1
|
Dsouza L, Li X, Erić V, Huijser A, Jansen TLC, Holzwarth AR, Buda F, Bryant DA, Bahri S, Gupta KBSS, Sevink GJA, de Groot HJM. An integrated approach towards extracting structural characteristics of chlorosomes from a bchQ mutant of Chlorobaculum tepidum. Phys Chem Chem Phys 2024; 26:15856-15867. [PMID: 38546236 DOI: 10.1039/d4cp00221k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Chlorosomes, the photosynthetic antenna complexes of green sulfur bacteria, are paradigms for light-harvesting elements in artificial designs, owing to their efficient energy transfer without protein participation. We combined magic angle spinning (MAS) NMR, optical spectroscopy and cryogenic electron microscopy (cryo-EM) to characterize the structure of chlorosomes from a bchQ mutant of Chlorobaculum tepidum. The chlorosomes of this mutant have a more uniform composition of bacteriochlorophyll (BChl) with a predominant homolog, [8Ethyl, 12Ethyl] BChl c, compared to the wild type (WT). Nearly complete 13C chemical shift assignments were obtained from well-resolved homonuclear 13C-13C RFDR data. For proton assignments heteronuclear 13C-1H (hCH) data sets were collected at 1.2 GHz spinning at 60 kHz. The CHHC experiments revealed intermolecular correlations between 132/31, 132/32, and 121/31, with distance constraints of less than 5 Å. These constraints indicate the syn-anti parallel stacking motif for the aggregates. Fourier transform cryo-EM data reveal an axial repeat of 1.49 nm for the helical tubular aggregates, perpendicular to the inter-tube separation of 2.1 nm. This axial repeat is different from WT and is in line with BChl syn-anti stacks running essentially parallel to the tube axis. Such a packing mode is in agreement with the signature of the Qy band in circular dichroism (CD). Combining the experimental data with computational insight suggests that the packing for the light-harvesting function is similar between WT and bchQ, while the chirality within the chlorosomes is modestly but detectably affected by the reduced compositional heterogeneity in bchQ.
Collapse
Affiliation(s)
- Lolita Dsouza
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands.
| | - Xinmeng Li
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands.
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, 0315, Oslo, Norway
| | - Vesna Erić
- Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, The Netherlands
| | - Annemarie Huijser
- MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, The Netherlands
| | - Thomas L C Jansen
- Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, The Netherlands
| | - Alfred R Holzwarth
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Francesco Buda
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands.
| | - Donald A Bryant
- Department for Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Salima Bahri
- NMR Spectroscopy, Bijvoet center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | | | - G J Agur Sevink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands.
| | - Huub J M de Groot
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands.
| |
Collapse
|
2
|
Erić V, Castro JL, Li X, Dsouza L, Frehan SK, Huijser A, Holzwarth AR, Buda F, Sevink GJA, de Groot HJM, Jansen TLC. Ultrafast Anisotropy Decay Reveals Structure and Energy Transfer in Supramolecular Aggregates. J Phys Chem B 2023; 127:7487-7496. [PMID: 37594912 PMCID: PMC10476209 DOI: 10.1021/acs.jpcb.3c04719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/20/2023] [Indexed: 08/20/2023]
Abstract
Chlorosomes from green bacteria perform the most efficient light capture and energy transfer, as observed among natural light-harvesting antennae. Hence, their unique functional properties inspire developments in artificial light-harvesting and molecular optoelectronics. We examine two distinct organizations of the molecular building blocks as proposed in the literature, demonstrating how these organizations alter light capture and energy transfer, which can serve as a mechanism that the bacteria utilize to adapt to changes in light conditions. Spectral simulations of polarization-resolved two-dimensional electronic spectra unravel how changes in the helicity of chlorosomal aggregates alter energy transfer. We show that ultrafast anisotropy decay presents a spectral signature that reveals contrasting energy pathways in different chlorosomes.
Collapse
Affiliation(s)
- Vesna Erić
- Zernike
Institute for Advanced Materials, University
of Groningen, 9747 AG Groningen, The Netherlands
| | - Jorge Luis Castro
- Zernike
Institute for Advanced Materials, University
of Groningen, 9747 AG Groningen, The Netherlands
| | - Xinmeng Li
- Department
of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Sem Sælands vei 26, 0315 Oslo, Norway
| | - Lolita Dsouza
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Sean K. Frehan
- MESA+
Institute for Nanotechnology, University
of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Annemarie Huijser
- MESA+
Institute for Nanotechnology, University
of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Alfred R. Holzwarth
- Department
of Biophysical Chemistry, Max Planck Institute
for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim, Germany
| | - Francesco Buda
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - G. J. Agur Sevink
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Huub J. M. de Groot
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Thomas L. C. Jansen
- Zernike
Institute for Advanced Materials, University
of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
3
|
Nie Z, Tang K, Wang W, Wang P, Guo Y, Wang Y, Kao SJ, Yin J, Wang X. Comparative genomic insights into habitat adaptation of coral-associated Prosthecochloris. Front Microbiol 2023; 14:1138751. [PMID: 37152757 PMCID: PMC10158934 DOI: 10.3389/fmicb.2023.1138751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Green sulfur bacteria (GSB) are a distinct group of anoxygenic phototrophic bacteria that are found in many ecological niches. Prosthecochloris, a marine representative genus of GSB, was found to be dominant in some coral skeletons. However, how coral-associated Prosthecochloris (CAP) adapts to diurnal changing microenvironments in coral skeletons is still poorly understood. In this study, three Prosthecochloris genomes were obtained through enrichment culture from the skeleton of the stony coral Galaxea fascicularis. These divergent three genomes belonged to Prosthecochloris marina and two genomes were circular. Comparative genomic analysis showed that between the CAP and non-CAP clades, CAP genomes possess specialized metabolic capacities (CO oxidation, CO2 hydration and sulfur oxidation), gas vesicles (vertical migration in coral skeletons), and cbb 3-type cytochrome c oxidases (oxygen tolerance and gene regulation) to adapt to the microenvironments of coral skeletons. Within the CAP clade, variable polysaccharide synthesis gene clusters and phage defense systems may endow bacteria with differential cell surface structures and phage susceptibility, driving strain-level evolution. Furthermore, mobile genetic elements (MGEs) or evidence of horizontal gene transfer (HGT) were found in most of the genomic loci containing the above genes, suggesting that MGEs play an important role in the evolutionary diversification between CAP and non-CAP strains and within CAP clade strains. Our results provide insight into the adaptive strategy and population evolution of endolithic Prosthecochloris strains in coral skeletons.
