1
|
Wright J, Kirchner V, Bernard W, Ulrich N, McLimans C, Campa MF, Hazen T, Macbeth T, Marabello D, McDermott J, Mackelprang R, Roth K, Lamendella R. Bacterial Community Dynamics in Dichloromethane-Contaminated Groundwater Undergoing Natural Attenuation. Front Microbiol 2017; 8:2300. [PMID: 29213257 PMCID: PMC5702783 DOI: 10.3389/fmicb.2017.02300] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/07/2017] [Indexed: 01/05/2023] Open
Abstract
The uncontrolled release of the industrial solvent methylene chloride, also known as dichloromethane (DCM), has resulted in widespread groundwater contamination in the United States. Here we investigate the role of groundwater bacterial communities in the natural attenuation of DCM at an undisclosed manufacturing site in New Jersey. This study investigates the bacterial community structure of groundwater samples differentially contaminated with DCM to better understand the biodegradation potential of these autochthonous bacterial communities. Bacterial community analysis was completed using high-throughput sequencing of the 16S rRNA gene of groundwater samples (n = 26) with DCM contamination ranging from 0.89 to 9,800,000 μg/L. Significant DCM concentration-driven shifts in overall bacterial community structure were identified between samples, including an increase in the abundance of Firmicutes within the most contaminated samples. Across all samples, a total of 6,134 unique operational taxonomic units (OTUs) were identified, with 16 taxa having strong correlations with increased DCM concentration. Putative DCM degraders such as Pseudomonas, Dehalobacterium and Desulfovibrio were present within groundwater across all levels of DCM contamination. Interestingly, each of these taxa dominated specific DCM contamination ranges respectively. Potential DCM degrading lineages yet to be cited specifically as a DCM degrading organisms, such as the Desulfosporosinus, thrived within the most heavily contaminated groundwater samples. Co-occurrence network analysis revealed aerobic and anaerobic bacterial taxa with DCM-degrading potential were present at the study site. Our 16S rRNA gene survey serves as the first in situ bacterial community assessment of contaminated groundwater harboring DCM concentrations ranging over seven orders of magnitude. Diversity analyses revealed known as well as potentially novel DCM degrading taxa within defined DCM concentration ranges, indicating niche-specific responses of these autochthonous populations. Altogether, our findings suggest that monitored natural attenuation is an appropriate remediation strategy for DCM contamination, and that high-throughput sequencing technologies are a robust method for assessing the potential role of biodegrading bacterial assemblages in the apparent reduction of DCM concentrations in environmental scenarios.
Collapse
Affiliation(s)
- Justin Wright
- Lamendella Laboratory, Juniata College, Department of Biology, Huntingdon, PA, United States
- Wright Labs, LLC, Huntingdon, PA, United States
| | - Veronica Kirchner
- Lamendella Laboratory, Juniata College, Department of Biology, Huntingdon, PA, United States
| | - William Bernard
- Lamendella Laboratory, Juniata College, Department of Biology, Huntingdon, PA, United States
| | - Nikea Ulrich
- Lamendella Laboratory, Juniata College, Department of Biology, Huntingdon, PA, United States
| | - Christopher McLimans
- Lamendella Laboratory, Juniata College, Department of Biology, Huntingdon, PA, United States
| | - Maria F. Campa
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory (DOE), Oak Ridge, TN, United States
- Institute for a Secure and Sustainable Environment, University of Tennessee, Knoxville, TN, United States
| | - Terry Hazen
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory (DOE), Oak Ridge, TN, United States
- Institute for a Secure and Sustainable Environment, University of Tennessee, Knoxville, TN, United States
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, United States
| | | | | | | | - Rachel Mackelprang
- Department of Biology, California State University Northridge, Northridge, PA, United States
