1
|
Bertsova YV, Mamedov MD, Bogachev AV. Na+-Translocating Ferredoxin:NAD+ Oxidoreductase Is a Component of Photosynthetic Electron Transport Chain in Green Sulfur Bacteria. BIOCHEMISTRY (MOSCOW) 2019; 84:1403-1410. [PMID: 31760926 DOI: 10.1134/s0006297919110142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Genomes of photoautotrophic organisms containing type I photosynthetic reaction center were searched for the rnf genes encoding Na+-translocating ferredoxin:NAD+ oxidoreductase (RNF). These genes were absent in heliobacteria, cyanobacteria, algae, and plants; however, genomes of many green sulfur bacteria (especially marine ones) were found to contain the full rnf operon. Analysis of RNA isolated from the marine green sulfur bacterium Chlorobium phaeovibrioides revealed a high level of rnf expression. It was found that the activity of Na+-dependent flavodoxin:NAD+ oxidoreductase detected in the membrane fraction of Chl. phaeovibrioides was absent in the membrane fraction of the freshwater green sulfur bacterium Chlorobaculum limnaeum, which is closely related to Chl. phaeovibrioides but whose genome lacks the rnf genes. Illumination of the membrane fraction of Chl. phaeovibrioides but not of Cba. limnaeum resulted in the light-induced NAD+ reduction. Based on the obtained data, we concluded that in some green sulfur bacteria, RNF may be involved in the NADH formation that should increase the efficiency of light energy conservation in these microorganisms and can serve as the first example of the use of Na+ energetics in photosynthetic electron transport chains.
Collapse
Affiliation(s)
- Y V Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - M D Mamedov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - A V Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
2
|
Ferlez B, Agostini A, Carbonera D, Golbeck JH, van der Est A. Triplet Charge Recombination in Heliobacterial Reaction Centers Does Not Produce a Spin-Polarized EPR Spectrum. Z PHYS CHEM 2016. [DOI: 10.1515/zpch-2016-0825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In photosynthetic reaction centers, reduction of the secondary acceptors leads to triplet charge recombination of the primary radical pair (RP). This process is spin selective and in a magnetic field it populates only the T0 state of the donor triplet state. As a result, the triplet state of the donor has a distinctive spin polarization pattern that can be measured by transient electron paramagnetic resonance (TREPR) spectroscopy. In heliobacterial reaction centers (HbRCs), the primary donor, P800, is composed of two bacteriochlorophyll g′ molecules and its triplet state has not been studied as extensively as those of other reaction centers. Here, we present TREPR and optically detected magnetic resonance (ODMR) data of 3P800 and show that although it can be detected by ODMR it is not observed in the TREPR data. We demonstrate that the absence of the TREPR spectrum is a result of the fact that the zero-field splitting (ZFS) tensor of 3P800 is maximally rhombic, which results in complete cancelation of the absorptive and emissive polarization in randomly oriented samples.
Collapse
Affiliation(s)
- Bryan Ferlez
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Alessandro Agostini
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo, 1, 35131 Padova, Italy
| | - Donatella Carbonera
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo, 1, 35131 Padova, Italy
| | - John H. Golbeck
- Department of Biochemistry and Molecular Biology and Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States of America
- Freiburg Institute of Advanced Studies (FRIAS), Albert-Ludwigs-Universität Freiburg, Albertstr.19, 79104 Freiburg, Germany
| | - Art van der Est
- Freiburg Institute of Advanced Studies (FRIAS), Albert-Ludwigs-Universität Freiburg, Albertstr.19, 79104 Freiburg, Germany
- Departments of Chemistry and Physics, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, Canada L2S 3A1
| |
Collapse
|
3
|
Sakurai H, Ogawa T, Shiga M, Inoue K. Inorganic sulfur oxidizing system in green sulfur bacteria. PHOTOSYNTHESIS RESEARCH 2010; 104:163-176. [PMID: 20143161 DOI: 10.1007/s11120-010-9531-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 01/16/2010] [Indexed: 05/28/2023]
Abstract
Green sulfur bacteria use various reduced sulfur compounds such as sulfide, elemental sulfur, and thiosulfate as electron donors for photoautotrophic growth. This article briefly summarizes what is known about the inorganic sulfur oxidizing systems of these bacteria with emphasis on the biochemical aspects. Enzymes that oxidize sulfide in green sulfur bacteria are membrane-bound sulfide-quinone oxidoreductase, periplasmic (sometimes membrane-bound) flavocytochrome c sulfide dehydrogenase, and monomeric flavocytochrome c (SoxF). Some green sulfur bacteria oxidize thiosulfate by the multienzyme system called either the TOMES (thiosulfate oxidizing multi-enzyme system) or Sox (sulfur oxidizing system) composed of the three periplasmic proteins: SoxB, SoxYZ, and SoxAXK with a soluble small molecule cytochrome c as the electron acceptor. The oxidation of sulfide and thiosulfate by these enzymes in vitro is assumed to yield two electrons and result in the transfer of a sulfur atom to persulfides, which are subsequently transformed to elemental sulfur. The elemental sulfur is temporarily stored in the form of globules attached to the extracellular surface of the outer membranes. The oxidation pathway of elemental sulfur to sulfate is currently unclear, although the participation of several proteins including those of the dissimilatory sulfite reductase system etc. is suggested from comparative genomic analyses.
