. We conducted a metabolomic and proteomic study on wheat (Triticum aestivum L.) seedlings to reveal the toxicological mechanism of florfenicol. The growth of the wheat seedlings was found to be inhibited by florfenicol. Antioxidant enzyme activities (superoxide dismutase, peroxidase and catalase), malondialdehyde content and membrane permeability increased with increasing florfenicol concentration. The contents of chlorophyll and chlorophyll synthesis precursor substances (Proto IX, Mg-proto IX and Pchlide), photosynthetic and respiration rates, and chlorophyll fluorescence parameters decreased, indicating that photosynthesis was inhibited. The ultrastructure of chloroplasts was destroyed, as evidenced by the blurred membrane surface, irregular grana arrangement, irregular thylakoid lamella structure, and increased plastoglobuli number. Proteome analysis revealed that up-regulated proteins were highly involved in protein refolding, translation, oxidation-reduction, tricarboxylic acid cycle (TCA cycle), reactive oxygen species metabolic process, cellular oxidant detoxification, and response to oxidative stress. The down-regulated proteins were mainly enriched in photosynthesis-related pathways. In the metabolome analysis, the content of most of the metabolites in wheat leaves, such as carbohydrates and amino acids increased significantly (p < 0.05). Combined pathway analysis showed that florfenicol stress stimulated the TCA cycle pathway and downregulated the photosynthesis pathway.
Collapse
Affiliation(s)
- Hanmei Chen
- School of Environmental Science and Engineering, Instrumental analysis center, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Jiaojun Jin
- School of Environmental Science and Engineering, Instrumental analysis center, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Shuhao Hu
- School of Environmental Science and Engineering, Instrumental analysis center, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Luoqin Shen
- School of Environmental Science and Engineering, Instrumental analysis center, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Ping Zhang
- School of Environmental Science and Engineering, Instrumental analysis center, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Zhiheng Li
- School of Environmental Science and Engineering, Instrumental analysis center, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Zhiguo Fang
- School of Environmental Science and Engineering, Instrumental analysis center, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Huijun Liu
- School of Environmental Science and Engineering, Instrumental analysis center, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| |
Collapse
|
2
|
Nixon PJ, Telfer A. Remembering James Barber (1940-2020). PHOTOSYNTHESIS RESEARCH 2022; 153:1-20. [PMID: 35534741 PMCID: PMC9522743 DOI: 10.1007/s11120-022-00919-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
James Barber, known to colleagues and friends as Jim, passed away in January 2020 after a long battle against cancer. During his long and distinguished career in photosynthesis research, Jim made many outstanding contributions with the pinnacle achieving his dream of determining the first detailed structure of the Mn cluster involved in photosynthetic water oxidation. Here, colleagues and friends remember Jim and reflect upon his scientific career and the impact he had on their lives and the scientific community.
Collapse
Affiliation(s)
- Peter J Nixon
- Sir Ernst Chain Building - Wolfson Laboratories, Department of Life Sciences, Imperial College London, S. Kensington Campus, London, SW7 2AZ, UK.
| | - Alison Telfer
- Sir Ernst Chain Building - Wolfson Laboratories, Department of Life Sciences, Imperial College London, S. Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
3
|
6-Ethoxy-4- N-(2-morpholin-4-ylethyl) -2-N-propan-2-yl-1,3, 5-triazine-2, 4-diamine endows herbicidal activity against Phalaris minor a weed of wheat crop field: An in -silico and experimental approaches of herbicide discovery. J Mol Model 2022; 28:77. [PMID: 35244782 DOI: 10.1007/s00894-021-05006-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/14/2021] [Indexed: 10/18/2022]
Abstract
Phalaris minor is a major weed of wheat crop which has evolved resistance against herbicides. Isoproturon is the most accepted herbicide developed resistance in 1992. Later, introduced herbicides also developed resistance and cross-resistance to their respective binding sites. Isoproturon binds at the QB binding site of the D1 protein of photosystem-II (PS-II), which blocks the electron transfer in photosynthesis. In this work, we have carried out a series of computational studies to prioritize the promising herbicides against D1 protein of P. minor. Through the computational studies, twenty-four lead molecules are prioritized which have shown a higher binding affinity and inhibition constant than the reference ligand molecule. The binding and conformational stability of docked complexes was evaluated by molecular dynamics simulations and binding free energy calculations i.e., MM/PBSA. A list of amino acids such as Ala225, Ser226, Phe227, and Asn229 present in the binding site of protein is obtained to be playing an important role in the stability of the protein-lead complex via hydrogen bond and π-π interactions. Binding free energy calculation revealed that the selected lead molecule binding is energetically favorable and driven by electrostatic interactions. Among 24 leads, computational results have uncovered eight promising compounds as potential herbicides which have shown comparable physiochemical profile, better docking scores, system stability, H-bond occupancy, and binding free energy than terbutryn, a reference molecule. These prioritized molecules were custom synthesized and evaluated for their herbicidal activity and specificity through whole plant assay under laboratory-controlled conditions. The lead molecule ELC5 (6-ethoxy-4-N-(2-morpholin-4-ylethyl)-2-N-propan-2-yl-1,3,5-triazine-2,4-diamine) has shown comparable activity to the reference herbicide(isoproturon) against P. minor.
Collapse
|
4
|
Lemke P, Moerschbacher BM, Singh R. Transcriptome Analysis of Solanum Tuberosum Genotype RH89-039-16 in Response to Chitosan. FRONTIERS IN PLANT SCIENCE 2020; 11:1193. [PMID: 32903855 PMCID: PMC7438930 DOI: 10.3389/fpls.2020.01193] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Potato (Solanum tuberosum L.) is the worldwide most important nongrain crop after wheat, rice, and maize. The autotetraploidy of the modern commercial potato makes breeding of new resistant and high-yielding cultivars challenging due to complicated and time-consuming identification and selection processes of desired crop features. On the other hand, plant protection of existing cultivars using conventional synthetic pesticides is increasingly restricted due to safety issues for both consumers and the environment. Chitosan is known to display antimicrobial activity against a broad range of plant pathogens and shows the ability to trigger resistance in plants by elicitation of defense responses. As chitosan is a renewable, biodegradable and nontoxic compound, it is considered as a promising next-generation plant-protecting agent. However, the molecular and cellular modes of action of chitosan treatment are not yet understood. In this study, transcriptional changes in chitosan-treated potato leaves were investigated via RNA sequencing. Leaves treated with a well-defined chitosan polymer at low concentration were harvested 2 and 5 h after treatment and their expression profile was compared against water-treated control plants. We observed 32 differentially expressed genes (fold change ≥ 1; p-value ≤ 0.05) 2 h after treatment and 83 differentially expressed genes 5 h after treatment. Enrichment analysis mainly revealed gene modulation associated with electron transfer chains in chloroplasts and mitochondria, accompanied by the upregulation of only a very limited number of genes directly related to defense. As chitosan positively influences plant growth, yield, and resistance, we conclude that activation of electron transfer might result in the crosstalk of different organelles via redox signals to activate immune responses in preparation for pathogen attack, concomitantly resulting in a generally improved metabolic state, fostering plant growth and development. This conclusion is supported by the rapid and transient production of reactive oxygen species in a typical oxidative burst in the potato leaves upon chitosan treatment. This study furthers our knowledge on the mode of action of chitosan as a plant-protecting agent, as a prerequisite for improving its ability to replace or reduce the use of less environmentally friendly agro-chemicals.
