1
|
Najafpour MM, Renger G, Hołyńska M, Moghaddam AN, Aro EM, Carpentier R, Nishihara H, Eaton-Rye JJ, Shen JR, Allakhverdiev SI. Manganese Compounds as Water-Oxidizing Catalysts: From the Natural Water-Oxidizing Complex to Nanosized Manganese Oxide Structures. Chem Rev 2016; 116:2886-936. [PMID: 26812090 DOI: 10.1021/acs.chemrev.5b00340] [Citation(s) in RCA: 344] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
All cyanobacteria, algae, and plants use a similar water-oxidizing catalyst for water oxidation. This catalyst is housed in Photosystem II, a membrane-protein complex that functions as a light-driven water oxidase in oxygenic photosynthesis. Water oxidation is also an important reaction in artificial photosynthesis because it has the potential to provide cheap electrons from water for hydrogen production or for the reduction of carbon dioxide on an industrial scale. The water-oxidizing complex of Photosystem II is a Mn-Ca cluster that oxidizes water with a low overpotential and high turnover frequency number of up to 25-90 molecules of O2 released per second. In this Review, we discuss the atomic structure of the Mn-Ca cluster of the Photosystem II water-oxidizing complex from the viewpoint that the underlying mechanism can be informative when designing artificial water-oxidizing catalysts. This is followed by consideration of functional Mn-based model complexes for water oxidation and the issue of Mn complexes decomposing to Mn oxide. We then provide a detailed assessment of the chemistry of Mn oxides by considering how their bulk and nanoscale properties contribute to their effectiveness as water-oxidizing catalysts.
Collapse
Affiliation(s)
| | - Gernot Renger
- Institute of Chemistry, Max-Volmer-Laboratory of Biophysical Chemistry, Technical University Berlin , Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Małgorzata Hołyńska
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg , Hans-Meerwein-Straße, D-35032 Marburg, Germany
| | | | - Eva-Mari Aro
- Department of Biochemistry and Food Chemistry, University of Turku , 20014 Turku, Finland
| | - Robert Carpentier
- Groupe de Recherche en Biologie Végétale (GRBV), Université du Québec à Trois-Rivières , C.P. 500, Trois-Rivières, Québec G9A 5H7, Canada
| | - Hiroshi Nishihara
- Department of Chemistry, School of Science, The University of Tokyo , 7-3-1, Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Julian J Eaton-Rye
- Department of Biochemistry, University of Otago , P.O. Box 56, Dunedin 9054, New Zealand
| | - Jian-Ren Shen
- Photosynthesis Research Center, Graduate School of Natural Science and Technology, Faculty of Science, Okayama University , Okayama 700-8530, Japan.,Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences , Beijing 100093, China
| | - Suleyman I Allakhverdiev
- Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences , Botanicheskaya Street 35, Moscow 127276, Russia.,Institute of Basic Biological Problems, Russian Academy of Sciences , Pushchino, Moscow Region 142290, Russia.,Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University , Leninskie Gory 1-12, Moscow 119991, Russia
| |
Collapse
|
2
|
Renger G. Mechanism of light induced water splitting in Photosystem II of oxygen evolving photosynthetic organisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1164-76. [PMID: 22353626 DOI: 10.1016/j.bbabio.2012.02.005] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/27/2012] [Accepted: 02/05/2012] [Indexed: 11/24/2022]
Abstract