Collapse
Affiliation(s)
- Hidehiro Sakurai
- Research Institute for Photosynthetic Hydrogen Production, Kanagawa University, Hiratsuka, Kanagawa, Japan
| | | | | | | |
Collapse
|
4
|
Paumann M, Regelsberger G, Obinger C, Peschek GA. The bioenergetic role of dioxygen and the terminal oxidase(s) in cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1707:231-53. [PMID: 15863101 DOI: 10.1016/j.bbabio.2004.12.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 12/15/2004] [Accepted: 12/16/2004] [Indexed: 01/21/2023]
Abstract
Owing to the release of 13 largely or totally sequenced cyanobacterial genomes (see and ), it is now possible to critically assess and compare the most neglected aspect of cyanobacterial physiology, i.e., cyanobacterial respiration, also on the grounds of pure molecular biology (gene sequences). While there is little doubt that cyanobacteria (blue-green algae) do form the largest, most diversified and in both evolutionary and ecological respects most significant group of (micro)organisms on our earth, and that what renders our blue planet earth to what it is, viz. the O(2)-containing atmosphere, dates back to the oxygenic photosynthetic activity of primordial cyanobacteria about 3.2x10(9) years ago, there is still an amazing lack of knowledge on the second half of bioenergetic oxygen metabolism in cyanobacteria, on (aerobic) respiration. Thus, the purpose of this review is threefold: (1) to point out the unprecedented role of the cyanobacteria for maintaining the delicate steady state of our terrestrial biosphere and atmosphere through a major contribution to the poising of oxygenic photosynthesis against aerobic respiration ("the global biological oxygen cycle"); (2) to briefly highlight the membrane-bound electron-transport assemblies of respiration and photosynthesis in the unique two-membrane system of cyanobacteria (comprising cytoplasmic membrane and intracytoplasmic or thylakoid membranes, without obvious anastomoses between them); and (3) to critically compare the (deduced) amino acid sequences of the multitude of hypothetical terminal oxidases in the nine fully sequenced cyanobacterial species plus four additional species where at least the terminal oxidases were sequenced. These will then be compared with sequences of other proton-pumping haem-copper oxidases, with special emphasis on possible mechanisms of electron and proton transfer.