Collapse
Affiliation(s)
| | - Bruno M. Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany
| | - Ratna Singh
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany
| |
Collapse
|
5
|
Shi Y, Cai Z, Li D, Lu J, Ye J, Liang Y, Zheng X. Effect of Freezing on Photosystem II and Assessment of Freezing Tolerance of Tea Cultivar. PLANTS 2019; 8:plants8100434. [PMID: 31652528 PMCID: PMC6843692 DOI: 10.3390/plants8100434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 11/23/2022]
Abstract
Freezing tolerant tea cultivars are urgently needed. The tea cultivars with highly freezing tolerance showed resistance to freezing stress induced photoinhibition. Freezing sensitivity index (H) of 47 tea clonal cultivars was investigated after severe freezing winter in 2016. To develop instrumental methods for freezing tolerance selection, the maximum photochemical efficiency of photosystem II (PSII) (Fv/Fm) and leaf color indicator a on the Hunter color scale were determined on control group (non-frozen) and frozen group (being frozen at −15 °C for 2 h and then stood at 20 °C for 5 h) of the cultivars. When the two indicators were expressed as the ratios (RFv/Fm and Ra) of frozen group to control group, linear regression of the freezing sensitivity index (H) upon the RFv/Fm and Ra produced significant relationship respectively, i.e., H = 60.31 − 50.09 RFv/Fm (p < 0.01) and H = 30.03 − 10.82 Ra (p < 0.01). Expression of gene psbA encoding D1 protein and gene psbD encoding D2 protein in PSII showed that the frezzing tolerant tea cultivars maintained a high expression level of psbA after freezing stress, which is considered to be beneficial to de novo synthesis of D1 protein and sustaining PSII activity. These findings can provide instrumental tools for assessing freezing tolerance of tea cultivars in tea breeding program.
Collapse
Affiliation(s)
- Yunlong Shi
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Zhuoyu Cai
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Da Li
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Jianliang Lu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Jianhui Ye
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Yuerong Liang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Xinqiang Zheng
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Brelsford CC, Morales LO, Nezval J, Kotilainen TK, Hartikainen SM, Aphalo PJ, Robson TM. Do UV-A radiation and blue light during growth prime leaves to cope with acute high light in photoreceptor mutants of Arabidopsis thaliana? PHYSIOLOGIA PLANTARUM 2019; 165:537-554. [PMID: 29704249 DOI: 10.1111/ppl.12749] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/14/2018] [Accepted: 04/25/2018] [Indexed: 05/22/2023]
Abstract
We studied how plants acclimated to growing conditions that included combinations of blue light (BL) and ultraviolet (UV)-A radiation, and whether their growing environment affected their photosynthetic capacity during and after a brief period of acute high light (as might happen during an under-canopy sunfleck). Arabidopsis thaliana Landsberg erecta wild-type were compared with mutants lacking functional blue light and UV photoreceptors: phototropin 1, cryptochromes (CRY1 and CRY2) and UV RESISTANT LOCUS 8 (uvr8). This was achieved using light-emitting-diode (LED) lamps in a controlled environment to create treatments with or without BL, in a split-plot design with or without UV-A radiation. We compared the accumulation of phenolic compounds under growth conditions and after exposure to 30 min of high light at the end of the experiment (46 days), and likewise measured the operational efficiency of photosystem II (ϕPSII, a proxy for photosynthetic performance) and dark-adapted maximum quantum yield (Fv /Fm to assess PSII damage). Our results indicate that cryptochromes are the main photoreceptors regulating phenolic compound accumulation in response to BL and UV-A radiation, and a lack of functional cryptochromes impairs photosynthetic performance under high light. Our findings also reveal a role for UVR8 in accumulating flavonoids in response to a low UV-A dose. Interestingly, phototropin 1 partially mediated constitutive accumulation of phenolic compounds in the absence of BL. Low-irradiance BL and UV-A did not improve ϕPSII and Fv /Fm upon our acute high-light treatment; however, CRYs played an important role in ameliorating high-light stress.
Collapse
Affiliation(s)
- Craig C Brelsford
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Center (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Luis O Morales
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Center (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Jakub Nezval
- Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic
| | - Titta K Kotilainen
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Center (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Saara M Hartikainen
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Center (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Pedro J Aphalo
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Center (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - T Matthew Robson
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Center (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
7
|
Ma J, Wang W, Qu L, Liu X, Wang Z, Qiao S, Wu H, Gao G, Xu J. Differential Photosynthetic Response of a Green Tide Alga Ulva linza to Ultraviolet Radiation, Under Short- and Long-term Ocean Acidification Regimes. Photochem Photobiol 2019; 95:990-998. [PMID: 30636002 DOI: 10.1111/php.13083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/04/2019] [Indexed: 11/29/2022]
Abstract
Both ocean acidification (OA) and solar ultraviolet (UV) radiation can bring about changes in macroalgal physiological performance. However, macroalgal responses to UV radiation when acclimatized to OA under different time scales are rare. Here, we investigate the response of Ulva linza, a green tide alga, to UV radiation in the form of photosynthetically active radiation (PAR) or PAB (PAR+UVA+UVB) radiation. Radiation exposures were assessed following long-term (from spore to adult stage, 1 month) and short-term (adult stage, 1 week) OA treatments. Results showed that increased CO2 decreased the damage rate (k) and repair rate (r) of thalli grown under short-term OA conditions with PAB treatment, the ratio of r:k was not altered. Following long-term OA conditions, r was not affected, although k was increased in thalli following PAB treatment, resulting in a reduced ratio of r:k. The relative level of UV inhibition increased and UV-absorbing compounds decreased when algae were cultured under long-term OA conditions. The recovery rate of thalli was enhanced when grown under long-term OA after UV radiation treatment. These results show that blooming algae may be more sensitive to UV radiation in marine environments, but it can develop effective mechanisms to offset the negative effects, reflecting acclimation to long-term OA conditions.
Collapse
Affiliation(s)
- Jing Ma
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology/Marine Resources Development Institute of Jiangsu, Huaihai Institute of Technology, Lianyungang, China
| | - Wen Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology/Marine Resources Development Institute of Jiangsu, Huaihai Institute of Technology, Lianyungang, China
| | - Liming Qu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology/Marine Resources Development Institute of Jiangsu, Huaihai Institute of Technology, Lianyungang, China
| | - Xiaoyan Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology/Marine Resources Development Institute of Jiangsu, Huaihai Institute of Technology, Lianyungang, China
| | - Zhiqin Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology/Marine Resources Development Institute of Jiangsu, Huaihai Institute of Technology, Lianyungang, China
| | - Sen Qiao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology/Marine Resources Development Institute of Jiangsu, Huaihai Institute of Technology, Lianyungang, China
| | - Hailong Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology/Marine Resources Development Institute of Jiangsu, Huaihai Institute of Technology, Lianyungang, China
| | - Guang Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology/Marine Resources Development Institute of Jiangsu, Huaihai Institute of Technology, Lianyungang, China
| | - Juntian Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology/Marine Resources Development Institute of Jiangsu, Huaihai Institute of Technology, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, China
| |
Collapse
|
8
|
Müller C, Silveira SFDS, Daloso DDM, Mendes GC, Merchant A, Kuki KN, Oliva MA, Loureiro ME, Almeida AM. Ecophysiological responses to excess iron in lowland and upland rice cultivars. CHEMOSPHERE 2017; 189:123-133. [PMID: 28934652 DOI: 10.1016/j.chemosphere.2017.09.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/29/2017] [Accepted: 09/08/2017] [Indexed: 05/10/2023]
Abstract
Iron (Fe) is an essential nutrient for plants but under high concentrations, such as that found naturally in clay and waterlogged soils, its toxic effect can limit production. This study aimed to investigate the stress tolerance responses exhibited by different rice cultivars. Both lowland and upland cultivars were grown under excess Fe and hypoxic conditions. Lowland cultivars showed higher Fe accumulation in roots compared with upland cultivars suggesting the use of different strategies to tolerate excess Fe. The upland Canastra cultivar displayed a mechanism to limit iron translocation from roots to the shoots, minimizing leaf oxidative stress induced by excess Fe. Conversely, the cultivar Curinga invested in the increase of R1/A, as an alternative drain of electrons. However, the higher iron accumulation in the leaves, was not necessarily related to high toxicity. Nutrient uptake and/or utilization mechanisms in rice plants are in accordance with their needs, which may be defined in relation to crop environments. Alterations in the biochemical parameters of photosynthesis suggest that photosynthesis in rice under excess Fe is primarily limited by biochemical processes rather than by diffusional limitations, particularly in the upland cultivars. The electron transport rate, carboxylation efficiency and electron excess dissipation by photorespiration demonstrate to be good indicators of iron tolerance. Altogether, these chemical and molecular patterns suggests that rice plants grown under excess Fe exhibit gene expression reprogramming in response to the Fe excess per se and in response to changes in photosynthesis and nutrient levels to maintain growth under stress.