Collapse
Affiliation(s)
- Zhaolong Nie
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Kaihao Tang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- *Correspondence: Kaihao Tang,
| | - Weiquan Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Pengxia Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Jianping Yin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Harada J, Mizoguchi T, Kinoshita Y, Yamamoto K, Tamiaki H. Over-expression of the C82-methyltransferase BchQ in mutant strains of the green sulfur bacterium Chlorobaculum limnaeum for synthesis of C8-hyper-alkylated chlorosomal pigments. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Light-dependent accumulation of new bacteriochlorophyll-e bearing a vinyl group at the 8-position in the green sulfur bacterium Chlorobaculum limnaeum. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.08.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
20-Substitution effect on self-aggregation of synthetic zinc bacteriochlorophyll-d analogs. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.07.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Thompson KJ, Simister RL, Hahn AS, Hallam SJ, Crowe SA. Nutrient Acquisition and the Metabolic Potential of Photoferrotrophic Chlorobi. Front Microbiol 2017; 8:1212. [PMID: 28729857 PMCID: PMC5498476 DOI: 10.3389/fmicb.2017.01212] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 06/14/2017] [Indexed: 11/18/2022] Open
Abstract
Anoxygenic photosynthesis evolved prior to oxygenic photosynthesis and harnessed energy from sunlight to support biomass production on the early Earth. Models that consider the availability of electron donors predict that anoxygenic photosynthesis using Fe(II), known as photoferrotrophy, would have supported most global primary production before the proliferation of oxygenic phototrophs at approximately 2.3 billion years ago. These photoferrotrophs have also been implicated in the deposition of banded iron formations, the world's largest sedimentary iron ore deposits that formed mostly in late Archean and early Proterozoic Eons. In this work we present new data and analyses that illuminate the metabolic capacity of photoferrotrophy in the phylum Chlorobi. Our laboratory growth experiments and biochemical analyses demonstrate that photoferrotrophic Chlorobi are capable of assimilatory sulfate reduction and nitrogen fixation under sulfate and nitrogen limiting conditions, respectively. Furthermore, the evolutionary histories of key enzymes in both sulfur (CysH and CysD) and nitrogen fixation (NifDKH) pathways are convoluted; protein phylogenies, however, suggest that early Chlorobi could have had the capacity to assimilate sulfur and fix nitrogen. We argue, then, that the capacity for photoferrotrophic Chlorobi to acquire these key nutrients enabled them to support primary production and underpin global biogeochemical cycles in the Precambrian.
Collapse
Affiliation(s)
- Katharine J. Thompson
- Department of Microbiology and Immunology, University of British Columbia, VancouverBC, Canada
| | - Rachel L. Simister
- Department of Microbiology and Immunology, University of British Columbia, VancouverBC, Canada
| | - Aria S. Hahn
- Department of Microbiology and Immunology, University of British Columbia, VancouverBC, Canada
| | - Steven J. Hallam
- Department of Microbiology and Immunology, University of British Columbia, VancouverBC, Canada
| | - Sean A. Crowe
- Department of Microbiology and Immunology, University of British Columbia, VancouverBC, Canada
- Departments of Earth, Ocean and Atmospheric Sciences, University of British Columbia, VancouverBC, Canada
| |
Collapse
|
8
|
Orf GS, Collins AM, Niedzwiedzki DM, Tank M, Thiel V, Kell A, Bryant DA, Montaño GA, Blankenship RE. Polymer-Chlorosome Nanocomposites Consisting of Non-Native Combinations of Self-Assembling Bacteriochlorophylls. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6427-6438. [PMID: 28585832 DOI: 10.1021/acs.langmuir.7b01761] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chlorosomes are one of the characteristic light-harvesting antennas from green sulfur bacteria. These complexes represent a unique paradigm: self-assembly of bacteriochlorophyll pigments within a lipid monolayer without the influence of protein. Because of their large size and reduced complexity, they have been targeted as models for the development of bioinspired light-harvesting arrays. We report the production of biohybrid light-harvesting nanocomposites mimicking chlorosomes, composed of amphiphilic diblock copolymer membrane bodies that incorporate thousands of natural self-assembling bacteriochlorophyll molecules derived from green sulfur bacteria. The driving force behind the assembly of these polymer-chlorosome nanocomposites is the transfer of the mixed raw materials from the organic to the aqueous phase. We incorporated up to five different self-assembling pigment types into single nanocomposites that mimic chlorosome morphology. We establish that the copolymer-BChl self-assembly process works smoothly even when non-native combinations of BChl homologues are included. Spectroscopic characterization revealed that the different types of self-assembling pigments participate in ultrafast energy transfer, expanding beyond single chromophore constraints of the natural chlorosome system. This study further demonstrates the utility of flexible short-chain, diblock copolymers for building scalable, tunable light-harvesting arrays for technological use and allows for an in vitro analysis of the flexibility of natural self-assembling chromophores in unique and controlled combinations.
Collapse
Affiliation(s)
| | - Aaron M Collins
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | | | - Marcus Tank
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
- Department of Biological Sciences, Tokyo Metropolitan University , Tokyo, Japan 192-0397
| | - Vera Thiel
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
- Department of Biological Sciences, Tokyo Metropolitan University , Tokyo, Japan 192-0397
| | - Adam Kell
- Department of Chemistry, Kansas State University , Manhattan, Kansas 66506, United States
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Gabriel A Montaño
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | | |
Collapse
|
9
|
Kondo T, Chen WJ, Schlau-Cohen GS. Single-Molecule Fluorescence Spectroscopy of Photosynthetic Systems. Chem Rev 2017; 117:860-898. [DOI: 10.1021/acs.chemrev.6b00195] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Toru Kondo
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Wei Jia Chen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Gabriela S. Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| |
Collapse
|
10
|
Senge MO, MacGowan SA, O'Brien JM. Conformational control of cofactors in nature - the influence of protein-induced macrocycle distortion on the biological function of tetrapyrroles. Chem Commun (Camb) 2016; 51:17031-63. [PMID: 26482230 DOI: 10.1039/c5cc06254c] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Tetrapyrrole-containing proteins are one of the most fundamental classes of enzymes in nature and it remains an open question to give a chemical rationale for the multitude of biological reactions that can be catalyzed by these pigment-protein complexes. There are many fundamental processes where the same (i.e., chemically identical) porphyrin cofactor is involved in chemically quite distinct reactions. For example, heme is the active cofactor for oxygen transport and storage (hemoglobin, myoglobin) and for the incorporation of molecular oxygen in organic substrates (cytochrome P450). It is involved in the terminal oxidation (cytochrome c oxidase) and the metabolism of H2O2 (catalases and peroxidases) and catalyzes various electron transfer reactions in cytochromes. Likewise, in photosynthesis the same chlorophyll cofactor may function as a reaction center pigment (charge separation) or as an accessory pigment (exciton transfer) in light harvesting complexes (e.g., chlorophyll a). Whilst differences in the apoprotein sequences alone cannot explain the often drastic differences in physicochemical properties encountered for the same cofactor in diverse protein complexes, a critical factor for all biological functions must be the close structural interplay between bound cofactors and the respective apoprotein in addition to factors such as hydrogen bonding or electronic effects. Here, we explore how nature can use the same chemical molecule as a cofactor for chemically distinct reactions using the concept of conformational flexibility of tetrapyrroles. The multifaceted roles of tetrapyrroles are discussed in the context of the current knowledge on distorted porphyrins. Contemporary analytical methods now allow a more quantitative look at cofactors in protein complexes and the development of the field is illustrated by case studies on hemeproteins and photosynthetic complexes. Specific tetrapyrrole conformations are now used to prepare bioengineered designer proteins with specific catalytic or photochemical properties.
