1
|
Mueller-Cajar O, Stotz M, Bracher A. Maintaining photosynthetic CO2 fixation via protein remodelling: the Rubisco activases. PHOTOSYNTHESIS RESEARCH 2014; 119:191-201. [PMID: 23543331 DOI: 10.1007/s11120-013-9819-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 03/19/2013] [Indexed: 05/19/2023]
Abstract
The key photosynthetic, CO2-fixing enzyme Rubisco forms inactivated complexes with its substrate ribulose 1,5-bisphosphate (RuBP) and other sugar phosphate inhibitors. The independently evolved AAA+ proteins Rubisco activase and CbbX harness energy from ATP hydrolysis to remodel Rubisco complexes, facilitating release of these inhibitors. Here, we discuss recent structural and mechanistic advances towards the understanding of protein-mediated Rubisco activation. Both activating proteins appear to form ring-shaped hexameric arrangements typical for AAA+ ATPases in their functional form, but display very different regulatory and biochemical properties. Considering the thermolability of the plant enzyme, an improved understanding of the mechanism for Rubisco activation may help in developing heat-resistant plants adapted to the challenge of global warming.
Collapse
Affiliation(s)
- Oliver Mueller-Cajar
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore,
| | | | | |
Collapse
|
2
|
Spreitzer RJ, Salvucci ME. Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. ANNUAL REVIEW OF PLANT BIOLOGY 2002; 53:449-75. [PMID: 12221984 DOI: 10.1146/annurev.arplant.53.100301.135233] [Citation(s) in RCA: 455] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) catalyzes the first step in net photosynthetic CO2 assimilation and photorespiratory carbon oxidation. The enzyme is notoriously inefficient as a catalyst for the carboxylation of RuBP and is subject to competitive inhibition by O2, inactivation by loss of carbamylation, and dead-end inhibition by RuBP. These inadequacies make Rubisco rate limiting for photosynthesis and an obvious target for increasing agricultural productivity. Resolution of X-ray crystal structures and detailed analysis of divergent, mutant, and hybrid enzymes have increased our insight into the structure/function relationships of Rubisco. The interactions and associations relatively far from the Rubisco active site, including regulatory interactions with Rubisco activase, may present new approaches and strategies for understanding and ultimately improving this complex enzyme.
Collapse
Affiliation(s)
- Robert J Spreitzer
- Department of Biochemistry, Institute of Agriculture and Natural Resources, University of Nebraska, Lincoln, Nebraska 68588-0664, USA.
| | | |
Collapse
|
3
|
|
4
|
|
5
|
Law RD, Crafts-Brandner SJ. Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1,5-bisphosphate Carboxylase/Oxygenase. PLANT PHYSIOLOGY 1999; 120:173-82. [PMID: 10318695 PMCID: PMC59249 DOI: 10.1104/pp.120.1.173] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/1998] [Accepted: 01/19/1999] [Indexed: 05/18/2023]
Abstract
Increasing the leaf temperature of intact cotton (Gossypium hirsutum L.) and wheat (Triticum aestivum L.) plants caused a progressive decline in the light-saturated CO2-exchange rate (CER). CER was more sensitive to increased leaf temperature in wheat than in cotton, and both species demonstrated photosynthetic acclimation when leaf temperature was increased gradually. Inhibition of CER was not a consequence of stomatal closure, as indicated by a positive relationship between leaf temperature and transpiration. The activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), which is regulated by Rubisco activase, was closely correlated with temperature-induced changes in CER. Nonphotochemical chlorophyll fluorescence quenching increased with leaf temperature in a manner consistent with inhibited CER and Rubisco activation. Both nonphotochemical fluorescence quenching and Rubisco activation were more sensitive to heat stress than the maximum quantum yield of photochemistry of photosystem II. Heat stress led to decreased 3-phosphoglyceric acid content and increased ribulose-1, 5-bisphosphate content, which is indicative of inhibited metabolite flow through Rubisco. We conclude that heat stress inhibited CER primarily by decreasing the activation state of Rubisco via inhibition of Rubisco activase. Although Rubisco activation was more closely correlated with CER than the maximum quantum yield of photochemistry of photosystem II, both processes could be acclimated to heat stress by gradually increasing the leaf temperature.