Collapse
Affiliation(s)
- Caroline Müller
- Department of Plant Biology, Federal University of Viçosa, 36570-000, Viçosa, MG, Brazil.
| | | | | | - Giselle Camargo Mendes
- Department of Plant Biology, Federal University of Viçosa, 36570-000, Viçosa, MG, Brazil
| | - Andrew Merchant
- Faculty of Agriculture and the Environment, The University of Sydney, Sydney, 2006, Australia
| | - Kacilda Naomi Kuki
- Department of Plant Biology, Federal University of Viçosa, 36570-000, Viçosa, MG, Brazil
| | - Marco Antonio Oliva
- Department of Plant Biology, Federal University of Viçosa, 36570-000, Viçosa, MG, Brazil
| | | | - Andréa Miyasaka Almeida
- Department of Plant Biology, Federal University of Viçosa, 36570-000, Viçosa, MG, Brazil; Center of Plant Biotechnology, Universidad Andrés Bello, 8370146, Santiago, Chile
| |
Collapse
|
9
|
Hou S, Shu W, Tan S, Zhao L, Yin P. Exploration of the antioxidant system and photosynthetic system of a marine algicidal Bacillus and its effect on four harmful algal bloom species. Can J Microbiol 2015; 62:49-59. [PMID: 26634608 DOI: 10.1139/cjm-2015-0425] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel marine bacterium, strain B1, initially showed 96.4% algicidal activity against Phaeocystis globosa. Under this situation, 3 other harmful algal species (Skeletonema costatum, Heterosigma akashiwo, and Prorocentrum donghaiense) were chosen to study the algicidal effects of strain B1, and the algicidal activities were 91.4%, 90.7%, and 90.6%, respectively. To explore the algicidal mechanism of strain B1 on these 4 harmful algal species, the characteristics of the antioxidant system and photosynthetic system were studied. Sensitivity to strain B1 supernatant, enzyme activity, and gene expression varied with algal species, while the algicidal patterns were similar. Strain B1 supernatant increased malondialdehyde contents; decreased chlorophyll a contents; changed total antioxidant and superoxide dismutase activity; and restrained psbA, psbD, and rbcL genes expression, which eventually resulted in the algal cells death. The algicidal procedure was observed using field emission scanning electron microscopy, which indicated that algal cells were lysed and cellular substances were released. These findings suggested that the antioxidant and photosynthetic system of these 4 algal species was destroyed under strain B1 supernatant stress. This is the first report to explore and compare the mechanism of a marine Bacillus against harmful algal bloom species of covered 4 phyla.
Collapse
Affiliation(s)
- Shaoling Hou
- a Key Laboratory of Water and Soil Pollution Control and Bioremediation of Guangdong Higher Education Institutes, School of Environment, Jinan University, Guangzhou 510632, People's Republic of China.,b Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wanjiao Shu
- a Key Laboratory of Water and Soil Pollution Control and Bioremediation of Guangdong Higher Education Institutes, School of Environment, Jinan University, Guangzhou 510632, People's Republic of China.,b Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou 510632, People's Republic of China
| | - Shuo Tan
- c Department of Chemistry, Jinan University, Guangzhou 510632, People's Republic of China
| | - Ling Zhao
- a Key Laboratory of Water and Soil Pollution Control and Bioremediation of Guangdong Higher Education Institutes, School of Environment, Jinan University, Guangzhou 510632, People's Republic of China.,b Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou 510632, People's Republic of China
| | - Pinghe Yin
- c Department of Chemistry, Jinan University, Guangzhou 510632, People's Republic of China.,d Research Center of Analytical Testing, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|
10
|
Li Y, Zhu H, Lei X, Zhang H, Cai G, Chen Z, Fu L, Xu H, Zheng T. The death mechanism of the harmful algal bloom species Alexandrium tamarense induced by algicidal bacterium Deinococcus sp. Y35. Front Microbiol 2015; 6:992. [PMID: 26441921 PMCID: PMC4585090 DOI: 10.3389/fmicb.2015.00992] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/04/2015] [Indexed: 11/13/2022] Open
Abstract
Harmful algal blooms (HABs) cause a variety of deleterious effects on aquatic ecosystems, especially the toxic dinoflagellate Alexandrium tamarense, which poses a serious threat to marine economic and human health based on releasing paralytic shellfish poison into the environment. The algicidal bacterium Deinococcus sp. Y35 which can induce growth inhibition on A. tamarense was used to investigate the functional mechanism. The growth status, reactive oxygen species (ROS) content, photosynthetic system and the nuclear system of algal cells were determined under algicidal activity. A culture of strain Y35 not only induced overproduction of ROS in algal cells within only 0.5 h of treatment, also decrease the total protein content as well as the response of the antioxidant enzyme. Meanwhile, lipid peroxidation was induced and cell membrane integrity was lost. Photosynthetic pigments including chlorophyll a and carotenoid decreased along with the photosynthetic efficiency being significantly inhibited. At the same time, photosynthesis-related gene expression showed down-regulation. More than, the destruction of cell nuclear structure and inhibition of proliferating cell nuclear antigen (PCNA) related gene expression were confirmed. The potential functional mechanism of the algicidal bacterium on A. tamarense was investigated and provided a novel viewpoint which could be used in HABs control.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China ; College of Life Sciences, Henan Normal University Xinxiang, China
| | - Hong Zhu
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China
| | - Xueqian Lei
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China
| | - Huajun Zhang
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China
| | - Guanjing Cai
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China
| | - Zhangran Chen
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China
| | - Lijun Fu
- Department of Environment and Life Science, Putian University Putian, China
| | - Hong Xu
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China
| | - Tianling Zheng
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China
| |
Collapse
|
11
|
Lei X, Li D, Li Y, Chen Z, Chen Y, Cai G, Yang X, Zheng W, Zheng T. Comprehensive insights into the response of Alexandrium tamarense to algicidal component secreted by a marine bacterium. Front Microbiol 2015; 6:7. [PMID: 25667582 PMCID: PMC4304249 DOI: 10.3389/fmicb.2015.00007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/05/2015] [Indexed: 01/12/2023] Open
Abstract
Harmful algal blooms occur throughout the world, threatening human health, and destroying marine ecosystems. Alexandrium tamarense is a globally distributed and notoriously toxic dinoflagellate that is responsible for most paralytic shellfish poisoning incidents. The culture supernatant of the marine algicidal bacterium BS02 showed potent algicidal effects on A. tamarense ATGD98-006. In this study, we investigated the effects of this supernatant on A. tamarense at physiological and biochemical levels to elucidate the mechanism involved in the inhibition of algal growth by the supernatant of the strain BS02. Reactive oxygen species (ROS) levels increased following exposure to the BS02 supernatant, indicating that the algal cells had suffered from oxidative damage. The levels of cellular pigments, including chlorophyll a and carotenoids, were significantly decreased, which indicated that the accumulation of ROS destroyed pigment synthesis. The decline of the maximum photochemical quantum yield (Fv/Fm) and relative electron transport rate (rETR) suggested that the photosynthesis systems of algal cells were attacked by the BS02 supernatant. To eliminate the ROS, the activities of antioxidant enzymes, including superoxide dismutase (SOD) and catalase (CAT), increased significantly within a short period of time. Real-time PCR revealed changes in the transcript abundances of two target photosynthesis-related genes (psbA and psbD) and two target respiration-related genes (cob and cox). The transcription of the respiration-related genes was significantly inhibited by the treatments, which indicated that the respiratory system was disturbed. Our results demonstrate that the BS02 supernatant can affect the photosynthesis process and might block the PS II electron transport chain, leading to the production of excessive ROS. The increased ROS can further destroy membrane integrity and pigments, ultimately inducing algal cell death.
