1
|
Zhao S, Cui X, Pang Y, Zhang X, You X, Yang Y, Lei Y. Cloning, genome structure and expression analysis of MHC class I gene in Korean quail. Br Poult Sci 2021; 63:291-297. [PMID: 34649479 DOI: 10.1080/00071668.2021.1991885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
1. The major histocompatibility complex (MHC) is a highly polymorphic region of the genome essential to immune responses and animal health. However, avian MHC genetic structure is different from that of mammals. In this study, the structure and expression of Korean quail MHC class I gene was analysed.2. The quail MHC gene consisted of eight exons and seven introns. The open reading frame of the cDNA was 353 amino acids, and the molecular weight was about 38.91 kDa. Exons 1 and 2 coded for leading peptides and alpha 1 regions, respectively. Exons 3 and 4 encoded alpha 2 and alpha 3 regions. Exons 5 to 8 coded for connecting peptides and transmembrane regions/cytoplasmic regions (TM/CY). The Korean quail MHC class I amino acid sequence shared 87% to 99% homology with Japanese quail and 71% to 75% with chicken. The amino acid shared 40% and 43% homology with humans and mice, respectively.3. Real-time quantitative PCR showed that MHC-I was highly expressed in immune tissues such as the bursa of Fabricius. Moreover, the constructed evolutionary tree was consistent with accepted evolutionary pathways.4. MHC-I is closely related to the host's immune system, and these findings may help to better understand the role of Korean quail MHC-I in the immune system.
Collapse
Affiliation(s)
- S Zhao
- Luoyang Key Laboratory of Animal Genetics and Breeding, College of Animal Science, Henan University of Science and Technology, Luoyang, P. R. China
| | - X Cui
- Luoyang Key Laboratory of Animal Genetics and Breeding, College of Animal Science, Henan University of Science and Technology, Luoyang, P. R. China
| | - Y Pang
- Luoyang Key Laboratory of Animal Genetics and Breeding, College of Animal Science, Henan University of Science and Technology, Luoyang, P. R. China
| | - X Zhang
- Luoyang Key Laboratory of Animal Genetics and Breeding, College of Animal Science, Henan University of Science and Technology, Luoyang, P. R. China
| | - X You
- Luoyang Key Laboratory of Animal Genetics and Breeding, College of Animal Science, Henan University of Science and Technology, Luoyang, P. R. China
| | - Y Yang
- Luoyang Key Laboratory of Animal Genetics and Breeding, College of Animal Science, Henan University of Science and Technology, Luoyang, P. R. China
| | - Y Lei
- Luoyang Key Laboratory of Animal Genetics and Breeding, College of Animal Science, Henan University of Science and Technology, Luoyang, P. R. China
| |
Collapse
|
2
|
Changes in Rates of Inpatient Postpartum Long-Acting Reversible Contraception and Sterilization in the USA, 2012-2016. Matern Child Health J 2021; 25:1562-1573. [PMID: 33970416 DOI: 10.1007/s10995-021-03152-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To examine recent rates of long-acting and permanent methods (LAPM) of contraception use during delivery hospitalization and correlates of their use. METHODS A retrospective cohort study utilizing the 2012-2016 National Inpatient Sample of hospitalizations in the United States of America. The International Classification of Diseases, 9th and 10th Revision, Clinical Modification codes were used to identify deliveries, inpatient long-acting reversible contraception (IPP LARC), and postpartum tubal ligation (PPTL). We conducted univariable and multivariable logistic regression to examine associations between demographic, clinical, hospital and geographical characteristics with likelihood of LAPM including IPP LARC and PPTL. RESULTS Our sample included 3,642,328 unweighted deliveries. The rate of IPP LARC increased from 34.6 to 54.9 per 10,000 deliveries (58.7%), while the rate of PPTL utilization decreased from 719.5 to 671.8 per 10,000 deliveries (6.6%) over the study period. In multivariable analysis of LAPM utilization versus neither, cesarean delivery (aOR 7.25, 95% CI 7.08-7.43) was associated with greater utilization. Native American (aOR 4.01, 95% CI 2.91-5.53) race was associated with increased use of IPP LARC compared to a non-long-acting method of contraception. Age between 18 and 29 years (aOR 6.21, 95% CI 5.42-7.11) was associated with greater use of IPP LARC versus PPTL. Delivering in a rural hospital ((aOR 0.09, 95% CI 0.06-0.12) and cesarean delivery (aOR 0.09, 95% CI 0.06-0.12) were associated with greater use PPTL versus IPP LARC. CONCLUSIONS The IPP LARC rate remains at less than 10% the PPTL rates in our study timeframe. The demonstrated variation in uptake of highly effective methods of contraception inpatient after delivery offer possible opportunities for better understanding and improvement in access.
Collapse
|
3
|
Flores EM, Nguyen AT, Odem MA, Eisenhoffer GT, Krachler AM. The zebrafish as a model for gastrointestinal tract-microbe interactions. Cell Microbiol 2020; 22:e13152. [PMID: 31872937 DOI: 10.1111/cmi.13152] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/07/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
The zebrafish (Danio rerio) has become a widely used vertebrate model for bacterial, fungal, viral, and protozoan infections. Due to its genetic tractability, large clutch sizes, ease of manipulation, and optical transparency during early life stages, it is a particularly useful model to address questions about the cellular microbiology of host-microbe interactions. Although its use as a model for systemic infections, as well as infections localised to the hindbrain and swimbladder having been thoroughly reviewed, studies focusing on host-microbe interactions in the zebrafish gastrointestinal tract have been neglected. Here, we summarise recent findings regarding the developmental and immune biology of the gastrointestinal tract, drawing parallels to mammalian systems. We discuss the use of adult and larval zebrafish as models for gastrointestinal infections, and more generally, for studies of host-microbe interactions in the gut.