Collapse
Affiliation(s)
- Martina Paumann
- Molecular Bioenergetics Group, Institute of Physical Chemistry, University of Vienna, Austria
| | | | | | | |
Collapse
|
5
|
Hauska G, Schoedl T, Remigy H, Tsiotis G. The reaction center of green sulfur bacteria(1). BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1507:260-77. [PMID: 11687219 DOI: 10.1016/s0005-2728(01)00200-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The composition of the P840-reaction center complex (RC), energy and electron transfer within the RC, as well as its topographical organization and interaction with other components in the membrane of green sulfur bacteria are presented, and compared to the FeS-type reaction centers of Photosystem I and of Heliobacteria. The core of the RC is homodimeric, since pscA is the only gene found in the genome of Chlorobium tepidum which resembles the genes psaA and -B for the heterodimeric core of Photosystem I. Functionally intact RC can be isolated from several species of green sulfur bacteria. It is generally composed of five subunits, PscA-D plus the BChl a-protein FMO. Functional cores, with PscA and PscB only, can be isolated from Prostecochloris aestuarii. The PscA-dimer binds P840, a special pair of BChl a-molecules, the primary electron acceptor A(0), which is a Chl a-derivative and FeS-center F(X). An equivalent to the electron acceptor A(1) in Photosystem I, which is tightly bound phylloquinone acting between A(0) and F(X), is not required for forward electron transfer in the RC of green sulfur bacteria. This difference is reflected by different rates of electron transfer between A(0) and F(X) in the two systems. The subunit PscB contains the two FeS-centers F(A) and F(B). STEM particle analysis suggests that the core of the RC with PscA and PscB resembles the PsaAB/PsaC-core of the P700-reaction center in Photosystem I. PscB may form a protrusion into the cytoplasmic space where reduction of ferredoxin occurs, with FMO trimers bound on both sides of this protrusion. Thus the subunit composition of the RC in vivo should be 2(FMO)(3)(PscA)(2)PscB(PscC)(2)PscD. Only 16 BChl a-, four Chl a-molecules and two carotenoids are bound to the RC-core, which is substantially less than its counterpart of Photosystem I, with 85 Chl a-molecules and 22 carotenoids. A total of 58 BChl a/RC are present in the membranes of green sulfur bacteria outside the chlorosomes, corresponding to two trimers of FMO (42 Bchl a) per RC (16 BChl a). The question whether the homodimeric RC is totally symmetric is still open. Furthermore, it is still unclear which cytochrome c is the physiological electron donor to P840(+). Also the way of NAD(+)-reduction is unknown, since a gene equivalent to ferredoxin-NADP(+) reductase is not present in the genome.
Collapse
Affiliation(s)
- G Hauska
- Lehstuhl für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, Germany.
| | | | | | | |
Collapse
|
6
|
Schütz M, Maldener I, Griesbeck C, Hauska G. Sulfide-quinone reductase from Rhodobacter capsulatus: requirement for growth, periplasmic localization, and extension of gene sequence analysis. J Bacteriol 1999; 181:6516-23. [PMID: 10515944 PMCID: PMC103789 DOI: 10.1128/jb.181.20.6516-6523.1999] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/1999] [Accepted: 07/27/1999] [Indexed: 11/20/2022] Open
Abstract
The entire sequence of the 3.5-kb fragment of genomic DNA from Rhodobacter capsulatus which contains the sqr gene and a second complete and two further partial open reading frames has been determined. A correction of the previously published sqr gene sequence (M. Schütz, Y. Shahak, E. Padan, and G. Hauska, J. Biol. Chem. 272:9890-9894, 1997) which in the deduced primary structure of the sulfide-quinone reductase changes four positive into four negative charges and the number of amino acids from 425 to 427 was necessary. The correction has no further bearing on the former sequence analysis. Deletion and interruption strains document that sulfide-quinone reductase is essential for photoautotrophic growth on sulfide. The sulfide-oxidizing enzyme is involved in energy conversion, not in detoxification. Studies with an alkaline phosphatase fusion protein reveal a periplasmic localization of the enzyme. Exonuclease treatment of the fusion construct demonstrated that the C-terminal 38 amino acids of sulfide-quinone reductase were required for translocation. An N-terminal signal peptide for translocation was not found in the primary structure of the enzyme. The possibility that the neighboring open reading frame, which contains a double arginine motif, may be involved in translocation has been excluded by gene deletion (rather, the product of this gene functions in an ATP-binding cassette transporter system, together with the product of one of the other open reading frames). The results lead to the conclusion that the sulfide-quinone reductase of R. capsulatus functions at the periplasmic surface of the cytoplasmic membrane and that this flavoprotein is translocated by a hitherto-unknown mechanism.
Collapse
Affiliation(s)
- M Schütz
- Lehrstuhl für Zellbiologie und Pflanzenphysiologie, Fakultät Biologie und Vorklinische Medizin, Universität Regensburg, 93053 Regensburg, Germany.