Collapse
Affiliation(s)
- Xueqian Lei
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China ; ShenZhen Research Institute of Xiamen University ShenZhen, China
| | - Dong Li
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China ; Fujian Center for Disease Control and Prevention Fuzhou, China
| | - Yi Li
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China
| | - Zhangran Chen
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China
| | - Yao Chen
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China
| | - Guanjing Cai
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China
| | - Xujun Yang
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China
| | - Wei Zheng
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China ; ShenZhen Research Institute of Xiamen University ShenZhen, China
| | - Tianling Zheng
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China ; ShenZhen Research Institute of Xiamen University ShenZhen, China
| |
Collapse
|
12
|
Li Y, Zhu H, Guan C, Zhang H, Guo J, Chen Z, Cai G, Lei X, Zheng W, Tian Y, Xiong X, Zheng T. Towards molecular, physiological, and biochemical understanding of photosynthetic inhibition and oxidative stress in the toxic Alexandrium tamarense induced by a marine bacterium. Appl Microbiol Biotechnol 2014; 98:4637-52. [DOI: 10.1007/s00253-014-5578-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/17/2014] [Accepted: 01/26/2014] [Indexed: 11/29/2022]
|
13
|
|
14
|
Satoh K, Yamamoto Y. The carboxyl-terminal processing of precursor D1 protein of the photosystem II reaction center. PHOTOSYNTHESIS RESEARCH 2007; 94:203-15. [PMID: 17551844 DOI: 10.1007/s11120-007-9191-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2006] [Accepted: 04/26/2007] [Indexed: 05/03/2023]
Abstract
The D1 protein, a key subunit of photosystem II reaction center, is synthesized as a precursor form with a carboxyl-terminal extension, in oxygenic photosynthetic organisms with some exceptions. This part of the protein is removed by the action of an endopeptidase, and the proteolytic processing is indispensable for the manifestation of oxygen-evolving activity in photosynthesis. The carboxyl-terminus of mature D1 protein, which appears upon the cleavage, has recently been demonstrated to be a ligand for a manganese atom in the Mn(4)Ca-cluster, which is responsible for the water oxidation chemistry in photosystem II, based on the isotope-edited Fourier transform infrared spectroscopy and the X-ray crystallography. On the other hand, the structure of a peptidase involved in the cleavage of precursor D1 protein has been resolved at a higher resolution, and the enzyme-substrate interactions have extensively been analyzed both in vivo and in vitro. The present article briefly summarizes the history of research and the present state of our knowledge on the carboxyl-terminal processing of precursor D1 protein in the photosystem II reaction center.
Collapse
|
15
|
Evidence for the photo-induced oxidation of the primary electron donor P680 in the isolated photosystem II reaction centre. FEBS Lett 2001. [DOI: 10.1016/0014-5793(89)80287-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Gounaris K, Chapman DJ, Barber J. The interaction between the 33 kDa manganese-stabilising protein and the D1
/D2
cytochrome b
-559 complex. FEBS Lett 2001. [DOI: 10.1016/0014-5793(88)80119-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Telfer A, Barber J, Evans M. Oxidation-reduction potential dependence of reaction centre triplet formation in the isolated D1/D2/cytochromeb-559 photosystem II complex. FEBS Lett 2001. [DOI: 10.1016/0014-5793(88)80418-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Taylor M, Packer J, Bowyer J. Processing of the D1 polypeptide of the photosystem II reaction centre and photoactivation of a low fluorescence mutant (LF-1) ofScenedesmus obliquus. FEBS Lett 2001. [DOI: 10.1016/0014-5793(88)80207-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Taylor M, Nixon P, Todd C, Barber J, Bowyer J. Characterisation of the D1 protein in a photosystem II mutant (LF-1) of Scenedesmus obliquus
blocked on the oxidising side Evidence supporting non-processing of D1 as the cause of the lesion. FEBS Lett 2001. [DOI: 10.1016/0014-5793(88)81243-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Deo PM, Biswal B. Response of senescing cotyledons of clusterbean to water stress in moderate and low light: Possible photoprotective role of beta-carotene. PHYSIOLOGIA PLANTARUM 2001; 112:47-54. [PMID: 11319014 DOI: 10.1034/j.1399-3054.2001.1120107.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Senescence of clusterbean (Cyamopsis tetragonoloba L.) cotyledons in moderate light (12 W m-2) brings about a loss in the pigments, enhanced lipid peroxidation and a decline in PS II photochemical activity without any loss either in Dl protein or in the level of beta-carotene. The senescence syndrome is aggravated in the cotyledons of water-stressed seedlings with an increase in thylakoid lipid peroxidation, a decline in the level of beta-carotene and a quantitative loss in the Dl protein. Loss of the protein, however, is arrested in the seedlings experiencing water stress at low light (3 W m-2) intensity that correlates with the stability in the level of beta-carotene and a slow rate of lipid peroxidation. Loss of the protein in moderate light is attributed to water-stress sensitized photoinhibitory damage. The data on changes in the components of xanthophyll cycle suggest the low activity of the cycle both during senescence and water stress. It is, therefore, concluded that beta-carotene may contribute to the assembly and stability of the Dl protein during senescence and water stress in clusterbean cotyledons.
Collapse
Affiliation(s)
- Prativa M. Deo
- Department of Botany, GM Autonomous College, Sambalpur - 768 004, Orissa, India; Biochemistry Laboratory School of Life Sciences, Sambalpur University, Jyoti Vihar - 768019, Orissa, India
| | | |
Collapse
|
21
|
Hankamer B, Nield J, Zheleva D, Boekema E, Jansson S, Barber J. Isolation and biochemical characterisation of monomeric and dimeric photosystem II complexes from spinach and their relevance to the organisation of photosystem II in vivo. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 243:422-9. [PMID: 9030768 DOI: 10.1111/j.1432-1033.1997.0422a.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Membranes enriched in photosystem II were isolated from spinach and further solubilised using n-octyl beta-D-glucopyranoside (OctGlc) and n-dodecyl beta-D-maltoside (DodGlc2). The OctGlc preparation had high rates of oxygen evolution and when subjected to size-exclusion HPLC and sucrose density gradient centrifugation, in the presence of DodGlc2, separated into dimeric (430 kDa), monomeric (236 kDa) photosystem II cores and a fraction containing photosystem II light-harvesting complex (Lhcb) proteins. The dimeric core fraction was more stable, contained higher levels of chlorophyll, beta-carotene and plastoquinone per photosystem II reaction centre and had a higher oxygen-evolving activity than the monomeric cores. Their subunit composition was similar (CP43, CP47, D1, D2, cytochrome b 559 and several lower-molecular-mass components) except that the level of 33-kDa extrinsic protein was lower in the monomeric fraction. Direct solubilisation of photosystem-II-enriched membranes with DodGlc2, followed by sucrose density gradient centrifugation, yielded a super complex (700 kDa) containing the dimeric form of the photosystem II core and Lhcb proteins: Lhcb1, Lhcb2, Lhcb4 (CP29), and Lhcb5 (CP26). Like the dimeric and monomeric photosystem II core complexes, the photosystem II-LHCII complex had lost the 23-kDa and 17-kDa extrinsic proteins, but maintained the 33-kDa protein and the ability to evolve oxygen. It is suggested, with a proposed model, that the isolated photosystem II-LHCII super complex represents an in vivo organisation that can sometimes form a lattice in granal membranes of the type detected by freeze-etch electron microscopy [Seibert, M., DeWit, M. & Staehelin, L. A. (1987) J. Cell Biol. 105, 2257-2265].