Collapse
Affiliation(s)
- Erika M Flores
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Anh T Nguyen
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Max A Odem
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - George T Eisenhoffer
- M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas.,Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anne Marie Krachler
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
4
|
Major Histocompatibility Complex (MHC) Genes and Disease Resistance in Fish. Cells 2019; 8:cells8040378. [PMID: 31027287 PMCID: PMC6523485 DOI: 10.3390/cells8040378] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022] Open
Abstract
Fascinating about classical major histocompatibility complex (MHC) molecules is their polymorphism. The present study is a review and discussion of the fish MHC situation. The basic pattern of MHC variation in fish is similar to mammals, with MHC class I versus class II, and polymorphic classical versus nonpolymorphic nonclassical. However, in many or all teleost fishes, important differences with mammalian or human MHC were observed: (1) The allelic/haplotype diversification levels of classical MHC class I tend to be much higher than in mammals and involve structural positions within but also outside the peptide binding groove; (2) Teleost fish classical MHC class I and class II loci are not linked. The present article summarizes previous studies that performed quantitative trait loci (QTL) analysis for mapping differences in teleost fish disease resistance, and discusses them from MHC point of view. Overall, those QTL studies suggest the possible importance of genomic regions including classical MHC class II and nonclassical MHC class I genes, whereas similar observations were not made for the genomic regions with the highly diversified classical MHC class I alleles. It must be concluded that despite decades of knowing MHC polymorphism in jawed vertebrate species including fish, firm conclusions (as opposed to appealing hypotheses) on the reasons for MHC polymorphism cannot be made, and that the types of polymorphism observed in fish may not be explained by disease-resistance models alone.
Collapse
|
5
|
Li Z, Zhang N, Ma L, Qu Z, Wei X, Liu Z, Tang M, Zhang N, Jiang Y, Xia C. Distribution of ancient α1 and α2 domain lineages between two classical MHC class I genes and their alleles in grass carp. Immunogenetics 2019; 71:395-405. [PMID: 30941483 DOI: 10.1007/s00251-019-01111-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Abstract
Major histocompatibility complex (MHC) class I molecules play a crucial role in the immune response by binding and presenting pathogen-derived peptides to specific CD8+ T cells. From cDNA of 20 individuals of wild grass carp (Ctenopharyngodon idellus), we could amplify one or two alleles each of classical MHC class I genes Ctid-UAA and Ctid-UBA. In total, 27 and 22 unique alleles of Ctid-UAA and Ctid-UBA were found. The leader, α1, transmembrane and cytoplasmic regions distinguish between Ctid-UAA and Ctid-UBA, and their encoded α1 domain sequences belong to the ancient lineages α1-V and α1-II, respectively, which separated several hundred million years ago. However, Ctid-UAA and Ctid-UBA share allelic lineage variation in their α2 and α3 sequences, in a pattern suggestive of past interlocus recombination events that transferred α2+α3 fragments. The allelic Ctid-UAA and Ctid-UBA variation involves ancient variation between domain lineages α2-I and α2-II, which in the present study was dated back to before the ancestral separation of teleost fish and spotted gar (> 300 million years ago). This is the first report with compelling evidence that recombination events combining different ancient α1 and α2 domain lineages had a major impact on the allelic variation of two different classical MHC class I genes within the same species.
Collapse
Affiliation(s)
- Zibin Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Nan Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lizhen Ma
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zehui Qu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaohui Wei
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zixin Liu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Minghu Tang
- Chinese Carp of Yangtze River System and Primitive Breed Fishery, Guangling, Yangzhou, China
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yinan Jiang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
6
|
Wang J, Zhang N, Wang Z, Yanan W, Zhang L, Xia C. Structural insights into the evolution feature of a bony fish CD8αα homodimer. Mol Immunol 2018; 97:109-116. [PMID: 29626796 DOI: 10.1016/j.molimm.2018.03.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 01/11/2023]
Abstract
The CD8αα homodimer structures of endotherms demonstrate that despite distinct diversity at the amino acid sequence level, a few conserved key amino acids ensure common structural features. The structure of CD8αα in ancient ectotherms, such as lower bony fish, remains unclear. In this study, the high-resolution structure of the grass carp (Ctenopharyngodon idella) CD8αα (Ctid-CD8αα) homodimer was determined using the single-wavelength anomalous diffraction (SAD) method. The structure of Ctid-CD8αα shows distinct differences from the known CD8αα structures of endotherms, including a distinct topological structure with shorter back β sheets. The configuration and distribution of the hydrophobic core are different from those in endotherms. Interestingly, mutation of the key amino acid F32S, which is very common in fish and lies in the CDR loop region, leads to the absence of the typical cavity that binds to an epitope-MHC I (p/MHC I) in endotherms, yet Ctid-CD8αα can still specifically bind the grass carp peptide-Ctid-UAA-β2m (p/UAA-β2m). Our results indicate that during the evolutionary process, CD8αα has undergone dramatic changes that affect its dimeric structure and may use a new strategy to interact with p/MHC I.
Collapse
Affiliation(s)
- Junya Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, 100094, People's Republic of China
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, 100094, People's Republic of China
| | - Zhenbao Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, 100094, People's Republic of China
| | - Wu Yanan
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, 100094, People's Republic of China
| | - Lijie Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, 100094, People's Republic of China
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, 100094, People's Republic of China; Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural University, Beijing, People's Republic of China.
| |
Collapse
|
7
|
Grimholt U. MHC and Evolution in Teleosts. BIOLOGY 2016; 5:biology5010006. [PMID: 26797646 PMCID: PMC4810163 DOI: 10.3390/biology5010006] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 12/18/2022]
Abstract
Major histocompatibility complex (MHC) molecules are key players in initiating immune responses towards invading pathogens. Both MHC class I and class II genes are present in teleosts, and, using phylogenetic clustering, sequences from both classes have been classified into various lineages. The polymorphic and classical MHC class I and class II gene sequences belong to the U and A lineages, respectively. The remaining class I and class II lineages contain nonclassical gene sequences that, despite their non-orthologous nature, may still hold functions similar to their mammalian nonclassical counterparts. However, the fact that several of these nonclassical lineages are only present in some teleost species is puzzling and questions their functional importance. The number of genes within each lineage greatly varies between teleost species. At least some gene expansions seem reasonable, such as the huge MHC class I expansion in Atlantic cod that most likely compensates for the lack of MHC class II and CD4. The evolutionary trigger for similar MHC class I expansions in tilapia, for example, which has a functional MHC class II, is not so apparent. Future studies will provide us with a more detailed understanding in particular of nonclassical MHC gene functions.