Collapse
Affiliation(s)
- RD Law
- United States Department of Agriculture-Agricultural Research Service, Western Cotton Research Laboratory, 4135 East Broadway Road, Phoenix, Arizona 85040-8803, USA
| | | |
Collapse
|
6
|
Feller U, Crafts-Brandner SJ, Salvucci ME. Moderately High Temperatures Inhibit Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (Rubisco) Activase-Mediated Activation of Rubisco. PLANT PHYSIOLOGY 1998; 116:539-46. [PMID: 9490757 PMCID: PMC35111 DOI: 10.1104/pp.116.2.539] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/1997] [Accepted: 10/23/1997] [Indexed: 05/18/2023]
Abstract
We tested the hypothesis that light activation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is inhibited by moderately elevated temperature through an effect on Rubisco activase. When cotton (Gossypium hirsutum L.) or wheat (Triticum aestivum L.) leaf tissue was exposed to increasing temperatures in the light, activation of Rubisco was inhibited above 35 and 30 degreesC, respectively, and the relative inhibition was greater for wheat than for cotton. The temperature-induced inhibition of Rubisco activation was fully reversible at temperatures below 40 degreesC. In contrast to activation state, total Rubisco activity was not affected by temperatures as high as 45 degreesC. Nonphotochemical fluorescence quenching increased at temperatures that inhibited Rubisco activation, consistent with inhibition of Calvin cycle activity. Initial and maximal chlorophyll fluorescence were not significantly altered until temperatures exceeded 40 degreesC. Thus, electron transport, as measured by Chl fluorescence, appeared to be more stable to moderately elevated temperatures than Rubisco activation. Western-blot analysis revealed the formation of high-molecular-weight aggregates of activase at temperatures above 40 degreesC for both wheat and cotton when inhibition of Rubisco activation was irreversible. Physical perturbation of other soluble stromal enzymes, including Rubisco, phosphoribulokinase, and glutamine synthetase, was not detected at the elevated temperatures. Our evidence indicates that moderately elevated temperatures inhibit light activation of Rubisco via a direct effect on Rubisco activase.
Collapse
Affiliation(s)
- U Feller
- Institute of Plant Physiology, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland (U.F.)
| | | | | |
Collapse
|
7
|
Moore BD, Sharkey TD, Seemann JR. Intracellular localization of CA1P and CA1P phosphatase activity in leaves of Phaseolus vulgaris L. PHOTOSYNTHESIS RESEARCH 1995; 45:219-224. [PMID: 24301533 DOI: 10.1007/bf00015562] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/1995] [Accepted: 08/07/1995] [Indexed: 06/02/2023]
Abstract
CA1P and CA1P phosphatase occur in the chloroplasts of leaf mesophyll cells of many species. However, whether either may occur exclusively in the chloroplast has not yet been established. To examine their intracellular distribution, mature, dark-or light-treated leaves of Phaseolus vulgaris were frozen, lyophilized and then centrifuged in density gradients of heptane and tetrachloroethylene. After gradient fractionation, both CA1P and CA1P phosphatase activity co-segregated with chloroplast material. Distribution analyses using sub-cellular compartment markers indicated that both CA1P and CA1P phosphatase do occur exclusively in leaf chloroplasts.
Collapse
Affiliation(s)
- B D Moore
- Department of Biochemistry, University of Nevada, 89557, Reno, NV, USA
| | | | | |
Collapse
|
8
|
Sage RF. Light-dependent modulation of ribulose-1,5-bisphosphate carboxylase/oxygenase activity in the genus Phaseolus. PHOTOSYNTHESIS RESEARCH 1993; 35:219-226. [PMID: 24318752 DOI: 10.1007/bf00016553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/1992] [Accepted: 09/22/1992] [Indexed: 06/02/2023]
Abstract
Modulation of the activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in low light and darkness was measured in A) 25 genotypes from the four cultivated species of Phaseolus (P. vulgaris, P. acutifolius, P. lunatus and P. coccineus), B) 8 non-cultivated Phaseolus species, and C) the related species Macroptileum atropurpureum. The activity ratio of Rubisco (the ratio of initial and total Rubisco activities, which reflects Rubisco carbamylation), and the molar activity of fully-activated Rubisco (which primarily reflects the inhibition of Rubisco activity by carboxyarabinitol 1-phosphate, CA1P) were assayed in leaves from the cultivated species sampled at midday in full sunlight, in low light at dusk (60 to 100 μmol photons m(-2)s(-1)), and after at least 4 h in darkness. Dark inhibition of Rubisco molar activity was compared in both cultivated and non-cultivated species. In all cultivated genotypes, a significant reduction of the activity ratio of Rubisco was measured in leaves sampled at low light; however, the molar activity of fully activated Rubisco was not greatly reduced in these low light samples. In darkened leaves, molar activities substantially declined in most Phaseolus species with 11 of 13 exhibiting greater than 60% reduction. In P. vulgaris, the reduction of molar activity was extensive (greater than 69%) in all genotypes studied, which included wild progenitors as well as ancient and advanced cultivars. These results indicate that at low light late in the day, modulation of Rubisco activity is primarily through changes in carbamylation state, with CA1P playing a more limited role. By contrast in the dark, binding of CA1P dominates the modulation of Rubisco activity in Phaseolus in a pattern that appears to be conserved within a species, but can vary significantly between species within a genus. The degree of CA1P inhibition in Phaseolus was associated with phylogenetic affinities within the genus, as the species with extensive dark-inhibition of Rubisco activity tended to be more closely related to each other than to species with reduced inhibition of Rubisco activity.