Collapse
Affiliation(s)
- Mathias O Senge
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland and Medicinal Chemistry, Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland.
| | - Stuart A MacGowan
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Jessica M O'Brien
- Medicinal Chemistry, Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
11
|
Mizoguchi T, Harada J, Yamamoto K, Tamiaki H. Inactivation of bciD and bchU genes in the green sulfur bacterium Chlorobaculum limnaeum and alteration of photosynthetic pigments in the resultant mutants. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2015.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Harada J, Teramura M, Mizoguchi T, Tsukatani Y, Yamamoto K, Tamiaki H. Stereochemical conversion of C3-vinyl group to 1-hydroxyethyl group in bacteriochlorophyll c by the hydratases BchF and BchV: adaptation of green sulfur bacteria to limited-light environments. Mol Microbiol 2015; 98:1184-98. [PMID: 26331578 DOI: 10.1111/mmi.13208] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2015] [Indexed: 11/28/2022]
Abstract
Photosynthetic green sulfur bacteria inhabit anaerobic environments with very low-light conditions. To adapt to such environments, these bacteria have evolved efficient light-harvesting antenna complexes called as chlorosomes, which comprise self-aggregated bacteriochlorophyll c in the model green sulfur, bacterium Chlorobaculum tepidum. The pigment possess a hydroxy group at the C3(1) position that produces a chiral center with R- or S-stereochemistry and the C3(1) -hydroxy group serves as a connecting moiety for the self-aggregation. Chlorobaculum tepidum carries the two possible homologous genes for C3-vinyl hydratase, bchF and bchV. In the present study, we constructed deletion mutants of each of these genes. Pigment analyses of the bchF-inactivated mutant, which still has BchV as a sole hydratase, showed higher ratios of S-epimeric bacteriochlorophyll c than the wild-type strain. The heightened prevalence of S-stereoisomers in the mutant was more remarkable at lower light intensities and caused a red shift of the chlorosomal Qy absorption band leading to advantages for light-energy transfer. In contrast, the bchV-mutant possessing only BchF showed a significant decrease of the S-epimers and accumulations of C3-vinyl BChl c species. As trans- criptional level of bchV was upregulated at lower light intensity, the Chlorobaculum tepidum adapted to low-light environments by control of the bchV transcription.
Collapse
Affiliation(s)
- Jiro Harada
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Misato Teramura
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Tadashi Mizoguchi
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Yusuke Tsukatani
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo, 152-8550, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
13
|
Pelagic photoferrotrophy and iron cycling in a modern ferruginous basin. Sci Rep 2015; 5:13803. [PMID: 26348272 PMCID: PMC4562300 DOI: 10.1038/srep13803] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/05/2015] [Indexed: 11/08/2022] Open
Abstract
Iron-rich (ferruginous) ocean chemistry prevailed throughout most of Earth’s early history. Before the evolution and proliferation of oxygenic photosynthesis, biological production in the ferruginous oceans was likely driven by photoferrotrophic bacteria that oxidize ferrous iron {Fe(II)} to harness energy from sunlight, and fix inorganic carbon into biomass. Photoferrotrophs may thus have fuelled Earth’s early biosphere providing energy to drive microbial growth and evolution over billions of years. Yet, photoferrotrophic activity has remained largely elusive on the modern Earth, leaving models for early biological production untested and imperative ecological context for the evolution of life missing. Here, we show that an active community of pelagic photoferrotrophs comprises up to 30% of the total microbial community in illuminated ferruginous waters of Kabuno Bay (KB), East Africa (DR Congo). These photoferrotrophs produce oxidized iron {Fe(III)} and biomass, and support a diverse pelagic microbial community including heterotrophic Fe(III)-reducers, sulfate reducers, fermenters and methanogens. At modest light levels, rates of photoferrotrophy in KB exceed those predicted for early Earth primary production, and are sufficient to generate Earth’s largest sedimentary iron ore deposits. Fe cycling, however, is efficient, and complex microbial community interactions likely regulate Fe(III) and organic matter export from the photic zone.
Collapse
|
14
|
Mizoguchi T, Harada J, Tsukatani Y, Tamiaki H. Isolation and characterization of a new bacteriochlorophyll-c bearing a neopentyl substituent at the 8-position from the bciD-deletion mutant of the brown-colored green sulfur bacterium Chlorobaculum limnaeum. PHOTOSYNTHESIS RESEARCH 2014; 121:3-12. [PMID: 24496988 DOI: 10.1007/s11120-014-9977-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/22/2014] [Indexed: 06/03/2023]
Abstract
We recently constructed the mutant of the brown-colored green sulfur bacterium Chlorobaculum limnaeum lacking BciD which was responsible for formation of a formyl group at the 7-position in bacteriochlorophyll(BChl)-e biosynthesis. This mutant exclusively gave BChl-c, but not BChl-e, as the chlorosome pigments (Harada et al. in PLoS One 8(4):e60026, 2013). By the mutation, the homolog and epimer composition of the pigment was drastically altered. The methylation at the 8(2)-position in the mutant cells proceeded to create BChl-c carrying large alkyl substituents at this position. Correspondingly, the content of BChls-c having the (S)-configuration at the chiral 3(1)-position remarkably increased and accounted for 80.6 % of the total BChl-c. Based on the alteration of the pigment composition in the mutant cells, a new BChl-c bearing the bulkiest, triple 8(2)-methylated neopentyl substituent at the 8-position ([N,E]BChl-c) was identified. The molecular structure of [N,E]BChl-c was fully determined by its NMR, mass, and circular dichroism spectra. The newly identified [N,E]BChl-c was epimerically pure at the chiral 3(1)-position and its stereochemistry was determined to be an (S)-configuration by modified Mosher's method. Further, the effects of the C8(2)-methylation on the optical absorption properties of monomeric BChls-c were investigated. The Soret but not Qy absorption bands shifted to longer wavelengths by the extra methylation (at most 1.4 nm). The C8(2)-methylation induced a slight but apparent effect on absorption properties of BChls-c in their monomeric states.
Collapse
Affiliation(s)
- Tadashi Mizoguchi
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | | | | | | |
Collapse
|
15
|
Chromatic acclimation and population dynamics of green sulfur bacteria grown with spectrally tailored light. Sci Rep 2014; 4:5057. [PMID: 24862580 PMCID: PMC4033924 DOI: 10.1038/srep05057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/06/2014] [Indexed: 11/08/2022] Open
Abstract
Living organisms have to adjust to their surrounding in order to survive in stressful conditions. We study this mechanism in one of most primitive creatures – photosynthetic green sulfur bacteria. These bacteria absorb photons very efficiently using the chlorosome antenna complexes and perform photosynthesis in extreme low-light environments. How the chlorosomes in green sulfur bacteria are acclimated to the stressful light conditions, for instance, if the spectrum of light is not optimal for absorption, is unknown. Studying Chlorobaculumtepidum cultures with far-red to near-infrared light-emitting diodes, we found that these bacteria react to changes in energy flow by regulating the amount of light-absorbing pigments and the size of the chlorosomes. Surprisingly, our results indicate that the bacteria can survive in near-infrared lights capturing low-frequency photons by the intermediate units of the light-harvesting complex. The latter strategy may be used by the species recently found near hydrothermal vents in the Pacific Ocean.
Collapse
|
16
|
Tang JKH, Saikin SK, Pingali SV, Enriquez MM, Huh J, Frank HA, Urban VS, Aspuru-Guzik A. Temperature and carbon assimilation regulate the chlorosome biogenesis in green sulfur bacteria. Biophys J 2014; 105:1346-56. [PMID: 24047985 DOI: 10.1016/j.bpj.2013.07.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/19/2013] [Accepted: 07/23/2013] [Indexed: 11/16/2022] Open
Abstract
Green photosynthetic bacteria adjust the structure and functionality of the chlorosome-the light-absorbing antenna complex-in response to environmental stress factors. The chlorosome is a natural self-assembled aggregate of bacteriochlorophyll (BChl) molecules. In this study, we report the regulation of the biogenesis of the Chlorobaculum tepidum chlorosome by carbon assimilation in conjunction with temperature changes. Our studies indicate that the carbon source and thermal stress culture of C. tepidum grows slower and incorporates fewer BChl c in the chlorosome. Compared with the chlorosome from other cultural conditions we investigated, the chlorosome from the carbon source and thermal stress culture displays (a) smaller cross-sectional radius and overall size, (b) simplified BChl c homologs with smaller side chains, (c) blue-shifted Qy absorption maxima, and (d) a sigmoid-shaped circular dichroism spectra. Using a theoretical model, we analyze how the observed spectral modifications can be associated with structural changes of BChl aggregates inside the chlorosome. Our report suggests a mechanism of metabolic regulation for chlorosome biogenesis.