Collapse
Affiliation(s)
- Unni Grimholt
- Department of Virology, Norwegian Veterinary Institute, Ullevaalsveien 68, Oslo N-0106, Norway.
| |
Collapse
|
8
|
Dirscherl H, McConnell SC, Yoder JA, de Jong JLO. The MHC class I genes of zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:11-23. [PMID: 24631581 PMCID: PMC4031684 DOI: 10.1016/j.dci.2014.02.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 05/17/2023]
Abstract
Major histocompatibility complex (MHC) molecules play a central role in the immune response and in the recognition of non-self. Found in all jawed vertebrate species, including zebrafish and other teleosts, MHC genes are considered the most polymorphic of all genes. In this review we focus on the multi-faceted diversity of zebrafish MHC class I genes, which are classified into three sequence lineages: U, Z, and L. We examine the polygenic, polymorphic, and haplotypic diversity of the zebrafish MHC class I genes, discussing known and postulated functional differences between the different class I lineages. In addition, we provide the first comprehensive nomenclature for the L lineage genes in zebrafish, encompassing at least 15 genes, and characterize their sequence properties. Finally, we discuss how recent findings have shed new light on the remarkably diverse MHC loci of this species.
Collapse
Affiliation(s)
- Hayley Dirscherl
- Department of Molecular Biomedical Sciences, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA; The Joint Biomedical Engineering Graduate Program, University of North Carolina-North Carolina State University, Raleigh, NC, USA
| | - Sean C McConnell
- Section of Hematology-Oncology and Stem Cell Transplant, Department of Pediatrics, The University of Chicago, KCBD 5120, Chicago, IL 60637, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA; Center for Comparative Medicine and Translational Research, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| | - Jill L O de Jong
- Section of Hematology-Oncology and Stem Cell Transplant, Department of Pediatrics, The University of Chicago, KCBD 5120, Chicago, IL 60637, USA.
| |
Collapse
|
9
|
McConnell SC, Restaino AC, de Jong JL. Multiple divergent haplotypes express completely distinct sets of class I MHC genes in zebrafish. Immunogenetics 2014; 66:199-213. [PMID: 24291825 PMCID: PMC3965299 DOI: 10.1007/s00251-013-0749-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 11/16/2013] [Indexed: 12/12/2022]
Abstract
The zebrafish is an important animal model for stem cell biology, cancer, and immunology research. Histocompatibility represents a key intersection of these disciplines; however, histocompatibility in zebrafish remains poorly understood. We examined a set of diverse zebrafish class I major histocompatibility complex (MHC) genes that segregate with specific haplotypes at chromosome 19, and for which donor-recipient matching has been shown to improve engraftment after hematopoietic transplantation. Using flanking gene polymorphisms, we identified six distinct chromosome 19 haplotypes. We describe several novel class I U lineage genes and characterize their sequence properties, expression, and haplotype distribution. Altogether, ten full-length zebrafish class I genes were analyzed, mhc1uba through mhc1uka. Expression data and sequence properties indicate that most are candidate classical genes. Several substitutions in putative peptide anchor residues, often shared with deduced MHC molecules from additional teleost species, suggest flexibility in antigen binding. All ten zebrafish class I genes were uniquely assigned among the six haplotypes, with dominant or codominant expression of one to three genes per haplotype. Interestingly, while the divergent MHC haplotypes display variable gene copy number and content, the different genes appear to have ancient origin, with extremely high levels of sequence diversity. Furthermore, haplotype variability extends beyond the MHC genes to include divergent forms of psmb8. The many disparate haplotypes at this locus therefore represent a remarkable form of genomic region configuration polymorphism. Defining the functional MHC genes within these divergent class I haplotypes in zebrafish will provide an important foundation for future studies in immunology and transplantation.
Collapse
Affiliation(s)
- Sean C. McConnell
- Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Knapp Center for Biomedical Discovery, 900 E. 57St, Chicago, IL 60637
| | - Anthony C. Restaino
- Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Knapp Center for Biomedical Discovery, 900 E. 57St, Chicago, IL 60637
| | - Jill L.O. de Jong
- Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Knapp Center for Biomedical Discovery, 900 E. 57St, Chicago, IL 60637
| |
Collapse
|
10
|
Characterization of the Z lineage Major histocompatability complex class I genes in zebrafish. Immunogenetics 2013; 66:185-98. [PMID: 24287892 DOI: 10.1007/s00251-013-0748-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 11/11/2013] [Indexed: 02/01/2023]
Abstract
Zebrafish (Danio rerio) are a valuable model for studying immunity, infection, and hematopoietic disease and have recently been employed for transplantation assays. However, the lack of syngeneic zebrafish creates challenges with identifying immune-matched individuals. The MHC class I genes, which mediate allogeneic recognition in mammals, have been grouped into three broad lineages in zebrafish: the classical U genes on chromosome 19, the Z genes which have been reported to map to chromosome 1, and the L genes that map to multiple loci. Transplantations between individual zebrafish that are matched at the U locus fail to consistently engraft suggesting that additional loci contribute to allogeneic recognition. Although two full-length zebrafish Z transcripts have been described, the genomic organization and diversity of these genes have not been reported. Herein we define ten Z genes on chromosomes 1 and 3 and on an unplaced genomic scaffold. We report that neither of the Z transcripts previously described match the current genome assembly and classify these transcripts as additional gene loci. We characterize full-length transcripts for 9 of these 12 genes. We demonstrate a high level of expression variation of the Z genes between individual zebrafish suggestive of haplotypic variation. We report low level sequence variation for individual Z genes between individual zebrafish reflecting a possible nonclassical function, although these molecules may still contribute to allogeneic recognition. Finally, we present a gene nomenclature system for the Z genes consistent with MHC nomenclature in other species and with the zebrafish gene nomenclature guidelines.
Collapse
|
11
|
Moutou KA, Mamuris Z, Firme T, Kontou M, Sarafidou T, Stoumboudi MT. Patterns of variability at the major histocompatibility class I and class II loci in populations of the endangered cyprinid Ladigesocypris ghigii. CONSERV GENET 2011. [DOI: 10.1007/s10592-011-0217-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Xu TJ, Sun YN, Cheng YZ, Shi G, Wang RX. Genomic sequences comparison and differential expression of miiuy croaker MHC class I gene, after infection by Vibrio anguillarum. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:483-489. [PMID: 21147159 DOI: 10.1016/j.dci.2010.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/03/2010] [Accepted: 12/05/2010] [Indexed: 05/30/2023]
Abstract
Major histocompatibility complex (MHC) has a central role in the adaptive immune system by presenting foreign peptide to the T-cell receptor. MHC gene family contains two main subgroups of immunologically active molecules. In order to study the molecular function and genomic characteristic of class I gene in teleost, the full lengths of MHC class Iα cDNA and genomic sequence were cloned from miiuy croaker (Miichthys miiuy). Seven exons and six introns were identified in miiuy croaker class Iα gene. This genomic structural feature of miiuy croaker is similar to that present in some fishes such as Japanese flounder and Atlantic salmon, but different from that present in some other fishes such as half-smooth tongue sole and channel catfish. The deduced amino acid sequence of class Iα gene had 25.9-54.1% identity with those of mammal and teleost. Real-time quantitative RT-PCR demonstrated that the MHC class Iα gene was ubiquitously expressed in 10 normal tissues; expression levels of MHC Iα gene were found first upregulated and then downregulated throughout the pathogenic bacteria infection process in spleen and kidney.
