1
|
Molecular Composition of Heterochromatin and Its Contribution to Chromosome Variation in the Microtus thomasi/ Microtus atticus Species Complex. Genes (Basel) 2021; 12:genes12060807. [PMID: 34070573 PMCID: PMC8227428 DOI: 10.3390/genes12060807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/27/2022] Open
Abstract
The voles of the Microtus thomasi/M. atticus species complex demonstrate a remarkable variability in diploid chromosomal number (2n = 38–44 chromosomes) and sex chromosome morphology. In the current study, we examined by in situ hybridization the topology of four satellite DNA motifs (Msat-160, Mth-Alu900, Mth-Alu2.2, TTAGGG telomeric sequences) and two transposons (LINE, SINE) on the karyotypes of nine chromosome races (i.e., populations with unique cytogenetic traits) of Microtus thomasi, and two chromosomal races of M. atticus. According to the topology of the repetitive DNA motifs, we were able to identify six types of biarmed chromosomes formed from either Robertsonian or/and tandem fusions. In addition, we identified 14 X chromosome variants and 12 Y chromosome variants, and we were able to reconstruct their evolutionary relations, caused mainly by distinct mechanisms of amplification of repetitive DNA elements, including the telomeric sequences. Our study used the model of the Microtus thomasi/M. atticus species complex to explore how repetitive centromeric content can alter from chromosomal rearrangements and can shape the morphology of sex chromosomes, resulting in extensive inter-species cytogenetic variability.
Collapse
|
2
|
Characterization of the satellite DNA Msat-160 from species of Terricola (Microtus) and Arvicola (Rodentia, Arvicolinae). Genetica 2010; 138:1085-98. [PMID: 20830505 DOI: 10.1007/s10709-010-9496-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 08/27/2010] [Indexed: 10/19/2022]
Abstract
In the subfamily Arvicolinae (Cricetidae, Rodentia) the satellite DNA Msat-160 has been so far described in only some species from the genus Microtus and in one species from another genus, Chionomys nivalis. Here we cloned and characterized this satellite in two new arvicoline species, Microtus (Terricola) savii and Arvicola amphibius (terrestris). We have also demonstrated, by PCR and FISH, its existence in the genomes of several other species from both genera. These results suggest that Msat-160 already occurred in the common ancestor of the four genera/subgenera of Arvicolinae (Microtus, Chionomys, Arvicola, and Terricola). In Arvicola and Terricola, Msat-160 showed the basic monomer length of 160 bp, although a higher-order repeat (HORs) of 640 bp could have been probably replacing the original monomeric unit in A. a. terrestris. Msat-160 was localized by FISH mostly on the pericentromeric regions of the chromosomes, but the signal intensity and the number of carrier chromosomes varied extremely even between closely related species, resulting in a species-specific pattern of chromosomal distribution of this satellite. Such a variable pattern most likely is a consequence of a rapid amplification and contraction of particular repeats in the pericentromeric regions of chromosomes. In addition, we proposed that the rapid variation of pericentromeric repeats is strictly related to the prolific species radiation and diversification of karyotypes that characterize Arvicolinae lineage. Finally, we performed phylogenetic analysis in this group of related species based on Msat-160 that results to be in agreement with previously reported phylogenies, derived from other molecular markers.