Collapse
Affiliation(s)
- R F Sage
- Department of Botany, University of Georgia, 30602, Athens, GA, USA
| |
Collapse
|
9
|
Control of Metabolism and Development in Higher Plant Plastids. INTERNATIONAL REVIEW OF CYTOLOGY VOLUME 145 1993. [DOI: 10.1016/s0074-7696(08)60427-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
10
|
Holbrook GP, Turner JA, Polans NO. Dark inhibition of ribulose-1,5-bisphosphate carboxylase/oxygenase in legumes: A biosystematic study. PHOTOSYNTHESIS RESEARCH 1992; 32:37-44. [PMID: 24408153 DOI: 10.1007/bf00028796] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/1991] [Accepted: 12/10/1991] [Indexed: 06/03/2023]
Abstract
2-carboxyarabinitol 1-phosphate (CA 1-P) is a naturally occurring inhibitor of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Members of the Fabaceae exhibit a particularly wide range in the extent of CA 1-P accumulation during darkness and include Phaseolus vulgaris, whose dark/light regulation of Rubisco activity is principally achieved by synthesis/degradation of CA 1-P. An extensive survey of the degree of dark inhibition of Rubisco was undertaken for the subfamily Papilionoideae to elucidate evolutionary patterns in the occurrence of this regulatory mechanism. Seventy-five species from 21 tribes were examined. Dark inhibition of Rubisco was found in ancestral tribes such as the Sophoreae, but was substantially reduced or absent in representative species of three more recently evolved tribes, Cicereae, Hedysareae and Vicieae. We conclude that regulation of Rubisco by CA 1-P is neither of recent origin nor of restricted distribution among the Papilionoideae. On the contrary, it becomes lost or less pronounced only in a minority of the more evolutionarily advanced species in this important subfamily.
Collapse
Affiliation(s)
- G P Holbrook
- Department of Biological Sciences, Northern Illinois University, 60115-2861, DeKalb, Illinois, USA
| | | | | |
Collapse
|
11
|
Buchanan BB. Regulation of CO2 assimilation in oxygenic photosynthesis: the ferredoxin/thioredoxin system. Perspective on its discovery, present status, and future development. Arch Biochem Biophys 1991; 288:1-9. [PMID: 1910303 DOI: 10.1016/0003-9861(91)90157-e] [Citation(s) in RCA: 241] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- B B Buchanan
- Department of Plant Biology, University of California, Berkeley 94720
| |
Collapse
|
12
|
Sharkey TD, Savitch LV, Butz ND. Photometric method for routine determination of kcat and carbamylation of rubisco. PHOTOSYNTHESIS RESEARCH 1991; 28:41-8. [PMID: 24414797 DOI: 10.1007/bf00027175] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/1990] [Accepted: 02/13/1991] [Indexed: 05/25/2023]
Abstract
Ribulose bisphosphate carboxylase (rubisco) is the first enzyme in photosynthetic CO2 assimilation. It is also the single largest sink for nitrogen in plants. Several parameters of rubisco activity are often measured including initial activity upon extraction, degree of carbamylation, catalytic constant of the enzyme (kcat), and the total amount of enzyme present in a leaf. We report here improvements of the photometric assay of rubisco in which rubisco activity is coupled to NADH oxidation which is continuously monitored in a photometer. The initial lag usually found in this assay was eliminated by assaying rubisco activity at pH 8.0 instead of 8.2, using a large amount of phosphoglycerate kinase, and adding monovalent cations to the assay buffer. We found that when using the photometric assay, the ratio of activity found initially upon extraction divided by the activity after incubating with CO2 and Mg(2+) reflects the degree of carbamylation as determined by (14)carboxyarabinitol bisphosphate/(12)carboxyarabinitol bisphosphate competition. We developed methods for measuring the catalytic constant of rubisco as well as the total amount of enzyme present using the photometric assay and carboxyarabinitol 1,5-bisphosphate. We believe that the photometric assay for activity will prove more useful than the (14)CO2 assay in many studies.
Collapse
Affiliation(s)
- T D Sharkey
- Department of Botany, University of Wisconsin, 53706, Madison, WI, USA
| | | | | |
Collapse
|