Collapse
Affiliation(s)
- Tian-jun Xu
- Key Laboratory for Marine Living Resources and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhejiang Province, Zhoushan 316000, PR China
| | | | | | | | | |
Collapse
|
13
|
Morales HD, Robert J. Characterization of primary and memory CD8 T-cell responses against ranavirus (FV3) in Xenopus laevis. J Virol 2007; 81:2240-8. [PMID: 17182687 PMCID: PMC1865961 DOI: 10.1128/jvi.01104-06] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 12/08/2006] [Indexed: 01/12/2023] Open
Abstract
In mammals, resistance to primary and secondary viral infections critically involves major histocompatibility complex class I-restricted cytotoxic CD8+ T lymphocytes (CTLs). Although many gene homologues involved in CTL function have been identified in all vertebrate classes, antiviral CTL responses have been poorly characterized for ectothermic vertebrates. Because of the threat of emerging wildlife viral diseases to global biodiversity, fundamental research on comparative viral immunity has become crucial. Ranaviruses (family Iridoviridae) are double-stranded DNA viruses possibly implicated in the worldwide decline of amphibian populations. We used the frog Xenopus laevis as a model to evaluate adaptive immune responses to the ranavirus frog virus 3 (FV3). FV3 infects the kidneys of adults but is cleared within 4 weeks, with faster clearance upon secondary infections. In vivo depletion of CD8+ T cells markedly decreases the survival of adults after viral infection. To further investigate the involvement of anti-FV3 CD8+ T-cell effectors in host resistance in vivo, we determined the proliferation kinetics of CD8+ T cells in the spleen by bromodeoxyuridine incorporation and their infiltration of kidneys by immunohistology. Upon primary infection, CD8+ T cells significantly proliferate in the spleen and accumulate in infected kidneys from day 6 onward, in parallel with virus clearance. Earlier proliferation and infiltration associated with faster viral clearance were observed during a secondary infection. These results provide in vivo evidence of protective antigen-dependent CD8+ T-cell proliferation, recognition, and memory in fighting a natural pathogen in Xenopus.
Collapse
Affiliation(s)
- Heidi D Morales
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
14
|
Yang TY, Hao HF, Jia ZH, Chen WH, Xia C. Characterisation of grass carp (Ctenopharyngodon idellus) MHC class I domain lineages. FISH & SHELLFISH IMMUNOLOGY 2006; 21:583-91. [PMID: 16857387 DOI: 10.1016/j.fsi.2006.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 02/17/2006] [Accepted: 03/10/2006] [Indexed: 05/10/2023]
Abstract
In order to characterise grass carp MHC class I (Ctid-MHC I) sequences, 26 Ctid-MHC I genes were cloned from 12 individuals and their alpha domain lineages were analysed. Simultaneously, a quantitative reverse transcription-polymerase chain reaction (Q-RT-PCR) assay was developed to detect Ctid-MHC I tissue-specific expression. The results suggested that Ctid-MHC I could be divided into eight lineages (Ctid-NA-Ctid-NH). Based on whether they contained the motif of eight key amino acids (YYRTKWYY), Ctid-MHC I lineages were divided into two groups [Ctid-MHC I (8(+)) and Ctid-MHC I (8(-))]. The expression analysis showed that the Ctid-MHC I locus/loci appeared in the kidney, gill, intestine, heart, spleen, liver, and brain. A GenBank homology BLAST was performed independently with each alpha domain, and Ctid-MHC I alpha1, alpha2, and alpha3 were categorised into two (V and IX), five (II, IV-VII), and four (IV-VII) domain lineages, respectively. Based on the alphabetic labelling system created in our earlier studies, one alpha1 (IX), four alpha2 (IV-VII), and unique alpha3 (V-VII) domain lineages were observed in grass carp and across the teleostean species.
Collapse
Affiliation(s)
- Tian-Yao Yang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | | | | | | | | |
Collapse
|
15
|
Xia C, Hu T, Yang T, Wang L, Xu G, Lin C. cDNA cloning, genomic structure and expression analysis of the goose (Anser cygnoides) MHC class I gene. Vet Immunol Immunopathol 2005; 107:291-302. [PMID: 16005079 DOI: 10.1016/j.vetimm.2005.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2004] [Revised: 05/10/2005] [Accepted: 05/10/2005] [Indexed: 11/20/2022]
Abstract
To provide data for studies on avian disease resistance, goose MHC class I cDNA (Ancy-MHC I) was cloned from a goose cDNA library, it's genomic structure and expression analysis were investigated. The mature peptides of Ancy-MHC I cDNA encoded 333 amino acids. The genomic organization is composed of eight exons and seven introns. Based on the genetic distance, six Ancy-MHC I genes from six individuals can be classified into four lineages. A total of nineteen amino acid positions in peptide-binding domain showed high scores by Wu-kabat index analysis. The Ancy-MHC I amino acid sequence displayed seven critical HLA-A2 amino acids that bind with antigen polypeptides, and have an 85.4-98.9% amino acid homology with each genes, and a 59.8-66.0% amino acid homology with chicken MHC class I. Expression analyses using Q-RT-PCR to detect the tissue-specific expression of Ancy-MHC I mRNA in an adult goose. The result appeared that Ancy-MHC I cDNA was expressed in the liver, spleen, intestine, kidney, lung, pancreas, heart, brain, and skin. The phylogenetic tree appears to branch in an order consistent with accepted evolutionary pathways.