| | - Kimberly Roth
- Lamendella Laboratory, Juniata College, Department of Biology, Huntingdon, PA, United States
| | - Regina Lamendella
- Lamendella Laboratory, Juniata College, Department of Biology, Huntingdon, PA, United States
- Wright Labs, LLC, Huntingdon, PA, United States
| |
Collapse
|
2
|
Shestakova M, Sillanpää M. Removal of dichloromethane from ground and wastewater: a review. CHEMOSPHERE 2013; 93:1258-1267. [PMID: 23948610 DOI: 10.1016/j.chemosphere.2013.07.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/27/2013] [Accepted: 07/05/2013] [Indexed: 06/02/2023]
Abstract
Dichloromethane (DCM) is a toxic volatile compound which is found in the ground waters and wastewaters of the pharmaceutical, chemical, textile, metal-working and petroleum industries. DCM inhibits the growth of aquatic organisms, induces cancer in animals and is potentially carcinogenic for humans. This article aims to review existing water treatments for DCM removal, focusing on recent technological advances. Air stripping, adsorption and pervaporation were found to be effective in separating DCM from water with a process efficiency of about 99%, 90% and 80% respectively. Electrocatalysis over Cu-impregnated carbon fiber electrode, photo irradiation over TiO₂ and photo-Fenton process led to the complete decomposition of DCM. Aerobic and anaerobic water treatment achieved 99% and 95% removal of DCM respectively. The maximum efficiencies observed for acoustic cavitation, radiolysis and catalytic degradation of CH₂Cl₂ were 90%, 92% and 99% respectively. Ozonation and persulfate oxidation showed lower DCM degradation efficiencies, not exceeding 20%. Further combination of different water treatment methods will further increase DCM degradation efficiency.
Collapse
Affiliation(s)
- Marina Shestakova
- Laboratory of Green Chemistry, Faculty of Technology, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland.
| | | |
Collapse
|
4
|
Gisi D, Willi L, Traber H, Leisinger T, Vuilleumier S. Effects of bacterial host and dichloromethane dehalogenase on the competitiveness of methylotrophic bacteria growing with dichloromethane. Appl Environ Microbiol 1998; 64:1194-202. [PMID: 9546153 PMCID: PMC106129 DOI: 10.1128/aem.64.4.1194-1202.1998] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/1997] [Accepted: 01/14/1998] [Indexed: 02/07/2023] Open
Abstract
Methylobacterium sp. strain DM4 and Methylophilus sp. strain DM11 can grow with dichloromethane (DCM) as the sole source of carbon and energy by virtue of homologous glutathione-dependent DCM dehalogenases with markedly different kinetic properties (the kcat values of the enzymes of these strains are 0.6 and 3.3 S-1, respectively, and the Km values are 9 and 59 microM, respectively). These strains, as well as transconjugant bacteria expressing the DCM dehalogenase gene (dcmA) from DM11 or DM4 on a broad-host-range plasmid in the background of dcmA mutant DM4-2cr, were investigated by growing them under growth-limiting conditions and in the presence of an excess of DCM. The maximal growth rates and maximal levels of dehalogenase for chemostat-adapted bacteria were higher than the maximal growth rates and maximal levels of dehalogenase for batch-grown bacteria. The substrate saturation constant of strain DM4 was much lower than the Km of its associated dehalogenase, suggesting that this strain is adapted to scavenge low concentrations of DCM. Strains and transconjugants expressing the DCM dehalogenase from strain DM11, on the other hand, had higher growth rates than bacteria expressing the homologous dehalogenase from strain DM4. Competition experiments performed with pairs of DCM-degrading strains revealed that a strain expressing the dehalogenase from DM4 had a selective advantage in continuous culture under substrate-limiting conditions, while strains expressing the DM11 dehalogenase were superior in batch culture when there was an excess of substrate. Only DCM-degrading bacteria with a dcmA gene similar to that from strain DM4, however, were obtained in batch enrichment cultures prepared with activated sludge from sewage treatment plants.
