1
|
Tsoumani KT, Drosopoulou E, Bourtzis K, Gariou-Papalexiou A, Mavragani-Tsipidou P, Zacharopoulou A, Mathiopoulos KD. Achilles, a New Family of Transcriptionally Active Retrotransposons from the Olive Fruit Fly, with Y Chromosome Preferential Distribution. PLoS One 2015; 10:e0137050. [PMID: 26398504 PMCID: PMC4580426 DOI: 10.1371/journal.pone.0137050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/13/2015] [Indexed: 11/19/2022] Open
Abstract
Sex chromosomes have many unusual features relative to autosomes. The in depth exploration of their structure will improve our understanding of their origin and divergence (degeneration) as well as the evolution of genetic sex determination pathways which, most often are attributed to them. In Tephritids, the structure of Y chromosome, where the male-determining factor M is localized, is largely unexplored and limited data concerning its sequence content and evolution are available. In order to get insight into the structure and organization of the Y chromosome of the major olive insect pest, the olive fly Bactrocera oleae, we characterized sequences from a Pulse Field Gel Electrophoresis (PFGE)-isolated Y chromosome. Here, we report the discovery of the first olive fly LTR retrotransposon with increased presence on the Y chromosome. The element belongs to the BEL-Pao superfamily, however, its sequence comparison with the other members of the superfamily suggests that it constitutes a new family that we termed Achilles. Its ~7.5 kb sequence consists of the 5'LTR, the 5'non-coding sequence and the open reading frame (ORF), which encodes the polyprotein Gag-Pol. In situ hybridization to the B. oleae polytene chromosomes showed that Achilles is distributed in discrete bands dispersed on all five autosomes, in all centromeric regions and in the granular heterochromatic network corresponding to the mitotic sex chromosomes. The between sexes comparison revealed a variation in Achilles copy number, with male flies possessing 5-10 copies more than female (CI range: 18-38 and 12-33 copies respectively per genome). The examination of its transcriptional activity demonstrated the presence of at least one intact active copy in the genome, showing a differential level of expression between sexes as well as during embryonic development. The higher expression was detected in male germline tissues (testes). Moreover, the presence of Achilles-like elements in different species of the Tephritidae family suggests an ancient origin of this element.
Collapse
Affiliation(s)
| | - Elena Drosopoulou
- Department of Genetics, Development and Molecular Biology, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece
| | - Kostas Bourtzis
- Insect Molecular Genetics Group, IMBB, Vassilika Vouton, 71110 Heraklion, Crete, PO Box 1527, Greece
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Aggeliki Gariou-Papalexiou
- Department of Biology, Division of Genetics, Cell and Developmental Biology, University of Patras, Patras, Greece
| | - Penelope Mavragani-Tsipidou
- Department of Genetics, Development and Molecular Biology, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece
| | - Antigone Zacharopoulou
- Department of Biology, Division of Genetics, Cell and Developmental Biology, University of Patras, Patras, Greece
| | | |
Collapse
|
2
|
Hsu JC, Chien TY, Hu CC, Chen MJM, Wu WJ, Feng HT, Haymer DS, Chen CY. Discovery of genes related to insecticide resistance in Bactrocera dorsalis by functional genomic analysis of a de novo assembled transcriptome. PLoS One 2012; 7:e40950. [PMID: 22879883 PMCID: PMC3413685 DOI: 10.1371/journal.pone.0040950] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 06/19/2012] [Indexed: 12/20/2022] Open
Abstract
Insecticide resistance has recently become a critical concern for control of many insect pest species. Genome sequencing and global quantization of gene expression through analysis of the transcriptome can provide useful information relevant to this challenging problem. The oriental fruit fly, Bactrocera dorsalis, is one of the world's most destructive agricultural pests, and recently it has been used as a target for studies of genetic mechanisms related to insecticide resistance. However, prior to this study, the molecular data available for this species was largely limited to genes identified through homology. To provide a broader pool of gene sequences of potential interest with regard to insecticide resistance, this study uses whole transcriptome analysis developed through de novo assembly of short reads generated by next-generation sequencing (NGS). The transcriptome of B. dorsalis was initially constructed using Illumina's Solexa sequencing technology. Qualified reads were assembled into contigs and potential splicing variants (isotigs). A total of 29,067 isotigs have putative homologues in the non-redundant (nr) protein database from NCBI, and 11,073 of these correspond to distinct D. melanogaster proteins in the RefSeq database. Approximately 5,546 isotigs contain coding sequences that are at least 80% complete and appear to represent B. dorsalis genes. We observed a strong correlation between the completeness of the assembled sequences and the expression intensity of the transcripts. The assembled sequences were also used to identify large numbers of genes potentially belonging to families related to insecticide resistance. A total of 90 P450-, 42 GST-and 37 COE-related genes, representing three major enzyme families involved in insecticide metabolism and resistance, were identified. In addition, 36 isotigs were discovered to contain target site sequences related to four classes of resistance genes. Identified sequence motifs were also analyzed to characterize putative polypeptide translational products and associate them with specific genes and protein functions.