Collapse
Affiliation(s)
- Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China.
| | | | | | | | | | | |
Collapse
|
16
|
Kiryu I, Dijkstra JM, Sarder RI, Fujiwara A, Yoshiura Y, Ototake M. New MHC class Ia domain lineages in rainbow trout (Oncorhynchus mykiss) which are shared with other fish species. FISH & SHELLFISH IMMUNOLOGY 2005; 18:243-254. [PMID: 15519543 DOI: 10.1016/j.fsi.2004.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 06/29/2004] [Accepted: 07/19/2004] [Indexed: 05/24/2023]
Abstract
Major histocompatibility complex (MHC) class Ia genes in salmonid fishes are encoded by a single locus with probably the highest allelic diversity ever described. Various combinations of very different domain lineages contribute to the diversity of alleles. An extensive PCR survey distinguishing most domain lineages and their combinations was established. This survey has practical value for researchers investigating salmonid MHC class Ia variation. In the present study it was used to find new domain lineages. Applied for 24 hatchery strains in Japan, the survey identified two new rainbow trout alpha1 lineages and one new rainbow trout alpha2 lineage. The alpha2 lineage and one of the alpha1 lineages had been described in Atlantic salmon, but the other alpha1 lineage is novel. The newly identified trout alpha1 lineages are evolutionary very old. The present study should be the most extensive description of very deep MHC class Ia lineages to date: six trout alpha1 lineages cluster with non-salmonid sequences whereas previous studies mentioned this for only two salmonid alpha1 lineages. Although exon-shuffling events significantly contributed to salmonid MHC class Ia variation, analysis of 800 trout siblings did not detect such events within a single generation.
Collapse
Affiliation(s)
- Ikunari Kiryu
- Inland Station/National Research Institute of Aquaculture, Fisheries Research Agency, Tamaki, Mie 519-0423, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Xia C, Lin CY, Xu GX, Hu TJ, Yang TY. cDNA cloning and genomic structure of the duck (Anas platyrhynchos) MHC class I gene. Immunogenetics 2004; 56:304-9. [PMID: 15197511 DOI: 10.1007/s00251-004-0685-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 04/27/2004] [Indexed: 11/28/2022]
Abstract
In order to provide data for studies on disease resistance, duck MHC class I cDNA (Anpl-MHC I) was cloned from a duck cDNA library and the genome structure was investigated. Anpl-MHC I genes encoded 344-355 amino acids. The genomic organization is composed of eight exons and seven introns. Based on the genetic distance, Anpl-MHC I cDNA from six individuals can be classified into four lineages (from Anpl-UAA to Anpl-UDA). A total of 28 amino acid positions in the peptide-binding domain (PBD) showed high scores by Wu-kabat index analysis. The Anpl-MHC amino acid sequence displayed seven critical HLA-A2amino acids that bind with antigen polypeptides, and have an 83.6-88.5% amino acid homology with each lineage, a 55.2-64.6% amino-acid homology with chicken MHC class I (B-FIV21, B-FIV2, Rfp-Y), and a 40.3-42.8% homology with mammalian MHC class I. Nested PCR detected that Anpl-MHC I can be expressed in the brain, heart, kidney, intestines and bursa. Compared with the human HLA-A2 tertiary structure of the PBD, Anpl-MHC I had an insertion or deletion variation in four domains (A-D). The phlyogenetic tree appears to branch in an order consistent with accepted evolutionary pathways.
Collapse
Affiliation(s)
- C Xia
- The Key Laboratory of Veterinary Molecular Biology, College of Veterinary Medicine, China Agricultural University, 100094 Beijing, PR China.
| | | | | | | | | |
Collapse
|
18
|
Lam SH, Chua HL, Gong Z, Lam TJ, Sin YM. Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2004; 28:9-28. [PMID: 12962979 DOI: 10.1016/s0145-305x(03)00103-4] [Citation(s) in RCA: 445] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The development and maturation of the immune system in zebrafish was investigated using immune-related gene expression profiling by quantitative real-time polymerase chain reaction, in situ hybridization (ISH), immunoglobulin (Ig) detection by immuno-affinity purification and Western blotting as well as immersion immunization experiments. Ikaros expression was first detected at 1 day post-fertilization (dpf) and thereafter increased gradually to more than two-fold between 28 and 42dpf before decreasing to less than the initial 1dpf expression level in adult fish (aged 105dpf). Recombination activating gene-1 (Rag-1) expression levels increased rapidly (by 10-fold) between 3 and 17dpf, reaching a maximum between 21 and 28dpf before decreasing gradually. However, in adult fish aged 105dpf, the expression level of Rag-1 had dropped markedly, and was equivalent to the expression level at 3dpf. T-cell receptor alpha constant region and immunoglobulin light chain constant region (IgLC) isotype-1, 2 and 3 mRNAs were detected at low levels by 3dpf and their expression levels increased steadily to the adult range between 4 and 6 weeks post-fertilization (wpf). Using tissue-section ISH, Rag-1 expression was detected in head kidney by 2wpf while IgLC-1, 2 and 3 were detected in the head kidney and the thymus by 3wpf onwards. Secreted Ig was only detectable using immuno-affinity purification and Western blotting by 4wpf. Humoral response to T-independent antigen (formalin-killed Aeromonas hydrophila) and T-dependent antigen (human gamma globulin) was observed in zebrafish immunized at 4 and 6wpf, respectively, indicating that immunocompetence was achieved. The findings reveal that the zebrafish immune system is morphologically and functionally mature by 4-6wpf.
Collapse
Affiliation(s)
- S H Lam
- Department of Biological Sciences, The National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore
| | | | | | | | | |
Collapse
|
19
|
|
20
|
Davis JM, Clay H, Lewis JL, Ghori N, Herbomel P, Ramakrishnan L. Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity 2002; 17:693-702. [PMID: 12479816 DOI: 10.1016/s1074-7613(02)00475-2] [Citation(s) in RCA: 392] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Infection of vertebrate hosts with pathogenic Mycobacteria, the agents of tuberculosis, produces granulomas, highly organized structures containing differentiated macrophages and lymphocytes, that sequester the pathogen. Adult zebrafish are naturally susceptible to tuberculosis caused by Mycobacterium marinum. Here, we exploit the optical transparency of zebrafish embryos to image the events of M. marinum infection in vivo. Despite the fact that the embryos do not yet have lymphocytes, infection leads to the formation of macrophage aggregates with pathological hallmarks of granulomas and activation of previously identified granuloma-specific Mycobacterium genes. Thus, Mycobacterium-macrophage interactions can initiate granuloma formation solely in the context of innate immunity. Strikingly, infection can redirect normal embryonic macrophage migration, even recruiting macrophages seemingly committed to their developmentally dictated tissue sites.