Collapse
Affiliation(s)
- B Hankamer
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, UK
| | | | | | | | | | | |
Collapse
|
22
|
Liu Y, Golden SS, Kondo T, Ishiura M, Johnson CH. Bacterial luciferase as a reporter of circadian gene expression in cyanobacteria. J Bacteriol 1995; 177:2080-6. [PMID: 7536731 PMCID: PMC176852 DOI: 10.1128/jb.177.8.2080-2086.1995] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
To allow continuous monitoring of the circadian clock in cyanobacteria, we previously created a reporter strain (AMC149) of Synechococcus sp. strain PCC 7942 in which the promoter of the psbAI gene was fused to Vibrio harveyi luciferase structural genes (luxAB) and integrated into the chromosome. Northern (RNA) hybridization and immunoblot analyses were performed to examine changes in abundance of the luxAB mRNA, the native psbAI mRNA, and the luciferase protein to determine whether bioluminescence is an accurate reporter of psbAI promoter activity in AMC149. Under constant light conditions, the mRNA abundances of both luxAB and psbAI oscillated with a period of approximately 24 h for at least 2 days. The expression of these two genes following the same pattern: both mRNAs peaked in the subjective morning, and their troughs occurred near the end of the subjective night. The amount of luciferase protein also oscillated with a period of approximately 24 h, and the protein rhythm is in phase with the bioluminescence rhythm. The rhythm of the luciferase mRNA phase-leads the rhythms of luciferase protein and in vivo bioluminescence by several hours. Comparable results were obtained with a short-period mutant of AMC149. Together, these results indicate that the bioluminescence rhythm in AMC149 is due primarily to circadian oscillation of psbAI promoter activity in this cyanobacterium.
Collapse
Affiliation(s)
- Y Liu
- Department of Biology, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | |
Collapse
|
23
|
Whitelegge JP, Koo D, Diner BA, Domian I, Erickson JM. Assembly of the Photosystem II oxygen-evolving complex is inhibited in psbA site-directed mutants of Chlamydomonas reinhardtii. Aspartate 170 of the D1 polypeptide. J Biol Chem 1995; 270:225-35. [PMID: 7814379 DOI: 10.1074/jbc.270.1.225] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Photosystem II catalyzes the photooxidation of water to molecular oxygen, providing electrons to the photosynthetic electron transfer chain. The D1 and D2 chloroplast-encoded reaction center polypeptides bind cofactors essential for Photosystem II function. Transformation of the chloroplast genome of the eukaryotic green alga Chlamydomonas reinhardtii has allowed us to engineer site-directed mutants in which aspartate residue 170 of D1 is replaced by histidine (D170H), asparagine (D170N), threonine (D170T), or proline (D170P). Mutants D170T and D170P are completely deficient in oxygen evolution, but retain normal (D170T) or 50% (D170P) levels of Photosystem II reaction centers. D170H and D170N accumulate wild-type levels of PSII centers, yet evolve oxygen at rates approximately 45% and 15% those of control cells, respectively. Kinetic analysis of chlorophyll fluorescence in the mutants reveals a specific defect in electron donation to the reaction center. Measurements of oxygen flash yields in D170H show, however, that those reaction centers capable of evolving oxygen function normally. We conclude that aspartate residue 170 of the D1 polypeptide plays a critical role in the initial binding of manganese as the functional chloroplast oxygen-evolving complex is assembled.
Collapse
Affiliation(s)
- J P Whitelegge
- Department of Biology, University of California, Los Angeles 90024
| | | | | | | | | |
Collapse
|
24
|
|
25
|
Isolation and characterization of Photosystems I and II from the red alga Porphyridium cruentum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1994. [DOI: 10.1016/0005-2728(94)90056-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Shipton CA, Barber J. In vivo and in vitro photoinhibition reactions generate similar degradation fragments of D1 and D2 photosystem-II reaction-centre proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 220:801-8. [PMID: 8143734 DOI: 10.1111/j.1432-1033.1994.tb18682.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Isolation of photosystem-II reaction centres from pea leaves after photoinhibitory treatment at low temperature (0-1 degrees C) has provided evidence for the mechanism of degradation of the D1 protein in vivo. These isolated reaction centres did not appear to be spectrally distinct from preparations obtained from control leaves that had not been photoinhibited. Breakdown fragments of both the D1 and D2 proteins were, however, found in preparations isolated from photoinhibited leaves, and showed similarities with those detected when isolated reaction centres were exposed to acceptor-side photoinhibition. Analyses of the origin of D1 fragments indicated that the primary cleavage site of this protein was between transmembrane helices IV and V indicative of the acceptor-side mechanism for photoinhibition. The origins of other D1 protein fragments indicate that some donor-side photoinhibition may also have occurred in vivo under the conditions employed. We have shown that the spectral and functional integrating of the isolated photosystem II reaction centre complex is resistant to proteolytic cleavage by trypsin. Use of a more non-specific protease (subtilisin), however, caused significant destabilisation of the special pair of chlorophylls constituting the primary electron donor, P680, with a consequential loss of functional activity. Thus, it is possible that specific cleavage of photosystem-II reaction-centre proteins may occur in vivo following photoinhibitory damage without a significant change in structural integrity, a conclusion supported by the finding that photodamaged and normal reaction centres were isolated together.
Collapse
Affiliation(s)
- C A Shipton
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, England
| | | |
Collapse
|
27
|
Kulkarni RD, Golden SS. Adaptation to high light intensity in Synechococcus sp. strain PCC 7942: regulation of three psbA genes and two forms of the D1 protein. J Bacteriol 1994; 176:959-65. [PMID: 8106338 PMCID: PMC205145 DOI: 10.1128/jb.176.4.959-965.1994] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The three psbA genes in the cyanobacterium Synechococcus sp. strain PCC 7942 encode two distinct forms of the D1 protein of photosystem II. The psbAI message, which encodes form I, dominates the psbA transcript pool at low to moderate light intensities; however, exposure to high light triggers a response in which the psbAI message is actively degraded while psbAII and psbAIII, which encode form II, are transcriptionally induced. We addressed whether these changes result from a generalized stress response and examined the consequence of light-responsive psbA regulation on the composition of D1 in thylakoid membranes. Heat shock and oxidative stress had some effect on levels of the three psbA transcripts but did not produce the responses generated by an increase in light intensity. Prolonged exposure to high light (24-h time course) was characterized by elevated levels of all psbA transcripts through maintenance of high levels of psbAII and psbAIII messages and a rebound of the psbAI transcript after its initial decline. Form II-encoding transcripts were enriched relative to those encoding form I at all high-light time points. Form II replaced form I in the thylakoid membrane at high light despite an abundance of psbAI transcript at later time points; this may be explained by the observed faster turnover of form I than form II in the membrane. We propose that form II is less susceptible to damage at high light and that this qualitative alteration, coupled with increased turnover of D1, protects the cells from photoinhibition.