Collapse
Affiliation(s)
- D Gisi
- Mikrobiologisches Institut, ETH Zürich, ETH-Zentrum, Switzerland
| | | | | | | | | |
Collapse
|
6
|
Leisinger T, Bader R, Hermann R, Schmid-Appert M, Vuilleumier S. Microbes, enzymes and genes involved in dichloromethane utilization. Biodegradation 1994; 5:237-48. [PMID: 7765835 DOI: 10.1007/bf00696462] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Dichloromethane (DCM) is efficiently utilized as a carbon and energy source by aerobic, Gram-negative, facultative methylotrophic bacteria. It also serves as a sole carbon and energy source for a nitrate-respiring Hyphomicrobium sp. and for a strictly anaerobic co-culture of a DCM-fermenting bacterium and an acetogen. The first step of DCM utilization by methylotrophs is catalyzed by DCM dehalogenase which, in a glutathione-dependent substitution reaction, forms inorganic chloride and S-chloromethyl glutathione. This unstable intermediate decomposes to glutathione, inorganic chloride and formaldehyde, a central metabolite of methylotrophic growth. Genetic studies on DCM utilization are beginning to shed some light on questions pertaining to the evolution of DCM dehalogenases and on the regulation of DCM dehalogenase expression. DCM dehalogenase belongs to the glutathione S-transferase supergene family. Analysis of the amino acid sequences of two bacterial DCM dehalogenases reveals 56% identity, and comparison of these sequences to those of glutathione S-transferases indicates a closer relationship to class Theta eukaryotic glutathione S-transferases than to a number of bacterial glutathione S-transferases whose sequences have recently become available. dcmA, the structural gene of the highly substrate-inducible DCM dehalogenase, is carried in most DCM utilizing methylotrophs on large plasmids. In Methylobacterium sp. DM4 its expression is governed by dcmR, a regulatory gene located upstream of dcmA, dcmR encodes a trans-acting factor which negatively controls DCM dehalogenase formation at the transcriptional level. Our working model thus assumes that the dcmR product is a repressor which, in the absence of DCM, binds to the promoter region of dcmA and thereby inhibits initiation of transcription.
Collapse
Affiliation(s)
- T Leisinger
- Mikrobiologisches Institut ETH, ETH-Zentrum, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
7
|
Fetzner S, Lingens F. Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications. Microbiol Rev 1994; 58:641-85. [PMID: 7854251 PMCID: PMC372986 DOI: 10.1128/mr.58.4.641-685.1994] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This review is a survey of bacterial dehalogenases that catalyze the cleavage of halogen substituents from haloaromatics, haloalkanes, haloalcohols, and haloalkanoic acids. Concerning the enzymatic cleavage of the carbon-halogen bond, seven mechanisms of dehalogenation are known, namely, reductive, oxygenolytic, hydrolytic, and thiolytic dehalogenation; intramolecular nucleophilic displacement; dehydrohalogenation; and hydration. Spontaneous dehalogenation reactions may occur as a result of chemical decomposition of unstable primary products of an unassociated enzyme reaction, and fortuitous dehalogenation can result from the action of broad-specificity enzymes converting halogenated analogs of their natural substrate. Reductive dehalogenation either is catalyzed by a specific dehalogenase or may be mediated by free or enzyme-bound transition metal cofactors (porphyrins, corrins). Desulfomonile tiedjei DCB-1 couples energy conservation to a reductive dechlorination reaction. The biochemistry and genetics of oxygenolytic and hydrolytic haloaromatic dehalogenases are discussed. Concerning the haloalkanes, oxygenases, glutathione S-transferases, halidohydrolases, and dehydrohalogenases are involved in the dehalogenation of different haloalkane compounds. The epoxide-forming halohydrin hydrogen halide lyases form a distinct class of dehalogenases. The dehalogenation of alpha-halosubstituted alkanoic acids is catalyzed by halidohydrolases, which, according to their substrate and inhibitor specificity and mode of product formation, are placed into distinct mechanistic groups. beta-Halosubstituted alkanoic acids are dehalogenated by halidohydrolases acting on the coenzyme A ester of the beta-haloalkanoic acid. Microbial systems offer a versatile potential for biotechnological applications. Because of their enantiomer selectivity, some dehalogenases are used as industrial biocatalysts for the synthesis of chiral compounds. The application of dehalogenases or bacterial strains in environmental protection technologies is discussed in detail.
Collapse
Affiliation(s)
- S Fetzner
- Institut für Mikrobiologie der Universität Hohenheim, Stuttgart, Germany
| | | |
Collapse
|