Collapse
Affiliation(s)
- J Muse Davis
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
21
|
Thorgaard GH, Bailey GS, Williams D, Buhler DR, Kaattari SL, Ristow SS, Hansen JD, Winton JR, Bartholomew JL, Nagler JJ, Walsh PJ, Vijayan MM, Devlin RH, Hardy RW, Overturf KE, Young WP, Robison BD, Rexroad C, Palti Y. Status and opportunities for genomics research with rainbow trout. Comp Biochem Physiol B Biochem Mol Biol 2002; 133:609-46. [PMID: 12470823 DOI: 10.1016/s1096-4959(02)00167-7] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The rainbow trout (Oncorhynchus mykiss) is one of the most widely studied of model fish species. Extensive basic biological information has been collected for this species, which because of their large size relative to other model fish species are particularly suitable for studies requiring ample quantities of specific cells and tissue types. Rainbow trout have been widely utilized for research in carcinogenesis, toxicology, comparative immunology, disease ecology, physiology and nutrition. They are distinctive in having evolved from a relatively recent tetraploid event, resulting in a high incidence of duplicated genes. Natural populations are available and have been well characterized for chromosomal, protein, molecular and quantitative genetic variation. Their ease of culture, and experimental and aquacultural significance has led to the development of clonal lines and the widespread application of transgenic technology to this species. Numerous microsatellites have been isolated and two relatively detailed genetic maps have been developed. Extensive sequencing of expressed sequence tags has begun and four BAC libraries have been developed. The development and analysis of additional genomic sequence data will provide distinctive opportunities to address problems in areas such as evolution of the immune system and duplicate genes.
Collapse
Affiliation(s)
- Gary H Thorgaard
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164-4236, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Xia C, Kiryu I, Dijkstra JM, Azuma T, Nakanishi T, Ototake M. Differences in MHC class I genes between strains of rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2002; 12:287-301. [PMID: 12049167 DOI: 10.1006/fsim.2001.0371] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In rainbow trout there is only one dominant classical MHC class I locus, Onmy-UBA, for which four very different allelic lineages have been described. The purpose of the present study was to determine if Onmy-UBA polymorphism could be used for strain characterisation. This was performed by lineage-specific PCR investigation of 30 fish, each of the Nikko and Donaldson strains, and by sequence analysis of 25 of the amplified DNA fragments. Two new MHC class I lineages were detected in addition to the four previously described lineages, thus six distinct lineages were observed within the fish examined (Sal-MHCIa*A-F). The distribution of lineages appeared to be strain-specific. For example, the lineage Sal-MHCIa*A was very common in the Nikko strain but could not be detected in the Donaldson strain. Analysis of MHC class I variation may help to elucidate relationships between strains and the roles of MHC alleles in disease resistance.
Collapse
Affiliation(s)
- Chun Xia
- Inland Station/National Research Institute of Aquaculture, Tamaki, Mie, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Antao AB, Wilson M, Wang J, Bengtén E, Miller NW, Clem LW, Chinchar VG. Genomic organization and differential expression of channel catfish MHC class I genes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2001; 25:579-595. [PMID: 11472780 DOI: 10.1016/s0145-305x(01)00017-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Two clones, designated Icpu-UA/3 and Icpu-UA/26, were isolated from a genomic library prepared from a single homozygous gynogenetic channel catfish. Sequence analysis showed that each clone encoded a gene product containing features conserved among MHC class I molecules. The genomic organization of both clones indicated that each domain, with the exception of the cytoplasmic, was encoded by a separate exon. Moreover, like mammals, catfish cytoplasmic regions were encoded by three exons rather than two as previously described for other teleost MHC class I genes. Analysis of nucleotide sequences upstream of catfish class I genes revealed the presence of several regulatory motifs similar to those seen in mammalian class I genes. These included a TATA box, Enhancer B, Site alpha, ISRE, and GAS elements. To determine the functional significance of these elements, EMSAs and tissue expression assays were performed. EMSAs demonstrated that an Enhancer B element within Icpu-UA/26, and an imperfect Enhancer B element and/or a GC-rich region within Icpu-UA/3 were responsible for formation of specific DNA/protein complexes. Expression studies detected Icpu-UA/26 transcripts in all tissues tested, whereas Icpu-UA/3 encoded messages were seen in a limited number of tissues. These results define the intron/exon organization of catfish MHC class I genes, suggest that Icpu-UA/3 encodes a nonclassical gene, and provide the first functional evidence that upstream sequences, similar to those seen in mammalian class I genes, play important roles in regulating teleost MHC gene expression.
Collapse
Affiliation(s)
- A B Antao
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Takami K, Figueroa F, Mayer WE, Klein J. Ancient allelism at the cytosolic chaperonin-alpha-encoding gene of the zebrafish. Genetics 2000; 154:311-22. [PMID: 10628990 PMCID: PMC1460920 DOI: 10.1093/genetics/154.1.311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The T-complex protein 1, TCP1, gene codes for the CCT-alpha subunit of the group II chaperonins. The gene was first described in the house mouse, in which it is closely linked to the T locus at a distance of approximately 11 cM from the Mhc. In the zebrafish, Danio rerio, in which the T homolog is linked to the class I Mhc loci, the TCP1 locus segregates independently of both the T and the Mhc loci. Despite its conservation between species, the zebrafish TCP1 locus is highly polymorphic. In a sample of 15 individuals and the screening of a cDNA library, 12 different alleles were found, and some of the allelic pairs were found to differ by up to nine nucleotides in a 275-bp-long stretch of sequence. The substitutions occur in both translated and untranslated regions, but in the former they occur predominantly at synonymous codon sites. Phylogenetically, the alleles fall into two groups distinguished also by the presence or absence of a 10-bp insertion/deletion in the 3' untranslated region. The two groups may have diverged as long as 3.5 mya, and the polymorphic differences may have accumulated by genetic drift in geographically isolated populations.