Collapse
|
3
|
MITSAINAS GEORGEP, ROVATSOS MICHAILTH, RIZOU ELENII, GIAGIA-ATHANASOPOULOU EVAB. Sex chromosome variability outlines the pathway to the chromosomal evolution in Microtus thomasi (Rodentia, Arvicolinae). Biol J Linn Soc Lond 2009. [DOI: 10.1111/j.1095-8312.2008.01161.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Marchal JA, Acosta MJ, Bullejos M, Puerma E, Díaz de la Guardia R, Sánchez A. Distribution of L1-retroposons on the giant sex chromosomes of Microtus cabrerae (Arvicolidae, Rodentia): functional and evolutionary implications. Chromosome Res 2006; 14:177-86. [PMID: 16544191 DOI: 10.1007/s10577-006-1034-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Accepted: 01/06/2006] [Indexed: 11/28/2022]
Abstract
Long interspersed nuclear elements (L1 or LINE-1) are the most abundant and active retroposons in the mammalian genome. Traditionally, the bulk of L1 sequences have been explained by the 'selfish DNA' hypothesis; however, recently it has been also argued that L1s could play an important role in genome and gene organizations. The non-random chromosomal distribution of these retroelements is a striking feature considered to reflect this functionality. In the present study we have cloned and analyzed three different L1 fragments from the genome of the rodent Microtus cabrerae. In addition, we have examined the chromosomal distribution of this L1 in several species of Microtus, a very interesting group owing to the presence in some species of enlarged ('giant') sex chromosomes. Interestingly, in all species analyzed, L1-retroposons have preferentially accumulated on both the giant- and the normal-sized sex chromosomes compared with the autosomes. Also we have demonstrated that L1-retroposons are not similarly distributed among the heterochromatic blocks of the giant sex chromosomes in M. cabrerae and M. agrestis, which suggest that L1 retroposition and amplification over the sex heterochromatin have been different and independent processes in each species. Finally, we proposed that the main factors responsible for the L1 distribution on the mammalian sex chromosomes are the heterochromatic nature of the Y chromosome and the possible role of L1 sequences during the X-inactivation process.
Collapse
Affiliation(s)
- J A Marchal
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus Las Lagunillas s/n, E-23071, Jaén, Spain
| | | | | | | | | | | |
Collapse
|
5
|
Marchal JA, Acosta MJ, Nietzel H, Sperling K, Bullejos M, Díaz de la Guardia R, Sánchez A. X chromosome painting in Microtus: origin and evolution of the giant sex chromosomes. Chromosome Res 2005; 12:767-76. [PMID: 15702415 DOI: 10.1007/s10577-005-5077-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Accepted: 08/03/2004] [Indexed: 10/25/2022]
Abstract
Sex chromosomes in species of the genus Microtus present some characteristic features that make them a very interesting group to study sex chromosome composition and evolution. M. cabrerae and M. agrestis have enlarged sex chromosomes (known as 'giant sex chromosomes') due to the presence of large heterochromatic blocks. By chromosome microdissection, we have generated probes from the X chromosome of both species and hybridized on chromosomes from six Microtus and one Arvicola species. Our results demonstrated that euchromatic regions of X chromosomes in Microtus are highly conserved, as occurs in other mammalian groups. The sex chromosomes heterochromatic blocks are probably originated by fast amplification of different sequences, each with an independent origin and evolution in each species. For this reason, the sex heterochromatin in Microtus species is highly heterogeneous within species (with different composition for the Y and X heterochromatic regions in M. cabrerae) and between species (as the composition of M. agrestis and M. cabrerae sex heterochromatin is different). In addition, the X chromosome painting results on autosomes of several species suggest that, during karyotypic evolution of the genus Microtus, some rearrangements have probably occurred between sex chromosomes and autosomes.
Collapse
Affiliation(s)
- J A Marchal
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales y de la Salud, Universidad de Jaén, Paraje Las Lagunillas s/n, E-23071, Jaén, Spain
| | | | | | | | | | | | | |
Collapse
|
6
|
Marchal JA, Acosta MJ, Bullejos M, Díaz de la Guardia R, Sánchez A. A repeat DNA sequence from the Y chromosome in species of the genus Microtus. Chromosome Res 2005; 12:757-65. [PMID: 15702414 DOI: 10.1007/s10577-005-5079-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Accepted: 08/03/2004] [Indexed: 11/30/2022]
Abstract
In most mammals, the Y chromosome is composed of a large amount of constitutive heterochromatin. In some Microtus species, this feature is also extended to the X chromosome, resulting in enlarged (giant) sex chromosomes. Several repeated DNA sequences have been described in the gonosomal heterochromatin of these species, indicating that it has heterogeneous and species-specific composition and distribution. We have cloned an AT-rich, 851-bp long, repeated DNA sequence specific for M. cabrerae Y chromosome heterochromatin. The analysis of other species of the genus Microtus indicated that this sequence is also located on the Y chromosome (male-specific) in three species (M. agrestis, M. oeconomus and M. nivalis), present on both Y and X chromosomes and on some autosomes in M. arvalis and absent in the genome of M. guentheri. Our data also suggest that the mechanism of heterochromatin amplification operating on the sex chromosomes could have been different in each species since the repeated sequences of the gonosomal heterochromatic blocks in M. cabrerae and M. agrestis are different. The absence of this sequence in the mouse genome indicates that its evolutionary origin could be recent. Future analysis of the species distribution, localization and sequence of this repeat DNA family in arvicolid rodent species could help to establish the unsolved phylogenetic relationships in this rodent group.
