1
|
Bolsheva NL, Melnikova NV, Kirov IV, Speranskaya AS, Krinitsina AA, Dmitriev AA, Belenikin MS, Krasnov GS, Lakunina VA, Snezhkina AV, Rozhmina TA, Samatadze TE, Yurkevich OY, Zoshchuk SA, Amosova АV, Kudryavtseva AV, Muravenko OV. Evolution of blue-flowered species of genus Linum based on high-throughput sequencing of ribosomal RNA genes. BMC Evol Biol 2017; 17:253. [PMID: 29297314 PMCID: PMC5751768 DOI: 10.1186/s12862-017-1105-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The species relationships within the genus Linum have already been studied several times by means of different molecular and phylogenetic approaches. Nevertheless, a number of ambiguities in phylogeny of Linum still remain unresolved. In particular, the species relationships within the sections Stellerolinum and Dasylinum need further clarification. Also, the question of independence of the species of the section Adenolinum still remains unanswered. Moreover, the relationships of L. narbonense and other species of the section Linum require further clarification. Additionally, the origin of tetraploid species of the section Linum (2n = 30) including the cultivated species L. usitatissimum has not been explored. The present study examines the phylogeny of blue-flowered species of Linum by comparisons of 5S rRNA gene sequences as well as ITS1 and ITS2 sequences of 35S rRNA genes. RESULTS High-throughput sequencing has been used for analysis of multicopy rRNA gene families. In addition to the molecular phylogenetic analysis, the number and chromosomal localization of 5S and 35S rDNA sites has been determined by FISH. Our findings confirm that L. stelleroides forms a basal branch from the clade of blue-flowered flaxes which is independent of the branch formed by species of the sect. Dasylinum. The current molecular phylogenetic approaches, the cytogenetic analysis as well as different genomic DNA fingerprinting methods applied previously did not discriminate certain species within the sect. Adenolinum. The allotetraploid cultivated species L. usitatissimum and its wild ancestor L. angustifolium (2n = 30) could originate either as the result of hybridization of two diploid species (2n = 16) related to the modern L. gandiflorum and L. decumbens, or hybridization of a diploid species (2n = 16) and a diploid ancestor of modern L. narbonense (2n = 14). CONCLUSIONS High-throughput sequencing of multicopy rRNA gene families allowed us to make several adjustments to the phylogeny of blue-flowered flax species and also reveal intra- and interspecific divergence of the rRNA gene sequences.
Collapse
Affiliation(s)
- Nadezhda L Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nataliya V Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ilya V Kirov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | | - Alexey A Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maxim S Belenikin
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Valentina A Lakunina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Tatiana A Rozhmina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,All-Russian Research Institute for Flax, Torzhok, Russia
| | - Tatiana E Samatadze
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga Yu Yurkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Svyatoslav A Zoshchuk
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Аlexandra V Amosova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga V Muravenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Chen Z, Dai H, Liu Z, Zhang L, Pang J, Ou J, Yang D. Quantitation of the residual DNA from rice-derived recombinant human serum albumin. Anal Biochem 2014; 450:4-10. [PMID: 24388867 DOI: 10.1016/j.ab.2013.12.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/22/2013] [Accepted: 12/23/2013] [Indexed: 02/02/2023]
Abstract
Residual DNA in recombinant protein pharmaceuticals can potentially cause safety issues in clinical applications; thus, maximum residual limit has been established by drug safety authorities. Assays for residual DNA in Escherichia coli, yeast, and Chinese hamster ovary (CHO) cell expression systems have been established, but no rice residual DNA assay for rice expression systems has been designed. To develop an assay for the quantification of residual DNA that is produced from rice seed, we established a sensitive assay using quantitative real-time polymerase chain reaction (qPCR) based on the 5S ribosomal RNA (rRNA) genes. We found that a 40-cycle qPCR exhibited a linear response when the template concentration was in the range of 2×10(4) to 0.2pg of DNA per reaction in TaqMan and SYBR Green I assays. The amplification efficiency was 103 to 104%, and the amount of residual DNA from recombinant human serum albumin from Oryza sativa (OsrHSA) was less than 3.8ng per dosage, which was lower than that recommended by the World Health Organization (WHO). Our results indicate that the current purification protocol could efficiently remove residual DNA during manufacturing and processing. Furthermore, this protocol could be viable in other cereal crop endosperm expression systems for developing a residual DNA quantitation assay using the highly conserved 5S rRNA gene of the crops.