Collapse
Affiliation(s)
- K Takami
- Max-Planck-Institut f]ur Biologie, Abteilung Immungenetik, D-72076 T]ubingen, Germany
| | | | | | | |
Collapse
|
25
|
Nakanishi T, Aoyagi K, Xia C, Dijkstra JM, Ototake M. Specific cell-mediated immunity in fish. Vet Immunol Immunopathol 1999; 72:101-9. [PMID: 10614499 DOI: 10.1016/s0165-2427(99)00122-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This review describes the fish immune system, focusing on specific cell-mediated immunity. Specific in vivo cell-mediated immune responses have been shown by allograft rejection, graft-versus-host reaction (GVHR) and delayed hypersensitivity reaction (DTH). Recent in vitro studies also showed specific cell-mediated cytotoxicity against allogeneic target cells. These in vivo and in vitro experiments strongly suggest the presence of cytotoxic T cells in fishes. Also described are current studies on shark and trout MHC class I polymorphism and function that demonstrate strong similarities between fish and mammals.
Collapse
Affiliation(s)
- T Nakanishi
- National Research Institute of Aquaculture, Tamaki, Mie, Japan
| | | | | | | | | |
Collapse
|
26
|
Murray BW, Sültmann H, Klein J. Analysis of a 26-kb Region Linked to the Mhc in Zebrafish: Genomic Organization of the Proteasome Component β/Transporter Associated with Antigen Processing-2 Gene Cluster and Identification of Five New Proteasome β Subunit Genes. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.5.2657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Sequencing of zebrafish (Danio rerio) bacterial artificial chromosome and P1 artificial chromosome genomic clone fragments and of cDNA clones has led to the identification of five new loci coding for β subunits of proteasomes (PSMB). Together with the four genes identified previously, nine PSMB genes have now been defined in the zebrafish. Six of the nine genes reside in the zebrafish MHC (Mhc) class I region, four of them reside in a single cluster closely associated with TAP2 on a 26-kb long genomic fragment, and two reside at some distance from the fragment. In addition to homologues of the human genes PSMB5 through PSMB9, two new genes, PSMB11 and PSMB12, have been found for which there are no known corresponding genes in humans. The new genes reside in the PSMB cluster in the Mhc. Homology and promoter region analysis suggest that the Mhc-associated genes might be inducible by IFN-γ. The zebrafish class I region contains representatives of three phylogenetically distinguishable groups of PSMB genes, X, Y, and Z. It is proposed that these genes were present in the ancestral PSMB region before Mhc class I genes became associated with it.
Collapse
Affiliation(s)
- Brent W. Murray
- Max-Planck-Institut für Biologie, Abt. Immungenetik, Tübingen, Germany
| | - Holger Sültmann
- Max-Planck-Institut für Biologie, Abt. Immungenetik, Tübingen, Germany
| | - Jan Klein
- Max-Planck-Institut für Biologie, Abt. Immungenetik, Tübingen, Germany
| |
Collapse
|
27
|
Hashimoto K, Okamura K, Yamaguchi H, Ototake M, Nakanishi T, Kurosawa Y. Conservation and diversification of MHC class I and its related molecules in vertebrates. Immunol Rev 1999; 167:81-100. [PMID: 10319253 DOI: 10.1111/j.1600-065x.1999.tb01384.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The elucidation of the complete peptide-binding domains of the highly polymorphic shark MHC class I genes offered us an opportunity to examine the characteristics of their predicted protein products in the light of the latest advance in the structural studies of the MHC class I molecules. The results suggest that the fundamental characteristics in the T-cell recognition of the MHC class I molecule/peptide complex are expected to have been established at the early stage of the vertebrate evolution. The elucidation of the typical classical class I molecules from fishes and also of some MHC class I-related molecules may help us-to explore the common denominator of the ancient class I molecules.
Collapse
Affiliation(s)
- K Hashimoto
- Institute for Comprehensive Medical Science, Fujita Health University, Aichi, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Tournefier A, Laurens V, Chapusot C, Ducoroy P, Padros MR, Salvadori F, Sammut B. Structure of MHC class I and class II cDNAs and possible immunodeficiency linked to class II expression in the Mexican axolotl. Immunol Rev 1998; 166:259-77. [PMID: 9914918 DOI: 10.1111/j.1600-065x.1998.tb01268.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite the fact that the axolotl (Ambystoma spp. a urodele amphibian) displays a large T-cell repertoire and a reasonable B-cell repertoire, its humoral immune response is slow (60 days), non-anamnestic, with a unique IgM class. The cytotoxic immune response is slow as well (21 days) with poor mixed lymphocyte reaction stimulation. Therefore, this amphibian can be considered as immunodeficient. The reason for this subdued immune response could be an altered antigenic presentation by major histocompatibility complex (MHC) molecules. This article summarizes our work on axolotl MHC genes. Class I genes have been characterized and the cDNA sequences show a good conservation of non-polymorphic peptide binding positions of the alpha chain as well as a high diversity of the variable amino acids positions, suggesting that axolotl class I molecules can present numerous antigenic epitopes. Moreover, class I genes are ubiquitously transcribed at the time of hatching. These class I genes also present an important polylocism and belong to the same linkage group as the class II B gene; they can be reasonably considered as classical class Ia genes. However, only one class II B gene has been characterized so far by Southern blot analysis. As in higher vertebrates, this gene is transcribed in lymphoid organs when they start to be functional. The sequence analysis shows that the peptide binding region of this class II beta chain is relatively well conserved, but most of all does not present any variability in the beta 1 domain in inbred as well as in wild axolotls, presuming a limited antigenic presentation of few antigenic epitopes. The immunodeficiency of the axolotl could then be explained by an altered class II presentation of antigenic peptides, putting into question the existence of cellular co-operation in this lower vertebrate. It will be interesting to analyze the situation in other urodele species and to determine whether our observations in axolotl represent a normal feature in urodele amphibians. But already two different models in amphibians, Xenopus and axolotl, must be considered in our search for understanding immune system and MHC evolution.
Collapse
Affiliation(s)
- A Tournefier
- UMR-5548 Developpement, Communication chimique, Faculté des Sciences, Université de Bourgogne, Dijon, France.