Collapse
|
17
|
Pšenčík J, Butcher SJ, Tuma R. Chlorosomes: Structure, Function and Assembly. THE STRUCTURAL BASIS OF BIOLOGICAL ENERGY GENERATION 2014. [DOI: 10.1007/978-94-017-8742-0_5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
18
|
Saga Y, Saiki T, Takahashi N, Shibata Y, Tamiaki H. Scrambled Self-Assembly of Bacteriochlorophyllscandein Aqueous Triton X-100 Micelles. Photochem Photobiol 2013; 90:552-9. [DOI: 10.1111/php.12219] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 11/28/2013] [Indexed: 01/13/2023]
Affiliation(s)
- Yoshitaka Saga
- Department of Chemistry; Faculty of Science and Engineering; Kinki University; Higashi-Osaka Japan
| | - Tatsuya Saiki
- Department of Chemistry; Faculty of Science and Engineering; Kinki University; Higashi-Osaka Japan
| | - Naoya Takahashi
- Department of Chemistry; Faculty of Science and Engineering; Kinki University; Higashi-Osaka Japan
| | - Yutaka Shibata
- Department of Chemistry; Graduate School of Science; Tohoku University; Sendai Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences; Ritsumeikan University; Kusatsu Japan
| |
Collapse
|
19
|
Abstract
Chlorosomes are large light-harvesting complexes found in three phyla of anoxygenic photosynthetic bacteria. Chlorosomes are primarily composed of self-assembling pigment aggregates. In addition to the main pigment, bacteriochlorophyll c, d, or e, chlorosomes also contain variable amounts of carotenoids. Here, we use X-ray scattering and electron cryomicroscopy, complemented with absorption spectroscopy and pigment analysis, to compare the morphologies, structures, and pigment compositions of chlorosomes from Chloroflexus aurantiacus grown under two different light conditions and Chlorobaculum tepidum. High-purity chlorosomes from C. aurantiacus contain about 20% more carotenoid per bacteriochlorophyll c molecule when grown under low light than when grown under high light. This accentuates the light-harvesting function of carotenoids, in addition to their photoprotective role. The low-light chlorosomes are thicker due to the overall greater content of pigments and contain domains of lamellar aggregates. Experiments where carotenoids were selectively extracted from intact chlorosomes using hexane proved that they are located in the interlamellar space, as observed previously for species belonging to the phylum Chlorobi. A fraction of the carotenoids are localized in the baseplate, where they are bound differently and cannot be removed by hexane. In C. tepidum, carotenoids cannot be extracted by hexane even from the chlorosome interior. The chemical structure of the pigments in C. tepidum may lead to π-π interactions between carotenoids and bacteriochlorophylls, preventing carotenoid extraction. The results provide information about the nature of interactions between bacteriochlorophylls and carotenoids in the protein-free environment of the chlorosome interior.
Collapse
|
20
|
Llirós M, Alonso-Sáez L, Gich F, Plasencia A, Auguet O, Casamayor EO, Borrego CM. Active bacteria and archaea cells fixing bicarbonate in the dark along the water column of a stratified eutrophic lagoon. FEMS Microbiol Ecol 2011; 77:370-84. [DOI: 10.1111/j.1574-6941.2011.01117.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
21
|
Beyond the genome: functional studies of phototrophic sulfur oxidation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010. [PMID: 20532738 DOI: 10.1007/978-1-4419-1528-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
The increasing availability of complete genomic sequences for cultured phototrophic bacteria and assembled metagenomes from environments dominated by phototrophs has reinforced the need for a "post-genomic" analytical effort to test models of cellular structure and function proposed from genomic data. Comparative genomics has produced a testable model for pathways of sulfur compound oxidation in the phototrophic bacteria. In the case of sulfide, two enzymes are predicted to oxidize sulfide: sulfide:quinone oxidoreductase and flavocytochrome c sulfide dehydrogenase. However, these models do not predict which enzyme is important under what conditions. In Chlorobaculum tepidum, a model green sulfur bacterium, a combination of genetics and physiological analysis of mutant strains has led to the realization that this organism contains at least two active sulfide:quinone oxidoreductases and that there is significant interaction between sulfide oxidation and light harvesting. In the case of elemental sulfur, an organothiol intermediate of unknown structure has been proposed to activate elemental sulfur for transport into the cytoplasm where it can be oxidized or assimilated, and recent approaches using classical metabolite analysis have begun to shed light on this issue both in C. tepidum and the purple sulfur bacterium Allochromatium vinosum.
Collapse
|
22
|
Sodium Dodecyl Sulfate-Polyacrylamide Gel Protein Electrophoresis of Freshwater Photosynthetic Sulfur Bacteria. Curr Microbiol 2010; 62:111-6. [DOI: 10.1007/s00284-010-9680-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 05/04/2010] [Indexed: 11/27/2022]
|
23
|
Ng C, DeMaere MZ, Williams TJ, Lauro FM, Raftery M, Gibson JAE, Andrews-Pfannkoch C, Lewis M, Hoffman JM, Thomas T, Cavicchioli R. Metaproteogenomic analysis of a dominant green sulfur bacterium from Ace Lake, Antarctica. ISME JOURNAL 2010; 4:1002-19. [PMID: 20237513 DOI: 10.1038/ismej.2010.28] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Green sulfur bacteria (GSB) (Chlorobiaceae) are primary producers that are important in global carbon and sulfur cycling in natural environments. An almost complete genome sequence for a single, dominant GSB species ('C-Ace') was assembled from shotgun sequence data of an environmental sample taken from the O(2)-H(2)S interface of the water column of Ace Lake, Antarctica. Approximately 34 Mb of DNA sequence data were assembled into nine scaffolds totaling 1.79 Mb, representing approximately 19-fold coverage for the C-Ace composite genome. A high level ( approximately 31%) of metaproteomic coverage was achieved using matched biomass. The metaproteogenomic approach provided unique insight into the protein complement required for dominating the microbial community under cold, nutrient-limited, oxygen-limited and extremely varied annual light conditions. C-Ace shows physiological traits that promote its ability to compete very effectively with other GSB and gain dominance (for example, specific bacteriochlorophylls, mechanisms of cold adaptation) as well as a syntrophic relationship with sulfate-reducing bacteria that provides a mechanism for the exchange of sulfur compounds. As a result we are able to propose an explanation of the active biological processes promoted by cold-adapted GSB and the adaptive strategies they use to thrive under the severe physiochemical conditions prevailing in polar environments.