The reactions of light induced oxidative water splitting were analyzed within the framework of the empirical rate constant-distance relationship of non-adiabatic electron transfer in biological systems (C. C. Page, C. C. Moser, X. Chen , P. L. Dutton, Nature 402 (1999) 47-52) on the basis of structure information on Photosystem II (PS II) (A. Guskov, A. Gabdulkhakov, M. Broser, C. Glöckner, J. Hellmich, J. Kern, J. Frank, W. Saenger, A. Zouni, Chem. Phys. Chem. 11 (2010) 1160-1171, Y. Umena, K. Kawakami, J-R Shen, N. Kamiya, Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9Å. Nature 47 (2011) 55-60). Comparison of these results with experimental data leads to the following conclusions: 1) The oxidation of tyrosine Y(z) by the cation radical P680(+·) in systems with an intact water oxidizing complex (WOC) is kinetically limited by the non-adiabatic electron transfer step and the extent of this reaction is thermodynamically determined by relaxation processes in the environment including rearrangements of hydrogen bond network(s). In marked contrast, all Y(z)(ox) induced oxidation steps in the WOC up to redox state S(3) are kinetically limited by trigger reactions which are slower by orders of magnitude than the rates calculated for non-adiabatic electron transfer. 3) The overall rate of the triggered reaction sequence of Y(z)(ox) reduction by the WOC in redox state S(3) eventually leading to formation and release of O(2) is kinetically limited by an uphill electron transfer step. Alternative models are discussed for this reaction. The protein matrix of the WOC and bound water molecules provide an optimized dynamic landscape of hydrogen bonded protons for catalyzing oxidative water splitting energetically driven by light induced formation of the cation radical P680(+·). In this way the PS II core acts as a molecular machine formed during a long evolutionary process. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
|
3
|
Light induced oxidative water splitting in photosynthesis: Energetics, kinetics and mechanism. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:35-43. [DOI: 10.1016/j.jphotobiol.2011.01.023] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/25/2011] [Accepted: 01/25/2011] [Indexed: 11/20/2022]
|
4
|
Renger G, Renger T. Photosystem II: The machinery of photosynthetic water splitting. PHOTOSYNTHESIS RESEARCH 2008; 98:53-80. [PMID: 18830685 DOI: 10.1007/s11120-008-9345-7] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 07/29/2008] [Indexed: 05/26/2023]
Abstract
This review summarizes our current state of knowledge on the structural organization and functional pattern of photosynthetic water splitting in the multimeric Photosystem II (PS II) complex, which acts as a light-driven water: plastoquinone-oxidoreductase. The overall process comprises three types of reaction sequences: (1) photon absorption and excited singlet state trapping by charge separation leading to the ion radical pair [Formula: see text] formation, (2) oxidative water splitting into four protons and molecular dioxygen at the water oxidizing complex (WOC) with P680+* as driving force and tyrosine Y(Z) as intermediary redox carrier, and (3) reduction of plastoquinone to plastoquinol at the special Q(B) binding site with Q(A)-* acting as reductant. Based on recent progress in structure analysis and using new theoretical approaches the mechanism of reaction sequence (1) is discussed with special emphasis on the excited energy transfer pathways and the sequence of charge transfer steps: [Formula: see text] where (1)(RC-PC)* denotes the excited singlet state (1)P680* of the reaction centre pigment complex. The structure of the catalytic Mn(4)O(X)Ca cluster of the WOC and the four step reaction sequence leading to oxidative water splitting are described and problems arising for the electronic configuration, in particular for the nature of redox state S(3), are discussed. The unravelling of the mode of O-O bond formation is of key relevance for understanding the mechanism of the process. This problem is not yet solved. A multistate model is proposed for S(3) and the functional role of proton shifts and hydrogen bond network(s) is emphasized. Analogously, the structure of the Q(B) site for PQ reduction to PQH(2) and the energetic and kinetics of the two step redox reaction sequence are described. Furthermore, the relevance of the protein dynamics and the role of water molecules for its flexibility are briefly outlined. We end this review by presenting future perspectives on the water oxidation process.