| | | | | | | |
Collapse
|
7
|
van der Est A, Hager-Braun C, Leibl W, Hauska G, Stehlik D. Transient electron paramagnetic resonance spectroscopy on green-sulfur bacteria and heliobacteria at two microwave frequencies. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1409:87-98. [PMID: 9838060 DOI: 10.1016/s0005-2728(98)00152-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Spin polarized transient EPR spectra taken at X-band (9 GHz) and K-band (24 GHz) of membrane fragments of Chlorobium tepidum and Heliobacillus mobilis are presented along with the spectra of two fractions obtained in the purification of reaction centers (RC) from C. tepidum. The lifetime of P+. is determined by measuring the decay of the EPR signals following relaxation of the initial spin polarization. All samples except one of the RC fractions show evidence of light induced charge separation and formation of chlorophyll triplet states. The lifetime of P+. is found to be biexponential with components of 1.5 ms and 30 ms for C. tepidum and 1.0 and 4.5 ms for Hc. mobilis at 100 K. In both cases, the rates are assigned to recombination from F-X. The spin polarized radical pair spectra for both species are similar and those from Hc. mobilis at room temperature and 100 K are identical. In all cases, an emission/absorption polarization pattern with a net absorption is observed. A slight narrowing of the spectra and a larger absorptive net polarization is found at K-band. No out-of-phase echo modulation is observed. Taken together, the recombination kinetics, the frequency dependence of the spin polarization and the absence of an out-of-phase echo signal lead to the assignment of the spectra to the contribution from P+. to the state P+.F-X. The origin of the net polarization and its frequency dependence are discussed in terms of singlet-triplet mixing in the precursor. It is shown that the field-dependent polarization expected to develop during the 600-700 ps lifetime of P+.A-.0 is in qualitative agreement with the observed spectra. The identity that the acceptor preceding FX and the conflicting evidence from EPR, optical methods and chemical analyses of the samples are discussed.
Collapse
Affiliation(s)
- A van der Est
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
| | | | | | | | | |
Collapse
|
8
|
Oh-oka H, Iwaki M, Itoh S. Membrane-bound cytochrome cz couples quinol oxidoreductase to the P840 reaction center complex in isolated membranes of the green sulfur bacterium Chlorobium tepidum. Biochemistry 1998; 37:12293-300. [PMID: 9724544 DOI: 10.1021/bi9800799] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The reaction of quinol oxidoreductase and membrane-bound c-type cytochromes was studied in chlorosome-depleted membranes isolated from Chlorobium tepidum. Rapid oxidations of c-type cytochromes were detected after flash excitation. Their re-reductions occurred in parallel with the reduction of cytochrome b, especially in the presence of antimycin A, whereas reductions of both cytochromes c and b were suppressed by added stigmatellin. These results indicate the tight coupling between the photosynthetic reaction center and quinol oxidoreductase. Turnovers of two types of cytochromes c were detected. One was assigned to the monoheme-type cytochrome c (designated cytochrome cz), which is known to be tightly bound to the reaction center complex. The other was a new c-type cytochrome, cytochrome c-556, which functions the same as cytochrome c1. The steps of electron-transfer scheme, menaquinol --> Rieske FeS center --> cytochrom c-556 --> cytochrome cz --> P840, are estimated to have reaction times of 20 ms and 560, 150, and 40 microseconds, respectively. We conclude that quinol oxidoreductase and the reaction center complex in Chlorobium tepidum are linked by two distinct membrane-bound cytochromes, cz and c-556, with no involvement of water-soluble cytochromes.
Collapse
Affiliation(s)
- H Oh-oka
- Department of Biology, Graduate School of Science, Osaka University, Japan.
| | | | | |
Collapse
|
9
|
Brugna M, Albouy D, Nitschke W. Diversity of cytochrome bc complexes: example of the Rieske protein in green sulfur bacteria. J Bacteriol 1998; 180:3719-23. [PMID: 9658021 PMCID: PMC107346 DOI: 10.1128/jb.180.14.3719-3723.1998] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/1998] [Accepted: 05/17/1998] [Indexed: 02/08/2023] Open
Abstract
The Rieske 2Fe2S cluster of Chlorobium limicola forma thiosulfatophilum strain tassajara was studied by electron paramagnetic resonance spectroscopy. Two distinct orientations of its g tensor were observed in oriented samples corresponding to differing conformations of the protein. Only one of the two conformations persisted after treatment with 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone. A redox midpoint potential (Em) of +160 mV in the pH range of 6 to 7.7 and a decreasing Em (-60 to -80 mV/pH unit) above pH 7.7 were found. The implications of the existence of differing conformational states of the Rieske protein, as well as of the shape of its Em-versus-pH curve, in green sulfur bacteria are discussed.