Collapse
Affiliation(s)
- Charmaine Ng
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Spectral properties of single light-harvesting complexes in bacterial photosynthesis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2010. [DOI: 10.1016/j.jphotochemrev.2010.02.002] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Structure of chlorosomes from the green filamentous bacterium Chloroflexus aurantiacus. J Bacteriol 2009; 191:6701-8. [PMID: 19717605 DOI: 10.1128/jb.00690-09] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The green filamentous bacterium Chloroflexus aurantiacus employs chlorosomes as photosynthetic antennae. Chlorosomes contain bacteriochlorophyll aggregates and are attached to the inner side of a plasma membrane via a protein baseplate. The structure of chlorosomes from C. aurantiacus was investigated by using a combination of cryo-electron microscopy and X-ray diffraction and compared with that of Chlorobi species. Cryo-electron tomography revealed thin chlorosomes for which a distinct crystalline baseplate lattice was visualized in high-resolution projections. The baseplate is present only on one side of the chlorosome, and the lattice dimensions suggest that a dimer of the CsmA protein is the building block. The bacteriochlorophyll aggregates inside the chlorosome are arranged in lamellae, but the spacing is much greater than that in Chlorobi species. A comparison of chlorosomes from different species suggested that the lamellar spacing is proportional to the chain length of the esterifying alcohols. C. aurantiacus chlorosomes accumulate larger quantities of carotenoids under high-light conditions, presumably to provide photoprotection. The wider lamellae allow accommodation of the additional carotenoids and lead to increased disorder within the lamellae.
Collapse
|
26
|
Bañeras L, Gich F, Martinez-Medina M, Miller M, Abella CA, Borrego CM. New phylotypes of mesophilic filamentous anoxygenic phototrophic bacteria enriched from sulfide-containing environments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2009; 1:86-93. [PMID: 23765724 DOI: 10.1111/j.1758-2229.2008.00009.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Agar-based solid media with increasing concentrations of organic matter were used to isolate new members of the Chloroflexaceae (phylum Chloroflexi) from mesophilic environments containing sulfide. Inorganic media yielded less than 10% positive enrichments, which were not able to be maintained after repetitive inoculations in fresh medium. The use of casaminoacids and complex organic acid mixtures increased the number of positive enrichments (up to 45%) from both water and sediment samples. Two different green filamentous bacteria, SisoF2 and SalF, could be stably maintained as co-cultures for long periods and their phylogeny inferred from the analysis of complete sequences of the 16S rRNA gene. Ribotype SalF showed a high homology (95-98%) to previously isolated Oscillochloris trichoides strains. The 16S rRNA gene sequence retrieved from culture SisoF2 was largely divergent (< 92% similarity) from any sequence derived from either cultured representatives or environmental samples, suggesting that ribotype SisoF2 may constitute a new genus within the phylum. The presence of the new morphotypes in the environment from where they were enriched was analysed by high-resolution phylogenetic fingerprinting.
Collapse
Affiliation(s)
- L Bañeras
- Molecular Microbial Ecology Group, Institute of Aquatic Ecology and Department of Biology, University of Girona, Campus Montilivi, E-17071, Girona, Spain. Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230, Odense, Denmark
| | | | | | | | | | | |
Collapse
|
27
|
Morgan-Kiss RM, Chan LK, Modla S, Weber TS, Warner M, Czymmek KJ, Hanson TE. Chlorobaculum tepidum regulates chlorosome structure and function in response to temperature and electron donor availability. PHOTOSYNTHESIS RESEARCH 2009; 99:11-21. [PMID: 18798007 DOI: 10.1007/s11120-008-9361-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 08/21/2008] [Indexed: 05/26/2023]
Abstract
Green sulfur bacteria (GSB) rely on the chlorosome, a light-harvesting apparatus comprised almost entirely of self-organizing arrays of bacteriochlorophyll (BChl) molecules, to harvest light energy and pass it to the reaction center. In Chlorobaculum tepidum, over 97% of the total BChl is made up of a mixture of four BChl c homologs in the chlorosome that differ in the number and identity of alkyl side chains attached to the chlorin ring. C. tepidum has been reported to vary the distribution of BChl c homologs with growth light intensity, with the highest degree of BChl c alkylation observed under low-light conditions. Here, we provide evidence that this functional response at the level of the chlorosome can be induced not only by light intensity, but also by temperature and a mutation that prevents phototrophic thiosulfate oxidation. Furthermore, we show that in conjunction with these functional adjustments, the fraction of cellular volume occupied by chlorosomes was altered in response to environmental conditions that perturb the balance between energy absorbed by the light-harvesting apparatus and energy utilized by downstream metabolic reactions.
Collapse
|
28
|
Mizoguchi T, Kim TY, Sawamura S, Tamiaki H. Pressure-Induced Red Shift and Broadening of the Qy Absorption of Main Light-Harvesting Antennae Chlorosomes from Green Photosynthetic Bacteria and Their Dependency upon Alkyl Substituents of the Composite Bacteriochlorophylls. J Phys Chem B 2008; 112:16759-65. [DOI: 10.1021/jp804990f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tadashi Mizoguchi
- Department of Bioscience and Biotechnology and Department of Applied Chemistry, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Tae-Yeun Kim
- Department of Bioscience and Biotechnology and Department of Applied Chemistry, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Seiji Sawamura
- Department of Bioscience and Biotechnology and Department of Applied Chemistry, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hitoshi Tamiaki
- Department of Bioscience and Biotechnology and Department of Applied Chemistry, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
29
|
Saga Y, Harada J, Hattori H, Kaihara K, Hirai Y, Oh-oka H, Tamiaki H. Spectroscopic properties and bacteriochlorophyll c isomer composition of extramembranous light-harvesting complexes in the green sulfur photosynthetic bacterium Chlorobium tepidum and its CT0388-deleted mutant under vitamin B12-limited conditions. Photochem Photobiol Sci 2008; 7:1210-5. [PMID: 18846285 DOI: 10.1039/b802354a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of exogenous vitamin B12 on the green sulfur photosynthetic bacterium Chlorobium (Chl.) tepidum were examined. Wild-type cells and mutant cells lacking a gene CT0388 (denoted as VB0388) of Chl.tepidum were grown in liquid cultures containing different concentrations of vitamin B12. The VB0388 cells hardly grew in vitamin B12-limited media, indicating that the product of CT0388 actually played an important role in vitamin B12 biosynthesis in Chl. tepidum. Both wild-type and VB0388 cells in vitamin B12-limited media exhibited absorption bands and CD signals at the Qy region that were shifted to a shorter wavelength than those of cells grown in normal media. BChl c isomers that had S-stereochemistry at the 3(1)-position tended to increase in Chl. tepidum grown in vitamin B12-limited media.
Collapse
Affiliation(s)
- Yoshitaka Saga
- Department of Chemistry, Faculty of Science and Engineering, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan.