Collapse
Affiliation(s)
- Gernot Renger
- Max Volmer Laboratory for Biophysical Chemistry, Berlin Institute of Technology, Berlin, Germany.
| | | |
Collapse
|
5
|
Kern J, Renger G. Photosystem II: structure and mechanism of the water:plastoquinone oxidoreductase. PHOTOSYNTHESIS RESEARCH 2007; 94:183-202. [PMID: 17634752 DOI: 10.1007/s11120-007-9201-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 05/16/2007] [Indexed: 05/07/2023]
Abstract
This mini-review briefly summarizes our current knowledge on the reaction pattern of light-driven water splitting and the structure of Photosystem II that acts as a water:plastoquinone oxidoreductase. The overall process comprises three types of reaction sequences: (a) light-induced charge separation leading to formation of the radical ion pair P680+*QA(-*) ; (b) reduction of plastoquinone to plastoquinol at the QB site via a two-step reaction sequence with QA(-*) as reductant and (c) oxidative water splitting into O2 and four protons at a manganese-containing catalytic site via a four-step sequence driven by P680+* as oxidant and a redox active tyrosine YZ acting as mediator. Based on recent progress in X-ray diffraction crystallographic structure analysis the array of the cofactors within the protein matrix is discussed in relation to the functional pattern. Special emphasis is paid on the structure of the catalytic sites of PQH2 formation (QB-site) and oxidative water splitting (Mn4OxCa cluster). The energetics and kinetics of the reactions taking place at these sites are presented only in a very concise manner with reference to recent up-to-date reviews. It is illustrated that several questions on the mechanism of oxidative water splitting and the structure of the catalytic sites are far from being satisfactorily answered.
Collapse
Affiliation(s)
- Jan Kern
- Institut für Chemie, Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623, Berlin, Germany.
| | | |
Collapse
|
6
|
Renger G. Oxidative photosynthetic water splitting: energetics, kinetics and mechanism. PHOTOSYNTHESIS RESEARCH 2007; 92:407-25. [PMID: 17647091 DOI: 10.1007/s11120-007-9185-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 04/19/2007] [Indexed: 05/16/2023]
Abstract
This minireview is an attempt to summarize our current knowledge on oxidative water splitting in photosynthesis. Based on the extended Kok model (Kok, Forbush, McGloin (1970) Photochem Photobiol 11:457-476) as a framework, the energetics and kinetics of two different types of reactions comprising the overall process are discussed: (i) P680+* reduction by the redox active tyrosine YZ of polypeptide D1 and (ii) Yz (ox) induced oxidation of the four step sequence in the water oxidizing complex (WOC) leading to the formation of molecular oxygen. The mode of coupling between electron transport (ET) and proton transfer (PT) is of key mechanistic relevance for the redox turnover of YZ and the reactions within the WOC. The peculiar energetics of the oxidation steps in the WOC assure that redox state S1 is thermodynamically most stable. This is a general feature in all oxygen evolving photosynthetic organisms and assumed to be of physiological relevance. The reaction coordinate of oxidative water splitting is discussed on the basis of the available information about the Gibbs energy differences between the individual redox states Si+1 and Si and the data reported for the activation energies of the individual oxidation steps in the WOC. Finally, an attempt is made to cast our current state of knowledge into a mechanism of oxidative water splitting with special emphasis on the formation of the essential O-O bond and on the active role of the protein in tuning the local proton activity that depends on time and redox state Si. The O-O linkage is assumed to take place at the level of a complexed peroxide.
Collapse
Affiliation(s)
- Gernot Renger
- Technische Universität Berlin, Institut für Chemie, Max-Volmer-Laboratorium für Biophysikalische Chemie, Strasse des 17. Juni 135, D-10623 Berlin, Germany.