Collapse
Affiliation(s)
- J A Marchal
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales y de la Salud, Universidad de Jaén, E-23071, Jaén, Spain
| | | | | | | | | |
Collapse
|
7
|
Megías-Nogales B, Marchal JA, Acosta MJ, Bullejos M, Díaz de la Guardia R, Sánchez A. Sex chromosomes pairing in two Arvicolidae species: Microtus nivalis and Arvicola sapidus. Hereditas 2004; 138:114-21. [PMID: 12921162 DOI: 10.1034/j.1601-5223.2003.01717.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Arvicolid rodents present both synaptic and asynaptic sex chromosomes. We analyzed the pairing behaviour of sex chromosomes in two species belonging to this rodent group (Microtus nivalis and Arvicola sapidus). At pachynema, the sex chromosomes of both species paired in a small region while the rest remain unsynapsed. Consequently at metaphase I, sex chromosomes present end-to-end association. Thus, the pairing behaviour of sex chromosomes in these species is very similar to that previously described for other arvicolid rodents and for most mammals. According to this, we propose that synaptic sex chromosomes were the ancestral condition in the family Arvicolidae, including the genus Microtus. The phylogenetic origin of the asynaptic sex chromosomes in the genus Microtus would have arisen once in the lineage that originated the species M. arvalis/agrestis and related species, while the lineage that originated the species M. oeconomous and related species conserved synaptic chromosomes. Furthermore, the phylogenetic relationships between the genus Microtus, Chionomys and Pitymys are discussed in relation to the synaptic behaviour of sex chromosomes.
Collapse
Affiliation(s)
- Belen Megías-Nogales
- Departamento de Genètica, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | | | | | | | | | |
Collapse
|
8
|
Fernández R, Barragán MJ, Bullejos M, Marchal JA, Martínez S, Díaz de la Guardia R, Sánchez A. Molecular and cytogenetic characterization of highly repeated DNA sequences in the vole Microtus cabrerae. Heredity (Edinb) 2001; 87:637-46. [PMID: 11903559 DOI: 10.1046/j.1365-2540.2001.00959.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genus Microtus presents several species with extremely large sex chromosomes that contain large blocks of constitutive heterochromatin. Several cytogenetic and molecular studies of the repetitive sequences in species of the genus Microtus have demonstrated that the heterochromatin is highly heterogeneous. We have cloned and characterized a family of repetitive DNA sequences from M. cabrerae, a species with large heterochromatic blocks on the giant sex chromosomes. These repetitive sequences are 65.84% A-T rich, organized in tandem, with a 161-bp unit and are located on the centromeric region of autosomes and the X chromosome. In addition, this repetitive DNA is located throughout the entire heterochromatic block of the X chromosome and on three interstitial bands in the heterochromatic block of the Y chromosome. Comparative analysis of this family of repetitive sequences from three Microtus species revealed that the development of these sequences has occurred by concerted evolution. Our results support the hypothesis that the heterochromatic blocks from the sex chromosomes of different species are evolving independently and they probably have the genetic capacity to amplify and retain different satellite DNAs. For a topic related to the location of these repetitive DNA sequences on the Y chromosome of M. cabrerae, we propose a model to explain the origin of a length polymorphism previously described for this chromosome.