| | | | | | | | | | | | | |
Collapse
|
30
|
Arellano JB, Psencik J, Borrego CM, Ma YZ, Guyoneaud R, Garcia-Gil J, Gillbro T. Effect of Carotenoid Biosynthesis Inhibition on the Chlorosome Organization in Chlorobium phaeobacteroides Strain CL1401. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2000)0710715eocbio2.0.co2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Saga Y, Matsuura K, Tamiaki H. Spectroscopic Studies on Self-aggregation of Bacteriochlorophyll-e in Nonpolar Organic Solvents: Effects of Stereoisomeric Configuration at the 31-Position and Alkyl Substituents at the 81-Position¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0740072ssosao2.0.co2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Hirabayashi H, Ishii T, Takaichi S, Inoue K, Uehara K. The role of the carotenoids in the photoadaptation of the brown-colored sulfur bacterium Chlorobium phaerobacteroides. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2004.tb00396.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Ishii T, Kimura M, Yamamoto T, Kirihata M, Uehara K. The Effects of Epimerization at the 31-position of Bacteriochlorophylls c on their Aggregation in Chlorosomes of Green Sulfur Bacteria. Control of the Ratio of 31 Epimers by Light Intensity ‡. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2000)0710567teoeat2.0.co2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Klinger P, Arellano JB, Vácha F, Hála J, PšenčíK J. Effect of Carotenoids and Monogalactosyl Diglyceride on Bacteriochlorophyll c Aggregates in Aqueous Buffer: Implications for the Self-assembly of Chlorosomes¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2004.tb00131.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Klinger P, Arellano JB, Vácha F, Hála J, Psencík J. Effect of carotenoids and monogalactosyl diglyceride on bacteriochlorophyll c aggregates in aqueous buffer: implications for the self-assembly of chlorosomes. Photochem Photobiol 2006; 80:572-8. [PMID: 15623345 DOI: 10.1562/0031-8655(2004)080<0572:eocamd>2.0.co;2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aggregation of bacteriochlorophyll (BChl) c from chlorosomes, the main light-harvesting complex of green bacteria, has been studied in aqueous buffer. Unlike other chlorophyll-like molecules, BChl c is rather soluble in aqueous buffer, forming dimers. When BChl c is mixed with carotenoids (Car), the BChl c Qy transition is further redshifted, in respect to that of monomers and dimers. The results suggest that Car are incorporated in the aggregates and induce further aggregation of BChl c. The redshift of the BChl c Qy band is proportional to the Car concentration. In contrast, the mixture of bacteriochlorophyllide (BChlide) c, which lacks the nonpolar esterifying alcohol, does not form aggregates with Car in aqueous buffer or nonpolar solvents. Instead, the position of the BChlide c Qy transition remains unshifted in respect to that of the monomeric molecule, and Car precipitates with the course of time in aqueous buffer. Similar effects on both BChl c and BChlide c are also observed when monogalactosyl diglyceride (MGDG), which forms the monolayer envelope of chlorosomes, is used instead of (or together with) Car. The results show that the hydrophobic interactions of the BChl c esterifying alcohols with themselves and the nonpolar carbon skeleton of Car, or the fatty acid tails of MGDG, are essential driving forces for BChl aggregation in chlorosomes.
Collapse
Affiliation(s)
- Pavel Klinger
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
36
|
Manske AK, Glaeser J, Kuypers MMM, Overmann J. Physiology and phylogeny of green sulfur bacteria forming a monospecific phototrophic assemblage at a depth of 100 meters in the Black Sea. Appl Environ Microbiol 2006; 71:8049-60. [PMID: 16332785 PMCID: PMC1317439 DOI: 10.1128/aem.71.12.8049-8060.2005] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biomass, phylogenetic composition, and photoautotrophic metabolism of green sulfur bacteria in the Black Sea was assessed in situ and in laboratory enrichments. In the center of the western basin, bacteriochlorophyll e (BChl e) was detected between depths of 90 and 120 m and reached maxima of 54 and 68 ng liter(-1). High-pressure liquid chromatography analysis revealed a dominance of farnesyl esters and the presence of four unusual geranyl ester homologs of BChl e. Only traces of BChl e (8 ng liter(-1)) were found at the northwestern slope of the Black Sea basin, where the chemocline was positioned at a significantly greater depth of 140 m. Stable carbon isotope fractionation values of farnesol indicated an autotrophic growth mode of the green sulfur bacteria. For the first time, light intensities in the Black Sea chemocline were determined employing an integrating quantum meter, which yielded maximum values between 0.0022 and 0.00075 micromol quanta m(-2) s(-1) at the top of the green sulfur bacterial layer around solar noon in December. These values represent by far the lowest values reported for any habitat of photosynthetic organisms. Only one 16S rRNA gene sequence type was detected in the chemocline using PCR primers specific for green sulfur bacteria. This previously unknown phylotype groups with the marine cluster of the Chlorobiaceae and was successfully enriched in a mineral medium containing sulfide, dithionite, and freshly prepared yeast extract. Under precisely controlled laboratory conditions, the enriched green sulfur bacterium proved to be capable of exploiting light intensities as low as 0.015 micromol quanta m(-2) s(-1) for photosynthetic 14CO2 fixation. Calculated in situ doubling times of the green sulfur bacterium range between 3.1 and 26 years depending on the season, and anoxygenic photosynthesis contributes only 0.002 to 0.01% to total sulfide oxidation in the chemocline. The stable population of green sulfur bacteria in the Black Sea chemocline thus represents the most extremely low-light-adapted and slowest-growing type of phototroph known to date.
Collapse
Affiliation(s)
- Ann K Manske
- Department Biologie I, Bereich Mikrobiologie, Ludwig-Maximilians-Universität München, Maria-Ward-Str. 1a, D-80638 München, Germany
| | | | | | | |
Collapse
|
37
|
Borrego C, Garcia-Gil L, Vila X, Cristina X, Figueras J, Abella C. Distribution of bacteriochlorophyll homologs in natural populations of brown-colored phototrophic sulfur bacteria. FEMS Microbiol Ecol 2006. [DOI: 10.1111/j.1574-6941.1997.tb00447.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
38
|
Saga Y, Osumi S, Higuchi H, Tamiaki H. Bacteriochlorophyll-c homolog composition in green sulfur photosynthetic bacterium Chlorobium vibrioforme dependent on the concentration of sodium sulfide in liquid cultures. PHOTOSYNTHESIS RESEARCH 2005; 86:123-30. [PMID: 16172931 DOI: 10.1007/s11120-005-5301-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Accepted: 04/11/2005] [Indexed: 05/04/2023]
Abstract
Green sulfur photosynthetic bacteria Chlorobium (Chl.) vibrioforme (DSM 263 strain and NCIB 8327 substrain possessing BChl-c) and Chl. tepidum (ATCC 49652) were photoautotrophically grown in liquid cultures containing different concentrations of sodium sulfide (Na2S). BChl-c homologs possessing a methyl group at the 12-position tended to increase in cells of the two strains of Chl. vibrioforme cultured under high Na2S concentrations. In contrast, the Na2S concentration in liquid cultures did not affect the relative composition of BChl-c homologs in Chl. tepidum. 8-Propyl-12-methyl([P,M])-BChl-c homolog, which has been little observed in usual cultivations, could be isolated by reverse-phase high-performance liquid chromatography from the cells of Chl. vibrioforme grown under high Na2S contents. The [P,M]-BChl-c homolog has the R-configuration at the 3(1)-position, which was determined by 1H-NMR analyses.