Collapse
Affiliation(s)
- R D Kulkarni
- Department of Biology, Texas A&M University, College Station 77843-3258
| | | |
Collapse
|
28
|
Jansen M, Depka B, Trebst A, Edelman M. Engagement of specific sites in the plastoquinone niche regulates degradation of the D1 protein in photosystem II. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36917-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Moskalenko AA, Barbato R, Giacometti GM. Investigation of the neighbour relationships between photosystem II polypeptides in the two types of isolated reaction centres (D1/D2/cytb559 and CP47/D1/D2/cyt b559 complexes). FEBS Lett 1992; 314:271-4. [PMID: 1468557 DOI: 10.1016/0014-5793(92)81487-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nearest neighbour relationships within the D1/D2/cyt b559 complex (PSIIRC) and the CP47/D1/D2/cyt b559 complex (RC-CP47) were investigated by using different length bifunctional crosslinking agents. The crosslinking products were identified by immunoblotting with polyclonal antibodies and by two-dimensional gel electrophoresis. Seven products (CP47/D2, D1/D2/alpha, D1/D2, D2/alpha, D1/alpha, alpha/alpha, alpha/beta) have been revealed in both complexes. The crosslinking of both complexes does not increase their photostability. The photocrosslinking products (D1/alpha and D2/alpha) appeared under illumination of complexes with light of high intensity.
Collapse
Affiliation(s)
- A A Moskalenko
- Institute of Soil Science and Photosynthesis RAS, Pushchino, Russian Federation
| | | | | |
Collapse
|
30
|
Nixon PJ, Trost JT, Diner BA. Role of the carboxy terminus of polypeptide D1 in the assembly of a functional water-oxidizing manganese cluster in photosystem II of the cyanobacterium Synechocystis sp. PCC 6803: assembly requires a free carboxyl group at C-terminal position 344. Biochemistry 1992; 31:10859-71. [PMID: 1420199 DOI: 10.1021/bi00159a029] [Citation(s) in RCA: 185] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The D1 polypeptide of the photosystem II (PSII) reaction center is synthesized as a precursor polypeptide which is posttranslationally processed at the carboxy terminus. It has been shown in spinach that such processing removes nine amino acids, leaving Ala344 as the C-terminal residue [Takahashi, M., Shiraishi, T., & Asada, K. (1988) FEBS Lett. 240, 6-8; Takahashi, Y., Nakane, H., Kojima, H., & Satoh, K. (1990) Plant Cell Physiol. 31, 273-280]. We show here that processing on the carboxy side of Ala344 also occurs in the cyanobacterium Synechocystis 6803, resulting in the removal of 16 amino acids. By constructing a deletion strain of Synechocystis 6803 that lacks the three copies of the psbA gene encoding D1, we have developed a system for generating psbA mutants. Using this system, we have constructed mutants of Synechocystis 6803 that are modified in the region of the C-terminus of the D1 polypeptide. Characterization of these mutants has revealed that (1) processing of the D1 polypeptide is blocked when the residue after the cleavage site is changed from serine to proline (mutant Ser345Pro) with the result that the manganese cluster is unable to assemble correctly; (2) the C-terminal extension of 16 amino acid residues can be deleted with little consequence either for insertion of D1 into the thylakoid membrane or for assembly of D1 into a fully active PSII complex; (3) removal of only one more residue (mutant Ala344stop) results in a loss of assembly of the manganese cluster; and (4) the ability of detergent-solubilized PSII core complexes (lacking the manganese cluster) to bind and oxidize exogenous Mn2+ by the secondary donor, Z+, is largely unaffected in the processing mutants (the Ser345Pro mutant of Synechocystis 6803 and the LF-1 mutant of Scenedesmus obliquus) and the truncation mutant Ala344stop. Our results are consistent with a role for processing in regulating the assembly of the photosynthetic manganese cluster and a role for the free carboxy terminus of the mature D1 polypeptide in the ligation of one or more manganese ions of the cluster.
Collapse
Affiliation(s)
- P J Nixon
- Central Research and Development Department, E.I. Du Pont de Nemours & Company, Wilmington, Delaware 19880-0173
| | | | | |
Collapse
|
31
|
Barbato R, Friso G, de Laureto PP, Frizzo A, Rigoni F, Giacometti GM. Light-induced degradation of D2 protein in isolated photosystem II reaction center complex. FEBS Lett 1992; 311:33-6. [PMID: 1397286 DOI: 10.1016/0014-5793(92)81360-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
When isolated photosystem II reaction centers from spinach are exposed to photoinhibitory light in the presence of an electron acceptor, breakdown products of the D2 protein at 28, 25, 23, 18, 9, 5 and 4.5 kDa are detected by immunoblotting with a monospecific anti-D2 polyclonal antibody. In a time-course experiment the 23 and 4.5 kDa fragments show a transient appearance, whilst the others are photoaccumulated. The regions of the D2 protein containing the cleavage sites for the 28 and 18 kDa photoinduced fragments have been identified. Significant degradation of D2 takes place only in the presence of an electron acceptor, and breakdown of the protein is partially prevented by serine-type protease inhibitors.
Collapse
Affiliation(s)
- R Barbato
- Dipartimento di Biologia dell'Università di Padova, Italy
| | | | | | | | | | | |
Collapse
|
32
|
Whitelegge JP, Jewess P, Pickering MG, Gerrish C, Camilleri P, Bowyer JR. Sequence analysis of photoaffinity-labelled peptides derived by proteolysis of photosystem-2 reaction centres from thylakoid membranes treated with [14C]azidoatrazine. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 207:1077-84. [PMID: 1499553 DOI: 10.1111/j.1432-1033.1992.tb17144.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Photosystem-2 reaction centres were prepared from pea thylakoid membranes that had been photoaffinity labelled with [14C]-azidoatrazine (2-azido-4-ethylamino-6-isopropylamino-s-triazine), a derivative of the herbicide atrazine which binds to the secondary plastoquinone electron-acceptor site of photosystem 2. SDS/PAGE of the 14C-labelled reaction centres followed by fluorography revealed photoaffinity-labelled proteins of apparent molecular masses 30 kDa and 55 kDa, which corresponded to the D1 polypeptide and to an SDS-stable heterodimer of the D1 and D2 polypeptides, respectively. To obtain sequence information on the site of photoaffinity labelling, an 8-kDa photoaffinity-labelled peptide, generated by proteolysis of the reaction-centre material with trypsin, was isolated and purified to apparent homogeneity using reverse-phase and size-exclusion HPLC techniques. The amino terminus of the photoaffinity-labelled peptide was determined to be Leu-Gly-Met-Arg-Pro-Xaa-Ile-Ala-Val-Ala-Tyr by Edman sequencing. This corresponds to the amino terminus of a predicted tryptic peptide of D1 and confirms that azidoatrazine photolabels the D1 polypeptide of photosystem 2 in the region Leu137-Arg225. Chymotrypsin/trypsin digestion of photoaffinity-labelled reaction centres followed by reverse-phase HPLC was used to isolate a smaller photoaffinity-labelled peptide. On Edman sequencing, Ser-Ala were identified as the first two residues and 14C was released on the third cycle, after which further degradation was blocked. The two potential peptide fragments with Ser-Ala at the amino terminus in the region Leu137-Arg225 are Ser148-Ala-Pro and Ser212-Ala-Met. Proline is an unlikely target for reaction with the nitrene of the photoactivated azidoatrazine, and the data are thus consistent with Met214 as the site of photoaffinity labelling on D1 when thylakoid membranes are illuminated with ultraviolet irradiation in the presence of [14C]azidoatrazine.