| |
Collapse
|
7
|
Renger G, Kühn P. Reaction pattern and mechanism of light induced oxidative water splitting in photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1767:458-71. [PMID: 17428439 DOI: 10.1016/j.bbabio.2006.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 12/08/2006] [Accepted: 12/13/2006] [Indexed: 11/18/2022]
Abstract
This mini review is an attempt to briefly summarize our current knowledge on light driven oxidative water splitting in photosynthesis. The reaction leading to molecular oxygen and four protons via photosynthesis comprises thermodynamic and kinetic constraints that require a balanced fine tuning of the reaction coordinates. The mode of coupling between electron (ET) and proton transfer (PT) reactions is shown to be of key mechanistic relevance for the redox turnover of Y(Z) and the reactions within the WOC. The WOC is characterized by peculiar energetics of its oxidation steps in the WOC. In all oxygen evolving photosynthetic organisms the redox state S(1) is thermodynamically most stable and therefore this general feature is assumed to be of physiological relevance. Available information on the Gibbs energy differences between the individual redox states S(i+1) and S(i) and on the activation energies of their oxidative transitions are used to construct a general reaction coordinate of oxidative water splitting in photosystem II (PS II). Finally, an attempt is presented to cast our current state of knowledge into a mechanism of oxidative water splitting with special emphasis on the formation of the essential O-O bond and the active role of the protein environment in tuning the local proton activity that depends on time and redox state S(i). The O-O linkage is assumed to take place within a multistate equilibrium at the redox level of S(3), comprising both redox isomerism and proton tautomerism. It is proposed that one state, S(3)(P), attains an electronic configuration and nuclear geometry that corresponds with a hydrogen bonded peroxide which acts as the entatic state for the generation of complexed molecular oxygen through S(3)(P) oxidation by Y(Z)(ox).
Collapse
Affiliation(s)
- Gernot Renger
- Technische Universität Berlin, Institut für Chemie, Max-Volmer-Laboratorium für Biophysikalische Chemie, Strasse des 17.Juni 135, D-10623 Berlin, Germany.
| | | |
Collapse
|
8
|
Renger G. Coupling of electron and proton transfer in oxidative water cleavage in photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1655:195-204. [PMID: 15100032 DOI: 10.1016/j.bbabio.2003.07.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2003] [Revised: 07/23/2003] [Accepted: 07/23/2003] [Indexed: 11/29/2022]
Abstract
This minireview addresses questions on the mechanism of oxidative water cleavage with special emphasis on the coupling of electron (ET) and proton transfer (PT) of each individual redox step of the reaction sequence and on the mode of O-O bond formation. The following topics are discussed: (1) the multiphasic kinetics of Y(Z)(ox) formation by P680(+*) originate from three different types of rate limitations: (i) nonadiabatic electron transfer for the "fast" ns reaction, (ii) local "dielectric" relaxation for the "slow" ns reaction, and (iii) "large-scale" proton shift for the micros kinetics; (2) the ET/PT-coupling mode of the individual redox transitions within the water oxidizing complex (WOC) driven by Y(Z)(ox) is assumed to depend on the redox state S(i): the oxidation steps of S(0) and S(1) comprise separate ET and PT pathways while those of S(2) and S(3) take place via proton-coupled electron transfer (PCET) analogous to Jerry Babcock's hydrogen atom abstractor model [Biochim. Biophys. Acta, 1458 (2000) 199]; (3) S(3) is postulated to be a multistate redox level of the WOC with fast dynamic equilibria of both redox isomerism and proton tautomerism. The primary event in the essential O-O bond formation is the population of a state S(3)(P) characterized by an electronic configuration and nuclear geometry that corresponds with a complexed hydrogen peroxide; (4) the peroxidic type S(3)(P) is the entatic state for formation of complexed molecular oxygen through S(3) oxidation by Y(Z)(ox); and (5) the protein matrix itself is proposed to exert catalytic activity by functioning as "PCET director". The WOC is envisaged as a supermolecule that is especially tailored for oxidative water cleavage and acts as a molecular machine.
Collapse
Affiliation(s)
- G Renger
- Max-Volmer-Laboratory of the Institute of Chemistry, Technical University Berlin, PC 14, Strasse des 17 Juni 135, D-10623 Berlin, Germany.
| |
Collapse
|
9
|
Renger G. Photosynthetic water oxidation to molecular oxygen: apparatus and mechanism. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1503:210-28. [PMID: 11115635 DOI: 10.1016/s0005-2728(00)00227-9] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- G Renger
- Max-Volmer-Institut für Biophysikalische Chemie und Biochemie, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623, Berlin, Germany.