Collapse
Affiliation(s)
- Ju-Chun Hsu
- Department of Entomology, National Taiwan University, Taipei, Taiwan
- Research Center for Plant Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Ying Chien
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
| | - Chia-Cheng Hu
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Mei-Ju May Chen
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
| | - Wen-Jer Wu
- Department of Entomology, National Taiwan University, Taipei, Taiwan
- Research Center for Plant Medicine, National Taiwan University, Taipei, Taiwan
| | - Hai-Tung Feng
- Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Council of Agriculture, Taichung, Taiwan
| | - David S. Haymer
- Department of Cell and Molecular Biology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Chien-Yu Chen
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
3
|
Schmidt J, Jandrig B, Klempa B, Yoshimatsu K, Arikawa J, Meisel H, Niedrig M, Pitra C, Krüger DH, Ulrich R. Nucleocapsid protein of cell culture-adapted Seoul virus strain 80-39: analysis of its encoding sequence, expression in yeast and immuno-reactivity. Virus Genes 2005; 30:37-48. [PMID: 15744561 DOI: 10.1007/s11262-004-4580-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Accepted: 07/14/2004] [Indexed: 11/25/2022]
Abstract
Seoul virus (SEOV) is a hantavirus causing a mild to moderate form of hemorrhagic fever with renal syndrome that is distributed mainly in Asia. The nucleocapsid (N) protein-encoding sequence of SEOV (strain 80-39) was RT-PCR-amplified and cloned into a yeast expression vector containing a galactose-inducible promoter. A survey of the pattern of synonymous codon preferences for a total of 22 N protein-encoding hantavirus genes including 13 of SEOV strains revealed that there is minor variation in codon usage by the same gene in different viral genomes. Introduction of the expression plasmid into yeast Saccharomyces cerevisiae resulted in the high-level expression of a hexahistidine-tagged N protein derivative. The nickel-chelation chromatography purified, yeast-expressed SEOV N protein reacted in the immunoblot with a SEOV-specific monoclonal antibody and certain HTNV- and PUUV-cross-reactive monoclonal antibodies. The immunization of a rabbit with the recombinant N protein resulted in the induction of a high-titered antibody response. In ELISA studies, the N protein was able to detect antibodies in sera of experimentally infected laboratory rats and in human anti-hantavirus-positive sera or serum pools of patients from different geographical origin. The yeast-expressed SEOV N protein represents a promising antigen for development of diagnostic tools in serology, sero prevalence studies and vaccine development.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Viral/blood
- Cloning, Molecular
- Codon/genetics
- Cross Reactions
- DNA, Complementary/chemistry
- DNA, Complementary/metabolism
- Enzyme-Linked Immunosorbent Assay
- Genes, Viral
- Hemorrhagic Fever with Renal Syndrome/diagnosis
- Hemorrhagic Fever with Renal Syndrome/epidemiology
- Hemorrhagic Fever with Renal Syndrome/immunology
- Hemorrhagic Fever with Renal Syndrome/virology
- Humans
- Nucleocapsid Proteins/genetics
- Nucleocapsid Proteins/immunology
- Nucleocapsid Proteins/isolation & purification
- Phylogeny
- Polymorphism, Genetic
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Rabbits
- Rats
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Seoul virus/genetics
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Jonas Schmidt
- Institute of Virology, Charité Medical School, Campus Mitte, 10098 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
This is the first of a projected series of canonic reviews covering all invertebrate muscle literature prior to 2005 and covers muscle genes and proteins except those involved in excitation-contraction coupling (e.g., the ryanodine receptor) and those forming ligand- and voltage-dependent channels. Two themes are of primary importance. The first is the evolutionary antiquity of muscle proteins. Actin, myosin, and tropomyosin (at least, the presence of other muscle proteins in these organisms has not been examined) exist in muscle-like cells in Radiata, and almost all muscle proteins are present across Bilateria, implying that the first Bilaterian had a complete, or near-complete, complement of present-day muscle proteins. The second is the extraordinary diversity of protein isoforms and genetic mechanisms for producing them. This rich diversity suggests that studying invertebrate muscle proteins and genes can be usefully applied to resolve phylogenetic relationships and to understand protein assembly coevolution. Fully achieving these goals, however, will require examination of a much broader range of species than has been heretofore performed.