Collapse
Affiliation(s)
- M Brugna
- Laboratoire de Bioénergétique et Ingénierie des Protéines (UPR 9036), Institut de Biologie Structurale et Microbiologie, 13402 Marseille Cedex 20, France
| | | | | |
Collapse
|
10
|
Griesbeck C, Hager-Braun C, Rogl H, Hauska G. Quantitation of P840 reaction center preparations from Chlorobium tepidum: chlorophylls and FMO-protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1998. [DOI: 10.1016/s0005-2728(98)00081-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Kjaer B, Frigaard NU, Yang F, Zybailov B, Miller M, Golbeck JH, Scheller HV. Menaquinone-7 in the reaction center complex of the green sulfur bacterium Chlorobium vibrioforme functions as the electron acceptor A1. Biochemistry 1998; 37:3237-42. [PMID: 9536963 DOI: 10.1021/bi973121t] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Photosynthetically active reaction center complexes were prepared from the green sulfur bacterium Chlorobium vibrioforme NCIMB 8327, and the content of quinones was determined by extraction and high-performance liquid chromatography. The analysis showed a stoichiometry of 1.7 molecules of menaquinone-7/reaction center. No other quinones were detected in the isolated reaction centers, whereas membrane preparations also contained chlorobiumquinone. The possible involvement of quinones in electron transport was investigated by electron paramagnetic resonance (EPR) spectroscopy. A highly anisotropic radical was detected by Q-band EPR spectroscopy in both membranes and isolated reaction centers following dark reduction with sodium dithionite and photoaccumulation at 205 K. At 34 GHz, the EPR spectrum is characterized by a g tensor with gxx = 2.0063, gyy = 2.0052, gzz = 2.0020 and delta B of 0.7 mT, consistent with its identification as a quinone. This spectrum is highly similar in terms of g values and line widths to photoaccumulated A1- in photosystem I of Synechococcus sp. PCC 7002. The results indicate that menaquinone-7 in the green sulfur bacterial reaction center is analogous to phylloquinone in photosystem I.
Collapse
Affiliation(s)
- B Kjaer
- Department of Plant Biology, Royal Veterinary and Agricultural University, Frederiksberg C, Denmark
| | | | | | | | | | | | | |
Collapse
|
12
|
Albouy D, Joliot P, Robert B, Nitschke W. Electron transfer towards the RCI-type photosystem in the green sulphur bacterium Chlorobium limicola forma thiosulphatophilum studied by time-resolved optical spectroscopy in vivo. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 249:630-6. [PMID: 9370376 DOI: 10.1111/j.1432-1033.1997.t01-2-00630.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Flash-induced spectral changes in the wavelength region of the alpha-peaks of heme proteins and in the time domain from microseconds to seconds have been recorded on whole cells of the green sulphur bacterium Chlorobium limicola forma thiosulfatophilum. Extensive flash-excitation by trains of flashes resulted in oxidation of 7-8 c-type heme molecules/photosynthetic reaction centre. The complement of heme species was found to be spectrally heterogeneous allowing the study of electron transfer events induced by an isolated single-turnover flash. Under single-flash conditions, a c553 heme was seen to become oxidised with tau = 30 micros, concommitant with the reduction of the primary donor of the reaction centre. Subsequently, the alpha-peak of the photooxidised heme broadened and shifted towards longer wavelengths (tau = 70 micros) indicating equilibration of the positive charge over two differing heme species. In the time domain t > 1 ms, rereduction of c-type hemes was seen to be paralleled by a blue shift and further broadening of the alpha-peak. Concommitantly, b-type hemes were observed to first become reduced (within a few milliseconds), then over-oxidised (t > 200 ms) and eventually rereduced to their redox state prior to the flash. The results obtained are discussed with respect to the question of the identity of the immediate electron donor to the photosynthetic reaction centre and with respect to the involvement of a cytochrome bc complex in photo-induced electron transport of green sulphur bacteria.