| |
Collapse
|
10
|
Evidence for impaired hydrogen-bonding of tyrosine YZ in calcium-depleted photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1411:121-33. [PMID: 10216158 DOI: 10.1016/s0005-2728(99)00045-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Photosystem II (PS II) evolves oxygen from two bound water molecules in a four-stepped reaction that is driven by four quanta of light, each oxidizing the chlorophyll moiety P680 to yield P+680. When starting from its dark equilibrium (mainly state S1), the catalytic center can be clocked through its redox states (S0ellipsisS4) by a series of short flashes of light. The center involves at least a Mn4-cluster and a special tyrosine residue, named YZ, as redox cofactors plus two essential ionic cofactors, Cl- and Ca2+. Centers which have lost Ca2+ do not evolve oxygen. We investigated the stepped progression in dark-adapted PS II core particles after the removal of Ca2+. YZ was oxidized from the first flash on. The difference spectrum of YZ-->YoxZ differed from the one in competent centers, where it has been ascribed to a hydrogen-bonded tyrosinate. The rate of the electron transfer from YZ to P+680 was slowed down by three orders of magnitude and its kinetic isotope effect rose up from 1.1 to 2.5. Proton release into the bulk was now a prerequisite for the electron transfer from YZ to P+680. On the basis of these results and similar effects in Mn-(plus Ca2+-)depleted PS II (M. Haumann et al., Biochemistry, 38 (1999) 1258-1267) we conclude that the presence of Ca2+ in the catalytic center is required to tune the apparent pK of a base cluster, B, to which YZ is linked by hydrogen bonds. The deposition of a proton on B within close proximity of YZ (not its release into the bulk!) is a necessary condition for the reduction in nanoseconds of P+680 and for the functioning of water oxidation. The removal of Ca2+ rises the pK of B, thereby disturbing the hydrogen bonded structure of YZB.
Collapse
|
11
|
Vasil'ev S, Bergmann A, Redlin H, Eichler HJ, Renger G. On the role of exchangeable hydrogen bonds for the kinetics of P680+. QA−. formation and P680+. Pheo−. recombination in photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1996. [DOI: 10.1016/0005-2728(96)00027-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Samuilov VD, Renger G, Paschenko VZ, Oleskin AV, Gusev MV, Gubanova ON, Vasil'ev SS, Barsky EL. Inhibition of photosynthetic oxygen evolution by protonophoric uncouplers. PHOTOSYNTHESIS RESEARCH 1995; 46:455-465. [PMID: 24301640 DOI: 10.1007/bf00032300] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/1995] [Accepted: 10/10/1995] [Indexed: 06/02/2023]
Abstract
The protonophoric uncouplers carbonyl cyanide m-chlorophenylhydrazone (CCCP), 2,3,4,5,6-pentachlorophenol (PCP) and 4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazole (TTFB) inhibited the Hill reaction with K3[Fe(CN)6] (but not with SiMo) in chloroplast and cyanobacterial membranes (the I50 values were approx. 1-2, 4-6 and 0.04-0.10 μM, respectively). The inhibition is due to oxidation of the uncouplers on the Photosystem II donor side (ADRY effect) and their subsequent reduction on the acceptor side, ie. to the formation of a cyclic electron transfer chain around Photosystem II involving the uncouplers as redox carriers. The relative amplitude of nanosecond chlorophyll fluorescence in chloroplasts was increased by DCMU or HQNO and did not change upon addition of uncouplers, DBMIB or DNP-INT; the HQNO effect was not removed by the uncouplers. The uncouplers did not inhibit the electron transfer from reduced TMPD or duroquinol to methylviologen which is driven by Photosystem I. These data show that CCCP, PCP and TTFB oxidized on the Photosystem II donor side are reduced by the membrane pool of plastoquinone (Qp) which is also the electron donor for K3 [Fe(CN)6] in the Hill reaction as deduced from the data obtained in the presence of inhibitors. Inhibition of the Hill reaction by the uncouplers was maximum at the pH values corresponding to the pK of these compounds. It is suggested that the tested uncouplers serve as proton donors, and not merely as electron donors on the oxidizing side of Photosystem II.