Collapse
Affiliation(s)
- R Fernández
- Departamento de Psicobiología, Facultad Ciencias de la Educación, Universidad de A Coruña, E-15071 A Coruña, Spain
| | | | | | | | | | | | | |
Collapse
|
9
|
García F, Nogués C, Garcia M, Egozcue J, Ponsà M. Characterization of constitutive heterochromatin in Cebus apella (Cebidae, Primates) and Pan troglodytes (Hominidae, Primates): comparison to human chromosomes. Am J Primatol 1999; 49:205-21. [PMID: 10512541 DOI: 10.1002/(sici)1098-2345(199911)49:3<205::aid-ajp1>3.0.co;2-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Using G bands, some homologies between the chromosomes of Cebus apella (CAP) and human chromosomes are difficult to establish. To solve this problem, we analyzed these homologies by fluorescence in situ hybridization using human whole chromosome probes (ZOO-FISH). The results indicated that 1) the human probe for chromosome 2 partially hybridizes with CAP chromosomes 13 and 5, 2) the human probe for chromosome 3 partially hybridizes with CAP chromosomes 18 and 20, 3) the human probe for chromosome 9 partially hybridizes with CAP chromosome 19, and 4) the human probe for chromosome 14 hybridizes with the p-terminal and q-terminal regions of CAP chromosome 6. However, none of the human probes employed hybridized with the heterochromatic regions of CAP chromosomes. For this reason, we characterized the heterochromatic regions of CAP chromosomes and of the chromosomes of Pan troglodytes (PTR), to allow comparison between CAP, PTR, and human chromosomes using in situ digestion of fixed chromosomes with the restriction enzymes AluI, HaeIII, and RsaI and by fluorescent staining with DA/DAPI. The results show that 1) centromeric heterochromatin is heterogeneous in the three species studied and 2) noncentromeric heterochromatin is homogeneous within each of the three species, but is different for each species. Thus, centromeric heterochromatin undergoes a higher degree of variability than noncentromeric heterochromatin.
Collapse
Affiliation(s)
- F García
- Departament de Biologia Cellular i Fisiologia, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | |
Collapse
|
10
|
Bullejos M, Burgos M, Jiménez R, Sánchez A, Díaz de la Guardia R. Distribution of sister chromatid exchanges in different types of chromatin in the X chromosome ofMicrotus cabrerae. ACTA ACUST UNITED AC 1996. [DOI: 10.1007/bf01969719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Sánchez A, Jiménez R, Burgos M, Stitou S, Zurita F, Díaz de la Guardia R. Cytogenetic peculiarities in the Algerian hedgehog: silver stains not only NORs but also heterochromatic blocks. Heredity (Edinb) 1995; 75 ( Pt 1):10-6. [PMID: 7649754 DOI: 10.1038/hdy.1995.98] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Hedgehogs belong to one of the several mammalian taxa in which karyotype differences are based on variations in heterochromatin content. Furthermore, the number and location of nucleolar organizer regions (NORs) can also vary widely. In the present study these cytogenetic features were investigated in the Algerian hedgehog, Erinaceus (Aethechinus) algirus. The heterochromatin and NOR distribution patterns in the karyotype of this species are new among hedgehogs, whereas the euchromatic regions, including their G-band pattern, are similar to those reported by others. In addition, silver staining revealed a cytogenetic feature exclusive to the heterochromatic blocks of E. algirus: their silver staining with standard cytogenetic procedures. Because no similar phenomenon has been described previously in a mammalian species, several hypotheses about the significance and specificity of silver staining to NOR sites are discussed. Finally, the existence of different types of heterochromatin in the species analysed here, lead us to propose that what hedgehogs have inherited from their common ancestor is a mechanism which permits the accumulation of heterochromatin on specific chromosomes, rather than the heterochromatin itself.
Collapse
Affiliation(s)
- A Sánchez
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Spain
| | | | | | | | | | | |
Collapse
|