Collapse
Affiliation(s)
- Yoshitaka Saga
- Department of Bioscience and Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, 525-8577, Kusatsu, Shiga, Japan
| | | | | | | |
Collapse
|
39
|
Self-aggregates of bacteriochlorophylls-c, d and e in a light-harvesting antenna system of green photosynthetic bacteria: Effect of stereochemistry at the chiral 3-(1-hydroxyethyl) group on the supramolecular arrangement of chlorophyllous pigments. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2005. [DOI: 10.1016/j.jphotochemrev.2005.06.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Saga Y, Tamiaki H. Comparison between chlorosomes containing bacteriochlorophyll-c and chlorosomes containing bacteriochlorophyll-d isolated from two substrains of green sulfur photosynthetic bacterium Chlorobium vibrioforme NCIB 8327. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2005; 75:89-97. [PMID: 15246355 DOI: 10.1016/j.jphotobiol.2004.05.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Revised: 05/29/2004] [Accepted: 05/30/2004] [Indexed: 10/26/2022]
Abstract
Chlorosomes containing bacteriochlorophyll(BChl)-c and those containing BChl-d were isolated from two substrains of Chlorobium vibrioforme f. sp. thiosulfatophilum NCIB 8327, respectively. The two types of chlorosomes were investigated from the following aspect, what kinds of effects the molecular structure of chlorosomal BChls had on structural and spectroscopic properties of in vivo self-aggregates in chlorosomes without alteration of the other components such as chlorosomal proteins and lipids; both chlorosomes were expected to have the same components except for light-harvesting BChls. In their visible absorption spectra, the differences of Soret and Q(y) peak positions between BChl-c containing and BChl-d containing chlorosomes were similar to the differences between monomeric BChl-c and d. An inverse S-shaped CD signal in the Q(y) region of BChl-d containing chlorosomes was 1.4 times larger than that of BChl-c containing chlorosomes, when the Q(y) absorbance of the two chlorosomes was almost the same. This implies that the excitonic interaction of BChl-d is larger than that of BChl-c in natural chlorosomes. Resonance Raman spectroscopy showed that BChl self-assemblies in both chlorosomes were essentially formed by the same local structural interaction among 3(1)-hydroxy group, 13-keto group, and central magnesium. BChl-d self-aggregates in chlorosomes were more tolerant of 1-hexanol than in vivo BChl-c aggregates, suggesting that the molecular structure of BChl-d provided more stable self-assemblies than BChl-c in natural chlorosomes.
Collapse
Affiliation(s)
- Yoshitaka Saga
- Department of Bioscience and Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | | |
Collapse
|
41
|
Tamiaki H. Self-aggregates of natural and modified chlorophylls as photosynthetic light-harvesting antenna systems: substituent effect on the B-ring. Photochem Photobiol Sci 2005; 4:675-80. [PMID: 16121276 DOI: 10.1039/b416360e] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Extramembranous light-harvesting antennae called 'chlorosomes' are the main sunlight-absorbing and energy-migrating systems in photosynthetic green bacteria. In a chlorosome, specific chlorophyllous pigments self-aggregate in hydrophobic environments surrounded by a lipid monolayer to form large oligomers. The self-aggregates of chlorosomal chlorophylls possessing a chlorin pi-system absorb sunlight and can emit near-infrared light, which is transferred to a bacteriochlorin pigment situated in the chlorosomal surface membrane. In vivo and in vitro self-aggregates of natural chlorosomal chlorophylls and their models have been investigated by electronic absorption analysis. Here their self-aggregation is reviewed from the viewpoint of substituent effect on the pyrrolic B-ring. Substituents at the 7- and 8-positions did not disturb the formation of their self-aggregates but affected their absorption bands.
Collapse
Affiliation(s)
- Hitoshi Tamiaki
- Department of Bioscience and Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
42
|
Wilson MA, Hodgson DA, Keely BJ. Atmospheric pressure chemical ionisation liquid chromatography/multistage mass spectrometry for assignment of sedimentary bacteriochlorophyll derivatives. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2005; 19:38-46. [PMID: 15570571 DOI: 10.1002/rcm.1749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Atmospheric pressure chemical ionisation liquid chromatography/multistage mass spectrometry (APCI-LC/MSn) provides a rapid, on-line method for the assignment of individual bacteriophaeophorbide c and d methyl esters (BPMEs) in complex mixtures. The MS2 spectrum for each component is diagnostic of the type of BPME (c or d), and characteristic losses in MS5 and MS6 permit assignment of the alkyl substituents at positions C-8 and C-12 of the macrocycle. MS5 mass chromatograms permit the deconvolution of coeluting isobaric BPMEs, revealing the true profiles of the individual components. The distributions are different in lake sediments from la Salada de Chiprana (Spain) and Kirisjes Pond (Antarctica), and a novel BPME c with a neo-pentyl substituent has been observed in the Kirisjes Pond sediment.
Collapse
Affiliation(s)
- Michael A Wilson
- Chemistry Department, University of York, Heslington, York YO10 5DD, UK
| | | | | |
Collapse
|
43
|
Massé A, Airs RL, Keely BJ, de Wit R. The impact of different intensities of green light on the bacteriochlorophyll homologue composition of the chlorobiaceae Prosthecochloris aestuarii and Chlorobium phaeobacteroides. Microbiology (Reading) 2004; 150:2555-2564. [PMID: 15289552 DOI: 10.1099/mic.0.27048-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Members of theChlorobiaceaeandChloroflexaceaeare unique among the phototrophic micro-organisms in having a remarkably rich chlorophyll pigment diversity. The physiological regulation of this diversity and its ecological implications are still enigmatic. The bacteriochlorophyll composition of the chlorobiaceaeProsthecochloris aestuariistrain CE 2404 andChlorobium phaeobacteroidesstrain UdG 6030 was therefore studied by both HPLC with photodiode array (PDA) detection and liquid chromatography-mass spectrometry (LC-MS). These strains were grown in liquid cultures under green light (480–615 nm) at different light intensities (0·2–55·7 μmol photons m−2 s−1), simulating the irradiance regime at different depths of the water column of deep lakes. The specific growth rates ofPtc. aestuariiunder green light achieved a maximum of 0·06 h−1at light intensities exceeding 6 μmol photons m−2 s−1, lower than the maximum observed under white light (approx. 0·1 h−1). The maximal growth rates ofChl. phaeobacteroidesunder green light were slightly higher (0·07 h−1) than observed forPtc. aestuariiand were achieved at 3·5 and 4·3 μmol photons m−2 s−1. LC-MS/MS analysis of pigment extracts revealed most (>90 %) BChlchomologues ofPtc. aestuariito be esterified with farnesol. The homologues differed in mass by multiples of 14 Da, reflecting different alkyl subsituents at positions C-8 and C-12 on the tetrapyrrole macrocycle. The relative proportions of the individual homologues varied only slightly among different light intensities. The specific content of BChlcwas maximal at 3–5 μmol photons m−2 s−1[400±150 nmol BChlc(mg protein)−1]. In the case ofChl. phaeobacteroides, the specific content of BChlewas maximal at 4·3 μmol photons m−2 s−1[115 nmol BChle(mg protein)−1], and this species was characterized by high carotenoid (isorenieratene) contents. The major BChleforms were esterified with a range of isoprenoid and straight-chain alcohols. The major isoprenoid alcohols comprised mainly farnesol and to a lesser extent geranylgeraniol. The straight-chain alcohols included C15, C15 : 1, C16, C16 : 1and C17. Interestingly, the proportion of straight alkyl chains over isoprenoid esterified side chains shifted markedly with increasing light intensity: the isoprenoid side chains dominated at low light intensities, while the straight-chain alkyl substituents dominated at higher light intensities. The authors propose that this phenomenon may be explained as a result of changing availability of reducing power, i.e. the highly reduced straight-chain alcohols have a higher biosynthetic demand for NADPH2than the polyunsaturated isoprenoid with the same number of carbon atoms.