Collapse
Affiliation(s)
- Scott L Hooper
- Neuroscience Program, Department of Biological Sciences, Irvine Hall, Ohio University, Athens, Ohio 45701, USA.
| | | |
Collapse
|
5
|
Lovato TL, Meadows SM, Baker PW, Sparrow JC, Cripps RM. Characterization of muscle actin genes in Drosophila virilis reveals significant molecular complexity in skeletal muscle types. INSECT MOLECULAR BIOLOGY 2001; 10:333-340. [PMID: 11520356 DOI: 10.1046/j.0962-1075.2001.00270.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Actin is a ubiquitous and highly conserved eukaryotic protein required for cell motility and locomotion. In this manuscript, we characterize the four muscle actin genes of the insect Drosophila virilis and demonstrate strong similarities between the D. virilis genes and their homologues in Drosophila melanogaster; intron locations are conserved, and there are few amino acid differences between homologues. We also found strong conservation in temporal expression patterns of the muscle actin genes--the homologues of the D. melanogaster genes Act57B and Act87E are expressed throughout the life cycle, whereas the other two D. virilis genes, homologous to Act79B and Act88F are specific to pupal and adult stages. In situ hybridization revealed that each D. virilis gene is expressed in a unique pattern in the muscles of the thorax and abdomen. These muscle-specific patterns of actin isoforms suggest a greater physiological diversity for the adult muscles of insects than has been appreciated to date from their categorization into fibrillar, tubular (non-fibrillar) and supercontractile muscle types.
Collapse
Affiliation(s)
- T L Lovato
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | |
Collapse
|
6
|
Schulenburg JH, Hurst GD, Huigens TM, van Meer MM, Jiggins FM, Majerus ME. Molecular evolution and phylogenetic utility of Wolbachia ftsZ and wsp gene sequences with special reference to the origin of male-killing. Mol Biol Evol 2000; 17:584-600. [PMID: 10742050 DOI: 10.1093/oxfordjournals.molbev.a026338] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A detailed assessment of the evolution and phylogenetic utility of two genes, ftsZ and wsp, was used to investigate the origin of male-killing Wolbachia, previously isolated from the ladybird Adalia bipunctata and the butterfly Acraea encedon. The analysis included almost all available sequences of B-group Wolbachia and two outgroup taxa and showed that (1) the two gene regions differ in phylogenetic utility, (2) sequence variation is here correlated with phylogenetic information content, (3) both genes show significant rate heterogeneity between lineages, (4) increased substitution rates are associated with homoplasy in the data, (5) wsp sequences of some taxa appear to be subject to positive selection, and (6) only a limited number of clades can be inferred with confidence due to either lack of phylogenetic information or the presence of homoplasy. With respect to the evolution of male-killing, the two genes nevertheless seemed to provide unbiased information. However, they consistently produce contradictory results. Current data therefore do not permit clarification of the origin of this behavior. In addition, A. bipunctata was found to be a host to two recently diverged strains of male-killing Wolbachia that showed increased substitution rates for both genes. Moreover, the wsp gene, which codes for an outer membrane protein, was found to be subject to positive selection in these taxa. These findings were postulated to be the product of high selection pressures due to antagonistic host-symbiont interactions in this ladybird species. In conclusion, our study demonstrates that the results of a detailed phylogenetic analysis, including characterization of the limitations of such an approach, can serve as a valuable basis for an understanding of the evolution of Wolbachia bacteria. Moreover, particular features of gene evolution, such as elevated substitution rates or the presence of positive selection, may provide information about the dynamics of Wolbachia-host associations.
Collapse
Affiliation(s)
- J H Schulenburg
- Department of Genetics, University of Cambridge, Cambridge, England
| | | | | | | | | | | |
Collapse
|