Collapse
Affiliation(s)
- V D Samuilov
- Department of Cell Physiology and Immunology, School of Biology, Moscow State University, 119899, Moscow, Russian Federation
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Messinger J, Schröder WP, Renger G. Structure-function relations in photosystem II. Effects of temperature and chaotropic agents on the period four oscillation of flash-induced oxygen evolution. Biochemistry 1993; 32:7658-68. [PMID: 8347576 DOI: 10.1021/bi00081a009] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The characteristic period four oscillation patterns of oxygen evolution induced by a train of single-turnover flashes were measured in dark-adapted samples as a function of temperature and upon addition of chaotropic agents. The following results were obtained: (a) Within the range of 0 < theta < 35 degrees C, the ratio of the oxygen yield induced by the 4th and 3rd flashes of the train, Y4/Y3, and the oxygen yield induced by the 2nd flash, Y2, exhibit similar dependencies on the temperature in isolated thylakoids, PS II membrane fragments, and inside-out vesicles. (b) Below a characteristic temperature theta c of 20-25 degrees C, the values of Y4/Y3 and Y2, which reflect (at constant S0 dark population) the probabilities of misses and double hits, respectively, remain virtually independent of temperature, whereas above theta c these parameters increase. (c) The dark decays of S2 and S3 via fast and slow kinetics due to reduction of the water oxidase by YD and other endogenous electron donor(s), respectively, exhibit comparatively strong temperature dependencies in thylakoids with the following activation energies: EA(S2fast) = 55 kJ/mol, EA(S3fast) = 50 kJ/mol, EA(S2slow) = 85 kJ/mol, and EA(S3slow) = 75 kJ/mol. The activation energy of S0 oxidation to S1 by YDox was found to be markedly smaller with a value of EA(S0) = 30 kJ/mol. (d) Incubation with chaotropic agents at concentrations which do not significantly impair the oxygen evolution capacity leads to modifications of the oscillation pattern with remarkable differences for various types of agents: Tris and urea are practically without effect; guanidine hydrochloride affects Y4/Y3 in a similar way as elevated temperature but without significant changes of Y2 and the decay kinetics of S2 and S3; and anions of the Hofmeister series (SCN-, ClO4-, I-) cause a drastic destabilization of YDox. Possible structure-function relations of the PS II complex are discussed on the basis of these findings.
Collapse
Affiliation(s)
- J Messinger
- Max-Volmer-Institut für Biophysikalische und Physikalische Chemie, Technische Universität Berlin, FRG
| | | | | |
Collapse
|
14
|
Gleiter HM, Ohad N, Koike H, Hirschberg J, Renger G, Inoue Y. Thermoluminescence and flash-induced oxygen yield in herbicide resistant mutants of the D1 protein in Synechococcus PCC7942. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1140:135-43. [PMID: 1445937 DOI: 10.1016/0005-2728(92)90002-j] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Several strains of Synechococcus PCC7942 carrying point mutations in the gene psbA were studied by thermoluminescence and polarographic measurement of flash-induced oxygen yield. The following results were obtained: (a) Replacement of Ser-264 in D1 by Ala (mutant Di1) or Gly (mutant G264) resulting in DCMU and atrazine resistance leads to a downshift of the thermoluminescence (TL) B-band peak temperature from 40 degrees C in wild-type thylakoids to about 30 degrees C. In dark adapted samples of both mutants the TL and oxygen yield pattern induced by a train of single turnover flashes were strongly damped indicative of a high miss factor. (b) In contrast to Ser-264 mutants, replacement of Phe-255 in D1 by Tyr (mutant Tyr5) induced strong resistance to atrazine but not to DCMU and did not affect the peak termperature of the B-band and the flash-induced TL and oxygen yield patterns. In this respect mutant Tyr5 resembles the wild type. (c) No significant differences have been found between strains with single site mutations in psbAI and normal psbAII/psbAIII genes, and strains with same mutations in psbAI but additional deletion of psbAII and psbAIII. Obviously in strains were psbAI is present, PS II complexes containing gene products of psbAII and psbAIII are not assembled in detectable amounts. (d) Strains with double mutations at positions 264 and 255 display a downshift of the B-band peak temperature. Their oscillatory patterns of B-band intensity and oxygen yield are highly damped. This behaviour is similar to strains D1 and G264 which are modified at position 264 only. We extend reports on additivity of mutation effects on herbicide binding to binding of QB. (e) Mutations at the QB site not only influence the binding of QB and herbicides but also change the thermoluminescence quantum yield and the lifetimes of the redox states S2 and S3 of the water oxidase. This finding might indicate long ranging effects on Photosystem II exerted by structural modifications of the QB site. From these data we conclude that Ser-264 is essential for binding of atrazine, DCMU and QB, whereas Phe-255 is involved in atrazine binding and its substitution by Tyr does not markedly affect QB or DCMU binding in Synechococcus PCC7942.