Collapse
Affiliation(s)
- J P Whitelegge
- Department of Biochemistry, Royal Holloway and Bedford New College, University of London, Surrey, England
| | | | | | | | | | | |
Collapse
|
33
|
Kulkarni RD, Schaefer MR, Golden SS. Transcriptional and posttranscriptional components of psbA response to high light intensity in Synechococcus sp. strain PCC 7942. J Bacteriol 1992; 174:3775-81. [PMID: 1592828 PMCID: PMC206068 DOI: 10.1128/jb.174.11.3775-3781.1992] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The psbA genes, which encode the D1 protein of photosystem II, constitute a multigene family in the cyanobacterium Synechococcus sp. strain PCC 7942. Levels of messages from the three psbA genes change rapidly when cells are shifted from low-light to high-light conditions: the psbAI message level drops, whereas psbAII and psbAIII message levels increase dramatically. We examined the potential contributions of transcriptional and posttranscriptional processes in these high-light responses by subjecting cells that had been grown in a turbidostat at a standard light intensity (130 microeinsteins [microE] m-2 s-1) to either the same or a higher light intensity (500 microE m-2 s-1) in the presence or absence of rifampin. Northern (RNA blot) analysis of RNA isolated from cells subjected to high light showed that the increases in psbAII and psbAIII transcripts were blocked by rifampin. This suggests a transcriptional induction of these genes at high light intensities. Increased mRNA stability does not contribute to their accumulation in high-light conditions, since their half-life values did not increase relative to the half-lives measured at the standard light intensity. The rate of disappearance of the psbAI transcript in cells shifted to high light was diminished when either transcription or translation was blocked by rifampin or chloramphenicol, suggesting that accelerated degradation of the message requires de novo synthesis of a protein factor. When rifampin was added 10 min after the shift to high light intensity rather than before the shift, psbAI and psbAIII messages, but not the psbAII message, decayed at a faster rate. Susceptibility of the psbAIII transcript to the high-light-induced factor was also demonstrated by addition of chloramphenicol prior to the shaft to high light. psbAIII transcript levels went up more than twofold higher in chloramphenicol-treated cells than in untreated cells, whereas psbAII transcript levels were affected by the inhibitor. These experiments provide evidence that either new or increased synthesis of a degradation factor which affects a subset of Synechococcus transcripts occurs in cells subjected to high light intensity.
Collapse
Affiliation(s)
- R D Kulkarni
- Department of Biology, Texas A&M University, College Station 77843-3258
| | | | | |
Collapse
|
34
|
Shipton CA, Barber J. Characterization of photoinduced breakdown of the D1-polypeptide in isolated reaction centres of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1992. [DOI: 10.1016/0005-2728(92)90191-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Bustos SA, Golden SS. Expression of the psbDII gene in Synechococcus sp. strain PCC 7942 requires sequences downstream of the transcription start site. J Bacteriol 1991; 173:7525-33. [PMID: 1938947 PMCID: PMC212519 DOI: 10.1128/jb.173.23.7525-7533.1991] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The psbDI and psbDII genes in Synechococcus sp. strain PCC 7942 encode the D2 polypeptide, an essential component of the photosystem II reaction center. Previous studies have demonstrated that transcripts from psbDII, but not psbDI, increase in response to high light intensity. Soluble proteins from Synechococcus cells shifted to high light were found to have affinity for DNA sequences upstream from the psbDII coding region. DNA mobility-shift and copper-phenanthroline footprinting assays of a 258-bp fragment revealed three distinct DNA-protein complexes that mapped to the untranslated leader region between +11 and +84. Deletion of the upstream flanking region to -42 had no effect on the expression of a psbDII-lacZ reporter gene or its induction by light, whereas a promoterless construct supported only minimal background levels of beta-galactosidase. A 4-bp deletion within the first protected region of the footprint decreased the beta-galactosidase activity to approximately 2% of that of the undeleted control, but gene expression remained responsive to light. Deletion of the three protected regions completely abolished both gene expression and light induction. These results suggest that the psbDII gene requires elements within the untranslated leader region for efficient gene expression, one of which may be involved in regulation by light.
Collapse
Affiliation(s)
- S A Bustos
- Department of Biology, Texas A & M University, College Station 77843-3258
| | | |
Collapse
|
36
|
Barbato R, Friso G, Giardi MT, Rigoni F, Giacometti GM. Breakdown of the photosystem II reaction center D1 protein under photoinhibitory conditions: identification and localization of the C-terminal degradation products. Biochemistry 1991; 30:10220-6. [PMID: 1931951 DOI: 10.1021/bi00106a021] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Illumination of a suspension of thylakoids with light at high intensity causes inhibition of the photosystem II electron transport activity and loss from the membrane of the D1 protein of the photosystem II reaction center. Impairment of the electron transport activity and depletion of D1 protein from the thylakoid membrane of pea were investigated with reference to the presence or absence of oxygen in the suspension. The breakdown products of the D1 protein were identified by immunoblotting with anti-D1 polyclonal antibodies which were proven to recognize mainly the C-terminal region of the protein. The results obtained show that (i) the light-induced inactivation of the photosystem II electron transport activity under anaerobic conditions is faster than in the presence of oxygen; (ii) depletion of D1 protein is observed on a longer time scale with respect to loss of electron transport activity and is faster when photoinhibition is performed in the presence of oxygen; (iii) C-terminal fragments of D1 are only observed when photoinhibition is carried out anaerobically and are mainly localized in the stroma-exposed regions; and (iv) the fragments observed after anaerobic photoinhibition are quickly degraded on further illumination of the thylakoid suspension in the presence of oxygen.
Collapse
Affiliation(s)
- R Barbato
- Dipartimento di Biologia, Università di Padova, Italy
| | | | | | | | | |
Collapse
|
37
|
Barbato R, Shipton CA, Giacometti GM, Barber J. New evidence suggests that the initial photoinduced cleavage of the D1-protein may not occur near the PEST sequence. FEBS Lett 1991; 290:162-6. [PMID: 1915869 DOI: 10.1016/0014-5793(91)81250-c] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
When isolated reaction centres of photosystem 2 from pea or wheat are exposed to photoinhibitory illumination in the presence of an electron acceptor, breakdown products of the D1-protein are observed having molecular masses ranging from about 24 to 10 kDa. By using antibodies raised to the C-terminal or N-terminal portions of D1 it was shown that the major breakdown fragment of 24 kDa was derived from the C-terminus. This conclusion was supported by phosphorylation studies and from the digestion pattern obtained by lysine specific endoprotease-induced proteolysis. The complementary N-terminal breakdown fragment was found to have an apparent molecular mass of 10 kDa. The implications of these data are discussed in terms of the possible relationship between the 24 kDa C-terminal fragment and the 23.5 kDa breakdown fragment detected in vivo by Greenberg et al. [1987, EMBO J. 6, 2865-2869] and it is suggested, based on limited proteolysis using papain, that the latter may not be derived from the N-terminus as previously thought but also originates from the C-terminus.
Collapse
Affiliation(s)
- R Barbato
- AFRC Photosynthesis Research Group, Wolfson Laboratories, Biochemistry Department, Imperial College of Science, Technology and Medicine, London, UK
| | | | | | | |
Collapse
|
38
|
Jursinic PA, McCarthy SA, Bricker TM, Stemler A. Characteristics of two atrazine-binding sites that specifically inhibit Photosystem II function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1991. [DOI: 10.1016/s0005-2728(05)80216-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Schmid R, Wennicke R, Fleischhauer S. Quantitative correlation of peripheral and intrinsic core polypeptides of photosystem II with photosynthetic electron-transport activity ofAcetabularia mediterranea in red and blue light. PLANTA 1990; 182:391-398. [PMID: 24197190 DOI: 10.1007/bf02411390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/1990] [Accepted: 06/11/1990] [Indexed: 06/02/2023]
Abstract
The high photosynthetic activity (O2 production and CO2 consumption) ofAcetabularia mediterranea Lamour. (=A. acetabulum (L.) Silva) characteristic of cells cultured in white light decreases slowly when cells are kept in continuous red light, and is less than 20% of the original activity after three weeks. Subsequent blue irradiation restores the original activity completely within 3-5 d. The polypeptide composition of the thylakoids from cells grown in either red or blue light and after transfer from red to blue light was analyzed mainly with regards to photosystem II (PSII). The P700-containing reaction-centre complex of photosystem I, CPI, showed only minor quantitative alterations as a consequence of the growth-light quality, which correlated well with the activity of photosystem I under these conditions. In PSII, no drastic changes occurred in the quantity of the reaction-centre components D1 (herbicide-binding polypeptide) and D2, as determined by immunoblots. Likewise, the proteins associated with the water-splitting apparatus did not change detectably in thylakoids from red- or blue-light-treated cells (the 16-kDa component could not be found inAcetabularia thylakoids). The level of the major light-harvesting complex was completely unaffected by the light quality. In contrast, the quantities of the chlorophyll a-protein complexes of the core antenna, CP43 and CP47 (and probably CP29), changed, with kinetics similar to those of total photosynthetic activity. We postulate that the function of the PSII antenna became increasingly impaired in the absence of blue light (i.e. in red light), while blue light had a restoring effect. The peripheral antenna, comprising the light-harvesting complexes, is probably functionally connected with the reaction-centre chlorophylls via the core antenna chlorophyll-protein complexes (CP43, CP47 and probably CP29). A deficiency of these complexes would lead to uncoupling of antenna and reaction centre in the majority of PSII complexes after long periods of red-light treatment.