Collapse
Affiliation(s)
- Zhen Chen
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China
| | - Huixia Dai
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China
| | - Zhenwei Liu
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China
| | - Liping Zhang
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China
| | - Jianlei Pang
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China
| | - Jiquan Ou
- Hubei Engineering Research Center for Molecular Pharming, Biolake, Wuhan 430076, China
| | - Daichang Yang
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; Hubei Engineering Research Center for Molecular Pharming, Biolake, Wuhan 430076, China.
| |
Collapse
|
3
|
Douet J, Tourmente S. Transcription of the 5S rRNA heterochromatic genes is epigenetically controlled in Arabidopsis thaliana and Xenopus laevis. Heredity (Edinb) 2007; 99:5-13. [PMID: 17487217 DOI: 10.1038/sj.hdy.6800964] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
5S ribosomal DNA is a highly conserved tandemly repeated multigenic family. As suggested for a long time, we have shown that only a fraction of the 5S rRNA genes are expressed in Arabidopsis thaliana. In Xenopus laevis, there is a developmental control of the expression of the 5S rRNA genes with only one of the two 5S rDNA families expressed during oogenesis. For both Arabidopsis and Xenopus, the strongest transcription of 5S rRNA, respectively in the seed and during oogenesis is correlated with heterogeneity in the transcribed 5S rRNAs. Epigenetic mechanisms such as modification of the chromatin structure are involved in the transcriptional regulation of the 5S rRNA genes in both organisms. In Arabidopsis, two silencing pathways, methylation-dependent (RNAi) and methylation-independent (MOM pathway), are involved in the silencing of a 5S rDNA fraction.
Collapse
Affiliation(s)
- J Douet
- Unité Mixte de Recherche CNRS 6547 BIOMOVE, Université Blaise Pascal, Aubière Cedex, France
| | | |
Collapse
|
4
|
Cloix C, Tutois S, Yukawa Y, Mathieu O, Cuvillier C, Espagnol MC, Picard G, Tourmente S. Analysis of the 5S RNA pool in Arabidopsis thaliana: RNAs are heterogeneous and only two of the genomic 5S loci produce mature 5S RNA. Genome Res 2002; 12:132-44. [PMID: 11779838 PMCID: PMC155267 DOI: 10.1101/gr.181301] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2001] [Accepted: 10/26/2001] [Indexed: 11/25/2022]
Abstract
One major 5S RNA, 120 bases long, was revealed by an analysis of mature 5S RNA from tissues, developmental stages, and polysomes in Arabidopsis thaliana. Minor 5S RNA were also found, varying from the major one by one or two base substitutions; 5S rDNA units from each 5S array of the Arabidopsis genome were isolated by PCR using CIC yeast artificial chromosomes (YACs) mapped on the different loci. By using a comparison of the 5S DNA and RNA sequences, we could show that both major and minor 5S transcripts come from only two of the genomic 5S loci: chromosome 4 and chromosome 5 major block. Other 5S loci are either not transcribed or produce rapidly degraded 5S transcripts. Analysis of the 5'- and 3'-DNA flanking sequence has permitted the definition of specific signatures for each 5S rDNA array.
