1
|
Wang XY, Xu TT, Sun LJ, Cen RH, Su S, Yang XQ, Yang YB, Ding ZT. The chemical diversity, the attractant, anti-acetylcholinesterase, and antifungal activities of metabolites from biocontrol Trichoderma harzianum uncovered by OSMAC strategy. Bioorg Chem 2021; 114:105148. [PMID: 34246973 DOI: 10.1016/j.bioorg.2021.105148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/02/2021] [Accepted: 07/02/2021] [Indexed: 11/17/2022]
Abstract
Eight new compounds (1-8) were discovered from Trichoderma harzianum associated with edible mushroom by the one strain many compounds (OSMAC) strategy. Triharzianin A (1) is the first naturally scaffold characterized by a C13-prostaglandin skeleton. The configurations of 1-3, and 5 were determined by the Mosher's method, experimental and calculated ECD spectra, and plausible biosynthesis of stereospecific epoxidation. Most compounds indicated obvious feeding attractant activities to silkworm with attraction rates at 30-90%. Compound 7 showed anti-acetylcholinesterase (anti-AChE) activity with a ratio of 29% at a concentration of 50 μM for insecticidal potential. So 2,3-dialkylchromone (7) had potential of chemical entrapment and killing of insects. Compounds 2, 3 and 7-11 showed antifungal activities against Aspergillus fumigates, and Trichoderma sp. from mushroom with MICs ≤ 300 μM. The four fermentation extracts also indicated obvious feeding attractant activities to silkworm for the activities brought by active metabolites from T. harzianum. The material base of biocontrol induced by the interaction of host-fungal symbiont can be investigated by the antifungal metabolites against pathogen fungi.
Collapse
Affiliation(s)
- Xue-Yin Wang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2nd Cuihu North Road, Kunming 650091, China
| | - Ting-Ting Xu
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2nd Cuihu North Road, Kunming 650091, China
| | - Li-Jingfei Sun
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2nd Cuihu North Road, Kunming 650091, China
| | - Rong-Huan Cen
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2nd Cuihu North Road, Kunming 650091, China
| | - Shuang Su
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2nd Cuihu North Road, Kunming 650091, China
| | - Xue-Qiong Yang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2nd Cuihu North Road, Kunming 650091, China
| | - Ya-Bin Yang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2nd Cuihu North Road, Kunming 650091, China.
| | - Zhong-Tao Ding
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2nd Cuihu North Road, Kunming 650091, China.
| |
Collapse
|
2
|
Bhatti HN, Khan SS, Khan A, Rani M, Ahmad VU, Choudhary MI. Biotransformation of monoterpenoids and their antimicrobial activities. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1597-1626. [PMID: 25442268 DOI: 10.1016/j.phymed.2014.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 04/14/2014] [Accepted: 05/11/2014] [Indexed: 06/04/2023]
Abstract
Biotransformation is an economically and ecologically viable technology which has been used extensively to modify the structures of many classes of biologically active products. The discovery of novel antimicrobial metabolites from biotransformation is an important alternative to overcome the increasing levels of drug resistance by plant and human pathogens. Monoterpenes, the main constituents of essential oils, are known for their antimicrobial activities. In 2004, Farooq, Atta-Ur-Rahman and Choudhary published a review on fungal transformation of monoterpenes which covers papers published up to 2002. The present review not only updates the previous one but also discusses the antimicrobial activities (antibacterial, antifungal and antiviral) of biotransformed compounds.
Collapse
Affiliation(s)
- Haq Nawaz Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan.
| | - Saleha Suleman Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ajmal Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Mubeen Rani
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Viqar Uddin Ahmad
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Muhammad Iqbal Choudhary
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
3
|
Stolle A, Gallert T, Schmöger C, Ondruschka B. Hydrogenation of citral: a wide-spread model reaction for selective reduction of α,β-unsaturated aldehydes. RSC Adv 2013. [DOI: 10.1039/c2ra21498a] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|