Collapse
Affiliation(s)
- R Schmid
- Institut für Pflanzenphysiologie, Zellbiologie und Mikrobiologie, Freie Universität Berlin, Königin-Luise-Straße 12-16, 1000, Berlin
| | | | | |
Collapse
|
40
|
Aro EM, Hundal T, Carlberg I, Andersson B. In vitro studies on light-induced inhibition of Photosystem II and D1-protein degradation at low temperatures. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1990. [DOI: 10.1016/0005-2728(90)90204-h] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
A novel metabolic form of the 32 kDa-D1 protein in the grana-localized reaction center of photosystem II. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)55400-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
42
|
Richter M, Rühle W, Wild A. Studies on the mechanism of photosystem II photoinhibition I. A two-step degradation of D1-protein. PHOTOSYNTHESIS RESEARCH 1990; 24:229-235. [PMID: 24420075 DOI: 10.1007/bf00032310] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/1989] [Accepted: 01/03/1990] [Indexed: 06/03/2023]
Abstract
The role of D1-protein in photoinhibition was examined. Photoinhibition of spinach thylakoids at 20°C caused considerable degradation of D1-protein and a parallel loss of variable fluorescence, QB-independent electron flow and QB-dependent electron flow. The breakdown of D1-protein as well as the loss of variable fluorescence and QB-independent electron flow were largely prevented when thylakoids were photoinhibited at 0°C. The QB-dependent electron flow markedly decreased under the same conditions. This inactivation may represent the primary event in photoinhibition and could be the result of some modification at the QB-site of D1-protein. Evidence for this comes from fluorescence relaxation kinetics following photoinhibition at 0°C which indicate a partial inactivation of QA (-)-reoxidation. These results support the idea of D1-protein breakdown during photoinhibition as a two step process consisting of an initial inactivation at the QB-site of the protein followed by its degradation. The latter is accompanied by the loss of PS II-reaction centre function.
Collapse
Affiliation(s)
- M Richter
- Institute of General Botany of the Johannes Gutenberg University, Saarstraße 21, D-6500, Mainz, FRG
| | | | | |
Collapse
|
43
|
Durrant J, Giorgi L, Barber J, Klug D, Porter G. Characterisation of triplet states in isolated Photosystem II reaction centres: Oxygen quenching as a mechanism for photodamage. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1990. [DOI: 10.1016/0005-2728(90)90148-w] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Purification and characterization of photosystem I and photosystem II core complexes from wild-type and phycocyanin-deficient strains of the cyanobacterium Synechocystis PCC 6803. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39309-3] [Citation(s) in RCA: 189] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
45
|
|
46
|
Schaefer MR, Golden SS. Differential expression of members of a cyanobacterial psbA gene family in response to light. J Bacteriol 1989; 171:3973-81. [PMID: 2500419 PMCID: PMC210150 DOI: 10.1128/jb.171.7.3973-3981.1989] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The genome of the cyanobacterium Synechococcus sp. strain PCC 7942 contains three psbA genes encoding two forms of the D1 protein: form I, the product of psbAI, differs from form II, the product of both psbAII and psbAIII, at 25 of 360 residues. D1 is essential for photosynthesis as a core component of the photosystem II reaction center. Translational gene fusions between each of the Synechococcus psbA genes and the Escherichia coli lacZ gene were inserted into the chromosome of wild-type Synechococcus sp. at the respective psbA loci to serve as in vivo reporters of psbA expression. beta-Galactosidase activities indicated differential expression of the psbA-lacZ gene fusions related to light availability. Expression of psbAI was 500-fold greater than expression of psbAII and 50-fold greater than psbAIII under similar conditions. As light intensity decreased from 600 microE.m-2.s-1 to 2 microE.m-2.s-1, expression of the psbAI reporter increased eightfold while expression of the psbAII and psbAIII reporters decreased 10-fold, suggesting differential production of the two forms of D1 in photosystem II in response to light availability. Relative levels of psbA-lacZ fusion transcripts directly reflected beta-galactosidase activities in the transformants, although the fusion transcripts were less stable than native psbA messages.
Collapse
Affiliation(s)
- M R Schaefer
- Department of Biochemistry and Biophysics, Texas A&M University, College Station 77843
| | | |
Collapse
|
47
|
Schaefer MR, Golden SS. Light availability influences the ratio of two forms of D1 in cyanobacterial thylakoids. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)83249-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
48
|
Gounaris K, Chapman DJ, Barber J. Isolation and characterisation of a Dl/D2/cytochrome b-559 complex from Synechocystis 6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1989. [DOI: 10.1016/s0005-2728(89)80435-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Affiliation(s)
- A K Mattoo
- Plant Molecular Biology Laboratory, Beltsville Agricultural Research Center-West Maryland 20705
| | | | | |
Collapse
|
50
|
Faleev NG, Ruvinov SB, Demidkina TV, Myagkikh IV, Gololobov MYu, Bakhmutov VI, Belikov VM. Tyrosine phenol-lyase from Citrobacter intermedius. Factors controlling substrate specificity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 177:395-401. [PMID: 2847927 DOI: 10.1111/j.1432-1033.1988.tb14388.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
L-Amino acids are competitive inhibitors of tyrosine phenol-lyase from Citrobacter intermedius. For non-branched amino acids the correlation exists between -RTlnKi and side-chain hydrophobicity. Aspartic and glutamic acids are anomalously potent inhibitors taking into account low hydrophobicity of their side chains. This suggests the presence of an electrophilic group in the active site which interacts with the terminal carboxylic group of aspartic or glutamic acids. Tyramine, beta-phenylethylamine and tryptamine do not display detectable inhibition. The esters and amides of aromatic L-amino acids, D-phenylalanine and D-tryptophan are competitive inhibitors. The enzymatic isotope exchange of the alpha-proton in 2H2O was observed only in the case of L-amino acids. For L-phenylalanine and L-tryptophan it was shown to proceed with complete retention of configuration. The substrate specificity of tyrosine phenol-lyase is controlled during the stage of phenol elimination. The OH group in the para position of the ring is necessary for this stage to proceed. The same stage is also sensitive to the steric parameters of the substituent in the ring which ensures the second factor of control. When all the requirements of substrate specificity are fulfilled (L-tyrosine, 3-fluoro-L-tyrosine), the 'key' phenol-elimination step is not the rate-limiting one, the reaction velocity being determined by the preceding alpha-proton abstraction.
Collapse
Affiliation(s)
- N G Faleev
- A.N. Nesmeyanov Institute of Organo-Element Compounds, Academy of Sciences of the USSR, Moscow
| | | | | | | | | | | | | |
Collapse
|