Collapse
Affiliation(s)
- Catherine Cloix
- U.M.R. 6547 BIOMOVE, Université Blaise Pascal, 24 Avenue des Landais, 63177 Aubière Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Danna KJ, Workman R, Coryell V, Keim P. 5S rRNA genes in tribe Phaseoleae: array size, number, and dynamics. Genome 1996; 39:445-55. [DOI: 10.1139/g96-056] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The organization of 5S rRNA genes in plants belonging to tribe Phaseoleae was investigated by clamped homogeneous electric field gel electrophoresis and Southern blot hybridization. Representatives of subtribe Glycininae included the diploid species Neonotonia wightii and Teramnus labialis, as well as three soybean accessions: an elite Glycine max (L.) Merr. cultivar (BSR101), an unadapted G. max introduction (PI 437.654), and a wild Glycine soja (PI 468.916). A cultivar of Phaseolus vulgaris (kidney bean), a member of subtribe Phaseolinae, was also examined. We determined the number of 5S rDNA arrays and estimated the size and copy number of the repeat unit for each array. The three soybean accessions all have a single 5S locus, with a repeat unit size of ~345 bp and a copy number ranging from about 600 in 'BSR101' to about 4600 in the unadapted soybean introduction. The size of the 5S gene cluster in 'BSR101' is the same in roots, shoots, and trifoliate leaves. Given that the genus Glycine probably has an allotetraploid origin, our data strongly suggest that one of the two progenitor 5S loci has been lost during diploidization of soybean. Neonotonia wightii, the diploid species most closely related to soybean, also has a single locus but has a repeat unit of 520 bp and a copy number of about 1300. The more distantly related species T. labialis and P. vulgaris exhibited a more complex arrangement of 5S rRNA genes, having at least three arrays, each comprising a few hundred copies of a distinct repeat unit. Although each array in P. vulgaris exhibits a high degree of homogeneity with regard to the sequence of the repeat unit, heterogeneity in array size (copy number) was evident when individual plants were compared. A cis-dependent molecular drive process, such as unequal crossing-over, could account for both the homogenization of repeat units within individual arrays and the observed variation in copy number among individuals. Key words : pulsed-field gel electrophoresis, rRNA genes, soybean, tandem arrays.
Collapse
|
6
|
Abdel-Fatah OM, Erdmann VA, Lippmann C, Ahmed FAR, Abdel-Rahim EAM. Effect of germination on the ribonucleic acids (RNA) of some legume seeds (Vicia faba, Cicer arietinum and Lupinus termes). Food Chem 1995. [DOI: 10.1016/0308-8146(95)93295-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
7
|
Kamisugi Y, Nakayama S, Nakajima R, Ohtsubo H, Ohtsubo E, Fukui K. Physical mapping of the 5S ribosomal RNA genes on rice chromosome 11. MOLECULAR & GENERAL GENETICS : MGG 1994; 245:133-8. [PMID: 7816019 DOI: 10.1007/bf00283259] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
One 5S ribosomal RNA gene (5S rDNA) locus was localized on chromosome 11 of japonica rice by in situ hybridization. The biotinylated DNA probe used was prepared by direct cloning and direct labeling methods, and the locus was localized to the proximal region of the short arm of chromosome 11 (11p1.1) by imaging methods. The distance between the signal site and the centromere is 4.0 arbitrary units, where the total length of the short arm is 43.3 units. The 5SrDNA locus physically identified and mapped in rice was designated as 5SRrn. The position of the 5S rDNA locus reported here differs from that in indica rice; possible reasons for this difference are discussed. DNA sequences of 5S rDNA are also reported.
Collapse
Affiliation(s)
- Y Kamisugi
- Cambridge Laboratory, John Innes Centre for Plant Science Research, Norwich, England
| | | | | | | | | | | |
Collapse
|
8
|
Furter R, Hall BD. Specific transcription and reinitiation of class III genes in wheat embryo nuclei and chromatin. PLANT MOLECULAR BIOLOGY 1989; 12:567-577. [PMID: 24271072 DOI: 10.1007/bf00036970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/1988] [Accepted: 02/07/1989] [Indexed: 06/02/2023]
Abstract
Chromatin isolated from wheat germ embryos has a transcription efficiency for RNA polymerase III (pol III) closely approaching that for isolated wheat germ nuclei. Transcription in nuclei and chromatin is inhibited 5-10-fold by the addition of heparin, suggesting that free pol III molecules bind to chromatin and initiate transcription during thein vitro incubation. Nuclei were shown to have similar transcriptional activity in potassium chloride and potassium acetate. Nuclei and chromatin exhibited different salt optima for transcription. Neither nuclei nor chromatin were strongly stimulated by exogenous protein fractions. The data presented here suggest that in wheat germ nuclei the complete transcriptional apparatus is stably bound to the chromatin. Wheat germ nuclei may serve therefore as an enriched source for a solublein vitro transcription system.
Collapse
Affiliation(s)
- R Furter
- Department of Genetics, SK-50, University of Washington, 98195, Seattle, WA, USA
| | | |
Collapse
|