1
|
Wang J, Li P, Yu Y, Fu Y, Jiang H, Lu M, Sun Z, Jiang S, Lu L, Wu MX. Pulmonary surfactant-biomimetic nanoparticles potentiate heterosubtypic influenza immunity. Science 2020; 367:367/6480/eaau0810. [PMID: 32079747 DOI: 10.1126/science.aau0810] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 05/03/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022]
Abstract
Current influenza vaccines only confer protection against homologous viruses. We synthesized pulmonary surfactant (PS)-biomimetic liposomes encapsulating 2',3'-cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), an agonist of the interferon gene inducer STING (stimulator of interferon genes). The adjuvant (PS-GAMP) vigorously augmented influenza vaccine-induced humoral and CD8+ T cell immune responses in mice by simulating the early phase of viral infection without concomitant excess inflammation. Two days after intranasal immunization with PS-GAMP-adjuvanted H1N1 vaccine, strong cross-protection was elicited against distant H1N1 and heterosubtypic H3N2, H5N1, and H7N9 viruses for at least 6 months while maintaining lung-resident memory CD8+ T cells. Adjuvanticity was then validated in ferrets. When alveolar epithelial cells (AECs) lacked Sting or gap junctions were blocked, PS-GAMP-mediated adjuvanticity was substantially abrogated in vivo. Thus, AECs play a pivotal role in configuring heterosubtypic immunity.
Collapse
Affiliation(s)
- Ji Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA.,Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou 510080, China
| | - Peiyu Li
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA.,Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Biosafety Level 3 Laboratory, Fudan University, Shanghai 200032, China
| | - Yang Yu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
| | - Yuhong Fu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Biosafety Level 3 Laboratory, Fudan University, Shanghai 200032, China
| | - Hongye Jiang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
| | - Min Lu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
| | - Zhiping Sun
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Biosafety Level 3 Laboratory, Fudan University, Shanghai 200032, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Biosafety Level 3 Laboratory, Fudan University, Shanghai 200032, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Biosafety Level 3 Laboratory, Fudan University, Shanghai 200032, China.
| | - Mei X Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
2
|
Gulumian M. An update on the detoxification processes for silica particles and asbestos fibers: successess and limitations. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2005; 8:453-83. [PMID: 16188731 DOI: 10.1080/10937400590952547] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Inhalation of asbestos fibers and crystalline silica produces a number of diseases including fibrosis and cancer. Investigations into the mechanisms involved in mineral particle-induced toxicity indicated the importance of their surfaces in the pathological consequences. Masking of the surface sites has therefore featured prominently in a number of detoxification processes that have been investigated. The majority of the detoxification processes were, however, conducted to elucidate the involvement of a particular surface site in the toxicity of a specific mineral. Others were investigated with the aim of large industrial applications to be applied during mining, handling, processing, transporting, and disposing of minerals. It can be concluded that, to date, there is no single detoxification process that could be applied universally to all different types of mineral particles. Those that have shown some success could not completely abolish all adverse effects. Further elucidation of mechanisms of particle-induced toxicity may open new possibilities for detoxification processes.
Collapse
Affiliation(s)
- M Gulumian
- National Institute for Occupational Health (NIOH) and Department of Hematology and Molecular Medicine, School of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
3
|
Gulumian M. The ability of mineral dusts and fibres to initiate lipid peroxidation. Part II: relationship to different particle-induced pathological effects. Redox Rep 2001; 5:325-51. [PMID: 11140744 DOI: 10.1179/135100000101535906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Exposure to pathogenic mineral dusts and fibres is associated with pulmonary changes including fibrosis and cancer. Investigations into aetiological mechanisms of these diseases have identified modifications in specific macromolecules as well as changes in certain early processes, which have preceded fibrosis and cancer. Peroxidation of lipids is one such modification, which is observed following exposure to mineral dusts and fibres. Their ability to initiate lipid peroxidation and the parameters that determine this ability have recently been reviewed. Part II of this review examines the relationship between the capacity of mineral dusts and fibres to initiate lipid peroxidation and a number of pathological changes they produce. The oxidative modification of polyunsaturated fatty acids is a major contributor to membrane damage in cells and has been implicated in a great variety of pathological processes. In most pathological conditions where an induction of lipid peroxidation is observed it is assumed to be the consequence of disease, without further establishing if the induction of lipid peroxidation may have preceded or accompanied the disease. In the great majority of instances, however, despite the difficulty in proving this association, a causal relationship between lipid peroxidation and disease cannot be ruled out.
Collapse
Affiliation(s)
- M Gulumian
- National Centre for Occupational Health and Department of Haematology and Molecular Medicine, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
4
|
Nedelkoska L, Benjamins JA. Binding of cholera toxin B subunit: a surface marker for murine microglia but not oligodendrocytes or astrocytes. J Neurosci Res 1998; 53:605-12. [PMID: 9726431 DOI: 10.1002/(sici)1097-4547(19980901)53:5<605::aid-jnr10>3.0.co;2-#] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
GM1 ganglioside is a receptor for the B subunit of cholera toxin. In lymphocytes, B subunit elicits an influx of extracellular Ca++ (Dixon et al., 1987). To investigate this signaling pathway in glia, we assessed the presence of GM1 ganglioside on the surface of cultured murine central nervous system (CNS) glia by binding of fluorescein-labeled B subunit. B subunit binding was compared to binding of peanut agglutinin, wheat germ agglutinin, and Bandeiraea (Griffonia) simplicifolia lectin (BSL)I, a microglial marker. Antibodies to glial fibrillary acidic protein, A007/O4 antigens, and galactocerebroside were used to identify astrocytes, immature oligodendrocytes (OLs) and mature OLs, respectively. Binding patterns differed based on cell type and developmental stage. Wheat germ and peanut agglutinins bound to the surface of microglia, astrocytes, and immature OLs; neither lectin bound to any significant extent to the surface of membrane sheets of mature OLs, although wheat germ agglutinin was rapidly endocytosed. Cells identified as microglia by BSL I binding and morphology were the only cells to stain brightly on the surface with B subunit. Thus, surface GM1 ganglioside appears to be a highly enriched marker for microglia in these mixed glial cultures. The effects of B subunit on intracellular Ca++ were examined by laser cytometry in glial cultures loaded with Indo-1. No Ca++ responses were observed in microglia. Mature OLs were examined for Ca++ responses to B subunit before and after surface levels of GM1 ganglioside were increased by incubation with exogenous GM1 ganglioside. Again, no Ca++ responses were observed. Thus, cultured microglia and mature OLs do not have the GM1-mediated signal transduction pathway seen in lymphocytes. However, the presence of GM1 ganglioside on microglia may play a role in giving rise to antibodies to this glycolipid in some CNS inflammatory diseases.
Collapse
Affiliation(s)
- L Nedelkoska
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|