Collapse
Affiliation(s)
- Astrid Massé
- Laboratoire d'Océanographie Biologique, CNRS-UMR 5805 Université Bordeaux 1, 2 rue du Professeur Jolyet, F-33120 Arcachon, France
| | - Ruth L Airs
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Brendan J Keely
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Rutger de Wit
- Laboratoire d'Océanographie Biologique, CNRS-UMR 5805 Université Bordeaux 1, 2 rue du Professeur Jolyet, F-33120 Arcachon, France
| |
Collapse
|
44
|
Polívka T, Sundström V. Ultrafast dynamics of carotenoid excited States-from solution to natural and artificial systems. Chem Rev 2004; 104:2021-71. [PMID: 15080720 DOI: 10.1021/cr020674n] [Citation(s) in RCA: 644] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomás Polívka
- Department of Chemical Physics, Lund University, Box 124, SE-221 00 Lund, Sweden.
| | | |
Collapse
|
45
|
Hirabayashi H, Ishii T, Takaichi S, Inoue K, Uehara K. The role of carotenoids in the photoadaptation of the brown-colored sulfur bacterium Chlorobium phaeobacteroides. Photochem Photobiol 2004; 79:280-5. [PMID: 15115301 DOI: 10.1562/wb-03-11.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The brown-colored sulfur bacterium Chlorobium (Cb.) phaeobacteroides 1549 (new name, Chlorobaculum limnaeum 1549) contains many kinds of carotenoids as well as bacteriochlorophyll (BChl) e. These carotenoids were identified with C18-high-performance liquid chromatography, absorption, mass and proton nuclear magnetic resonance spectroscopies and were divided into two groups: the first is carotenoid with one or two phi-end groups such as isorenieratene and beta-isorenieratene and the second is carotenoid with one or two beta-end groups such as p-zeacarotene, beta-carotene and 7,8-dihydro-beta-carotene. The latter 7,8-dihydro-beta-carotene was found to be a novel carotenoid in nature. OH-gamma-Carotene glucoside laurate and OH-chlorobactene glucoside laurate were also found as minor components. The distribution of BChl e homologs in Cb. phaeobacteroides cultivated under various light intensities did not change, but the carotenoid to BChl e ratio changed markedly: carotenoid with the phi-end group maintained the same ratio to BChl e, whereas that with the beta-end group increased with increasing light intensity. The cells cultured under low-light intensity contained more phi-end carotenoids than beta-end. In Cb. phaeobacteroides the wavelength of the Qy band of BChl e aggregates did not change. We suggested that Cb. phaeobacteroides photoadapts to light intensity by changing the carotenoid composition.
Collapse
Affiliation(s)
- Hiroki Hirabayashi
- Research Institute for Advanced Science and Technology, Osaka Prefecture University, Sakai, Osaka, Japan
| | | | | | | | | |
Collapse
|
46
|
Nakajima Y, Okada H, Oguri K, Suga H, Kitazato H, Koizumi Y, Fukui M, Ohkouchi N. Distribution of chloropigments in suspended particulate matter and benthic microbial mat of a meromictic lake, Lake Kaiike, Japan. Environ Microbiol 2003; 5:1103-10. [PMID: 14641590 DOI: 10.1046/j.1462-2920.2003.00517.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated the distribution of chloropigments in a small meromictic lake, Lake Kaiike, south-west Japan. In the water-column, concentrations of Chl a related to cyanobacteria, BChl a related to purple sulphur bacteria, and three types of BChl e homologues (BChls e1, e2 and e3) related to brown-coloured green sulphur bacteria, were maximal at the redox boundary. Below the redox boundary, absolute concentrations of Chl a and BChl a gradually decreased with depth, whereas BChls e remained rather constant. Suspended particulate matter (SPM) at the deeper region of the anoxic water-column was enriched in highly alkylated BChl e homologues compared with SPM at the redox boundary. The shift in the relative content of highly alkylated BChl e homologues beneath the boundary was associated with community related adaptation of brown-coloured green sulphur bacteria to changes in light quality/quantity, resulting from the optical absorption and reflectance of SPMs in the overlying water-column. Benthic microbial mats were characterized by high abundances of BChls e, in which highly alkylated homologues were substantially abundant. This suggests that the BChls e in the microbial mat may be derived from the low-light adapted brown-coloured green sulphur bacteria forming the bacterial mat.
Collapse
Affiliation(s)
- Yoji Nakajima
- Graduate School of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Saga Y, Oh-oka H, Hayashi T, Tamiaki H. Presence of Exclusively Bacteriochlorophyll-c Containing Substrain in the Culture of Green Sulfur Photosynthetic Bacterium Chlorobium vibrioforme Strain NCIB 8327 Producing Bacteriochlorophyll-d. ANAL SCI 2003; 19:1575-9. [PMID: 14696917 DOI: 10.2116/analsci.19.1575] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The light-dependent composition change of light harvesting bacteriochlorophyll(BChl)s in the present culture of a green sulfur photosynthetic bacterium Chlorobium (Chl.) vibrioforme f. sp. thiosulfatophilum strain NCIB 8327 was investigated by visible absorption spectroscopy and HPLC analyses. When the culture was repeatedly grown in liquid media under a low light condition, both the Soret and Qy absorption bands of the in vivo spectrum were shifted to longer wavelengths. Analysis of the extracted pigments by HPLC revealed that the ratio of the amount of BChl-c to that of BChl-d molecules gradually increased during repeated cultivation. In contrast, when the culture grown under a low light intensity was transferred to a high light condition and continued to be grown, the absorption bands were shifted to shorter wavelengths and the ratio of BChls-c/d decreased finally to the almost original value. Colonies were prepared on solid agar media from the liquid culture containing both BChls-c and d, which was grown under a low light intensity. Each colony obtained was found to contain either BChl-c or d, but not both of them. Two types of cells isolated in this study were derived from the same clone, judged from their genetic analyses. The variation of pigment composition in our liquid culture observed here could be ascribed to the difference of growth rates between two substrains containing BChl-c and BChl-d, respectively, depending on light conditions.
Collapse
Affiliation(s)
- Yoshitaka Saga
- Department of Bioscience and Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | | | | | | |
Collapse
|
48
|
Wilson MA, Md Saleh SR, Hodgson DA, Keely BJ. Atmospheric pressure chemical ionisation liquid chromatography/multi-stage mass spectrometry of isobaric bacteriophaeophorbide d methyl esters. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2003; 17:2455-2458. [PMID: 14587093 DOI: 10.1002/rcm.1205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|
49
|
Airs RL, Keely BJ. Atmospheric pressure chemical ionisation liquid chromatography/mass spectrometry of bacteriochlorophylls from Chlorobiaceae: characteristic fragmentations. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2002; 16:453-461. [PMID: 11857731 DOI: 10.1002/rcm.598] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Atmospheric pressure chemical ionisation liquid chromatography/mass spectrometry/mass spectrometry (APCI-LC/MS/MS) has been applied to the study of bacteriochlorophylls c, d, and e of phototrophic prokaryotes. Cultures of Chlorobiaceae containing bacteriochlorophyll c, d or e were examined using a high-resolution high-performance liquid chromatography (HPLC) method and APCI-LC/MS/MS employing post-column addition of formic acid. The results reveal complex distributions of bacteriochlorophyll homologues, with some closely eluting species giving isobaric protonated molecules. On-line LC/MS/MS studies reveal characteristic fragment ions for bacteriochlorophylls c, d, and e. Fragmentations involving loss of the extended alkyl substituents that are unique to bacteriochlorophylls c, d and e and their derivatives have been rationalised by studying the phaeophorbides and the results applied to the direct study of the bacteriochlorophylls.
Collapse
Affiliation(s)
- Ruth L Airs
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | | |
Collapse
|
50
|
Gich FB, Borrego CM, MartıÌnez-Planells A, Steensgaard DB, Garcia-Gil J, Holzwarth AR. Variability of the photosynthetic antenna of a Pelodictyon clathratiforme population from a freshwater holomictic pond. FEMS Microbiol Ecol 2001. [DOI: 10.1111/j.1574-6941.2001.tb00848.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|