Collapse
Affiliation(s)
- H M Gleiter
- RIKEN, Institute of Physical and Chemical Research, Wako, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Debus RJ. The manganese and calcium ions of photosynthetic oxygen evolution. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1102:269-352. [PMID: 1390827 DOI: 10.1016/0005-2728(92)90133-m] [Citation(s) in RCA: 970] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- R J Debus
- Department of Biochemistry, University of California Riverside 92521-0129
| |
Collapse
|
16
|
Messinger J, Wacker U, Renger G. Unusual low reactivity of the water oxidase in redox state S3 toward exogenous reductants. Analysis of the NH2OH- and NH2NH2-induced modifications of flash-induced oxygen evolution in isolated spinach thylakoids. Biochemistry 1991; 30:7852-62. [PMID: 1868061 DOI: 10.1021/bi00245a027] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The effect of redox-active amines NH2R (R = OH or NH2) on the period-four oscillation pattern of oxygen evolution has been analyzed in isolated spinach thylakoids as a function of the redox state Si (i = 0, ..., 3) of the water oxidase. The following results were obtained: (a) In dark-adapted samples with a highly populated S1 state, NH2R leads via a dark reaction sequence to the formal redox state "S-1"; (b) the reaction mechanism is different between the NH2R species; NH2OH acts as a one-electron donor, whereas NH2NH2 mainly functions as a two-electron donor, regardless of the interacting redox state Si (i = 0, ..., 3). For NH2NH2, the modified oxygen oscillation patterns strictly depend upon the initial ratio [S0(0)]/[S1(0)] before the addition of the reductant; while due to kinetic reasons, for NH2OH this dependence largely disappears after a short transient period. (c) The existence of the recently postulated formal redox state "S-2" is confirmed not only in the presence of NH2NH2 [Renger, G., Messinger, J., & Hanssum, B. (1990) in Current Research in Photosynthesis (Baltscheffsky, M., Ed.) Vol. 1, pp 845-848, Kluwer, Dordrecht] but also in the presence of NH2OH. (d) Activation energies, EA, of 50 kJ/mol were determined for the NH2R-induced reduction processes that alter the oxygen oscillation pattern from dark-adapted thylakoids. (e) Although marked differences exist between NH2OH and NH2NH2 in terms of the reduction mechanism and efficiency (which is about 20-fold in favor of NH2OH), both NH2R species exhibit the same order of rate constants as a function of the redox state Si in the nonperturbed water oxidase: kNH2R(S0) greater than kNH2R(S1) much less than kNH2R(S2) much greater than kNH2R(S3) The large difference between S2 and S3 in their reactivity toward NH2R is interpreted to indicate that a significant change in the electronic configuration and nuclear geometry occurs during the S2----S3 transition that makes the S3 state much less susceptible to NH2R. The implications of these findings are discussed with special emphasis on the possibility of complexed peroxide formation in redox state S3 postulated previously on the basis of theoretical considerations [Renger, G. (1978) in Photosynthetic Water Oxidation (Metzner, H., Ed.) pp 229-248, Academic Press, London].
Collapse
Affiliation(s)
- J Messinger
- Max-Volmer-Institut für Biophysikalische und Physikalische Chemie, Technische Universität Berlin, FRG
| | | | | |
Collapse
|