Collapse
Affiliation(s)
- D Albouy
- Institut de Biologie Physico-Chimique, Service de Photosynthèse, Paris, France
| | | | | | | |
Collapse
|
13
|
Schütz M, Shahak Y, Padan E, Hauska G. Sulfide-quinone reductase from Rhodobacter capsulatus. Purification, cloning, and expression. J Biol Chem 1997; 272:9890-4. [PMID: 9092526 DOI: 10.1074/jbc.272.15.9890] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A sulfide-quinone oxidoreductase (SQR, EC 1.8.5.'.) has been purified to homogeneity from chromatophores of the non-sulfur purple bacterium Rhodobacter capsulatus DSM 155. It is composed of a single polypeptide with an apparent molecular mass of about 55 kDa, exhibiting absorption and fluorescence spectra typical for a flavoprotein and similar to the SQR from the cyanobacterium Oscillatoria limnetica. From N-terminal and tryptic peptide sequences of the pure protein a genomic DNA clone was obtained by polymerase chain reaction amplification. Its sequence contains an open reading frame of 1275 base pairs (EMBL nucleotide sequence data base, accession no. X97478X97478) encoding the SQR of R. capsulatus. The deduced polypeptide consists of 425 amino acid residues with a molecular mass of 47 kDa and a net charge of +9. The high similarity (72%)/identity (48%) between the N termini of the cyanobacterial and the bacterial enzyme was confirmed and extended. Both enzymes exhibit the FAD/NAD(P) binding betaalphabeta-fold (Wierenga, R. K., Terpstra, P., and Hol, W. G. S. (1986) J. Mol. Biol. 187, 101-107). The complete sequence of the SQR from R. capsulatus shows further similarity to flavoproteins, in particular glutathione reductase and lipoamide dehydrogenase. The cloned sqr was expressed in Escherichia coli in a functional form.
Collapse
Affiliation(s)
- M Schütz
- Universität Regensburg, Lehrstuhl für Zellbiologie und Pflanzenphysiologie, 93040 Regensburg, Germany
| | | | | | | |
Collapse
|
14
|
Noguchi T, Kusumoto N, Inoue Y, Sakurai H. Electronic and vibrational structure of the radical cation of P840 in the putative homodimeric reaction center from Chlorobium tepidum as studied by FTIR spectroscopy. Biochemistry 1996; 35:15428-35. [PMID: 8952495 DOI: 10.1021/bi9613638] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Light-induced FTIR difference spectra of P840 upon its oxidation (P840+/P840) have been measured with the reaction center complex from the green sulfur bacterium Chlorobium tepidum. A broad band centered near 2500 cm-1 was observed in P840+, which is comparable to the band near 2600 cm-1 previously observed in P870+ of purple bacteria and assigned to the electronic transition in the bacteriochlorophyll a (BChla) dimer (Breton et al. (1992) Biochemistry 31, 7503-7510]. The intensity of this electronic band found in P840+ was about the same as that in P870+. The P840+ spectrum also showed several intensified vibrational modes, which are characteristic of the P870+ spectrum as well. These similar features of the electronic transition and the intensified lines indicate that P840+ is a BChla dimer whose electronic structure is similar to P870+. Based on the previous theoretical works, the possibility that P840+ has an asymmetric structure as P870+ was suggested. Also, two strong positive bands at 1707 and 1694 cm-1 probably assigned to the keto C9 = O stretching modes of P840+ were observed in the P840+/P840 spectrum. Three different interpretations are possible for the presence of the two C9 = O bands: (i) P840+ is an asymmetric dimer cation. (ii) P840+ has a symmetric structure, and the time constant of positive charge exchange between the two BChla molecules coincides with that of IR spectroscopy (10-13 s). (iii) The electric field produced by the positive charge on P840+ affects the C9 = O frequency of the neutral BChla in P840+ itself (when the charge exchange time is slower than the time scale of 10-13 s) or of a BChla in the close proximity of P840+. The negative bands at 1734 and 1684 cm-1 were assigned to the ester C10 = O and the keto C9 = O of neutral P840, respectively, both of which are free from hydrogen bonding. These results and interpretations regarding the structural symmetry and the molecular interactions of P840 and P840+ are discussed in the framework of the "homodimeric" reaction center of green sulfur bacteria.
Collapse
Affiliation(s)
- T Noguchi
- Photosynthesis Research Laboratory, Institute of Physical and Chemical Research (RIKEN), Saitama, Japan
| | | | | | | |
Collapse
|
15
|
Frankenberg N, Hager-Braun C, Feiler U, Fuhrmann M, Rogl H, Schneebauer N, Nelson N, Hauska G. P840-Reaction Centers from Chlorobium tepidum–Quinone Analysis and Functional Reconstitution into Lipid Vesicles. Photochem Photobiol 1996. [DOI: 10.1111/j.1751-1097.1996.tb02415.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|