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Three MHC class I genes have been characterized in salmonids: A, B, and UA. Levels of polymorphism vary among the genes, but they all share one common feature: a lack of sequence diversity. Although individual species can carry over 30 alleles at a given locus (A), intraspecific diversity is generally less than 5% in Pacific salmon (genus Oncorhynchus), and less than 10% in Atlantic salmon (genus Salmo). These levels of diversity suggest that few ancient allelic lineages have persisted within species, and that most of the allelic radiation has occurred during or since speciation. Also apparent is the greater retention of allelic lineages in Atlantic salmon than Pacific salmon, which reflects historic differences of the two genera. Comparison of the salmonid class I sequences with those of other teleosts reveals two well supported groups: one containing the Cypriniformes and the salmonid UA, and the other containing the neoteleosts and the salmonid A and B. There is no homology between known Cypriniformes and neoteleostean sequences. If this relationship is borne out, it offers strong support for the hypothesis that the higher teleosts diverged more recently from the Salmoniformes than the Cypriniformes. The salmonid MHC may provide a snapshot of the neoteleostean MHC prior to the extensive class I duplication that has taken place in at least some of the more advanced species.
Collapse
Affiliation(s)
- K M Miller
- Department of Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia, Canada.
| | | |
Collapse
|
30
|
Abstract
Similarity in structural features would argue that sharks possess class I, class IIA and class IIB genes, coding for classical peptide-presenting molecules, as well as non-classical class I genes. Some aspects of shark major histocompatibility complex genes are similar to teleost genes and others are similar to tetrapod genes. Shark class I genes form a monophyletic group, as also seen for tetrapods, but the classical and nonclassical genes form two orthologous clades, as seen for teleosts. Teleost class I genes arose independently at least four different times with the nonclassical genes of ray-finned fishes and all the shark and lobe-finned fish class I genes forming 1 clade. The ray-finned fish classical class I genes arose separately. In phylogenetic trees of class II alpha 2 and beta 2 domains, the shark and tetrapod genes cluster more closely than the teleost genes and, unlike the teleost sequences, the class II alpha 1 domains of sharks and tetrapods lack cysteines. On the other hand, both shark and teleost genes display sequence motifs in the antigen-binding cleft that have persisted over very long time periods. The similarities may reflect common selective pressures on species in aqueous environments while differences may be due to different evolutionary rates.
Collapse
Affiliation(s)
- S Bartl
- Moss Landing Marine Laboratories, CA 95039-0450, USA.
| |
Collapse
|
31
|
Stet RJ, Kruiswijk CP, Saeij JP, Wiegertjes GF. Major histocompatibility genes in cyprinid fishes: theory and practice. Immunol Rev 1998; 166:301-16. [PMID: 9914921 DOI: 10.1111/j.1600-065x.1998.tb01271.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first teleostean MHC sequences were described for carp. Subsequent studies in a number of cyprinid fishes showed that the class I sequences of these fishes are of particular interest. Two distinct lineages (Cyca-Z and Cyca-U) are found in the common and ginbuna crucian carp, but only the U lineage is present in zebrafish and other non-cyprinid species. The presence of the Z lineage is hypothesised to be the result of an allotetraploidisation event. Both phylogenetic analyses and amino acid sequence comparisons suggest that Cyca-Z sequences are non-classical class I sequences, probably similar to CD1. The comprehensive phylogenetic analyses of these sequences revealed different phylogenetic histories of the exons encoding the extracellular domains. The MHC genes were studied in laboratory and natural models. The natural model addressed the evolution of MHC genes in a Barbus species flock. Sequence analysis of class I and class II supported the species designation of the morphotypes present in the lake, and as a consequence the trans-species hypothesis of MHC polymorphism. The laboratory model involves the generation of gynogenetic clones, which can be divergently selected for traits such as high and low antibody response. The role of MHC molecules can be investigated further by producing a panel of isogenic lines.
Collapse
Affiliation(s)
- R J Stet
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University and Research Centre, The Netherlands.
| | | | | | | |
Collapse
|
32
|
Yamaguchi H, Kurosawa Y, Hashimoto K. Expanded genomic organization of conserved mammalian MHC class I-related genes, human MR1 and its murine ortholog. Biochem Biophys Res Commun 1998; 250:558-64. [PMID: 9784382 DOI: 10.1006/bbrc.1998.9353] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
MR1 is a major histocompatibility complex (MHC) class I-related gene located outside the human MHC. Among several divergent class I molecules, the predicted MR1 molecule is closest, in the alpha1 and alpha2 domains, to the class I group to which the vertebrate classical class I molecules belong. We report here the genomic organizations of the human MR1 and mouse Mr1 genes. Both genes exhibit genomic structures largely similar to those of the MHC class I genes. However, they are highly expanded in their scale in contrast to the classical MHC class I genes. Inclusion of transposable elements into introns seems to partly contribute to these genomic structures. Several other MHC class I-related genes also show relatively large genomic structures. The present study extended heterogeneity in the genomic organization among the class I gene family by revealing a highly expanded structure of the human MR1 gene and its murine ortholog.
Collapse
Affiliation(s)
- H Yamaguchi
- Institute for Comprehensive Medical Science, Fujita Health University, Aichi, Toyoake, 470-11, Japan
| | | | | |
Collapse
|
33
|
Nonaka M, Namikawa C, Kato Y, Sasaki M, Salter-Cid L, Flajnik MF. Major histocompatibility complex gene mapping in the amphibian Xenopus implies a primordial organization. Proc Natl Acad Sci U S A 1997; 94:5789-91. [PMID: 9159152 PMCID: PMC20858 DOI: 10.1073/pnas.94.11.5789] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
One of the most provocative recent discoveries in immunology was the description of a genetic linkage in the major histocompatibility complex (MHC) between structurally unrelated genes whose products are involved in processing and presentation of antigens for recognition by T lymphocytes. Genes encoding MHC class I molecules, which bind and present at the cell surface proteolytic fragments of cytosolic proteins, are linked to nonhomologous genes whose products are involved in the production and subsequent transfer of such fragments into the endoplasmic reticulum. In mammals, the class I presentation and processing genes are found in different regions of the MHC. To examine the evolutionary origins of this genetic association, linkage studies were carried out with Xenopus, an amphibian last sharing an ancestor with mammals over 350 million years ago. In contrast to mammals, the single copy Xenopus class I gene is located between the class II and III regions, speculated to be in close linkage with the processing and transport genes. In addition to suggesting a primordial organization of genes involved in class I antigen presentation, these linkage studies further provide insight into the origins of the MHC class III region and the phenomenon of class I gene instability in the mammalian MHC.
Collapse
Affiliation(s)
- M Nonaka
- Department of Biochemistry, Nagoya City University Medical School, Mizuho-Ku, Nagoya 467, Japan
| | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Hansen JD, Strassburger P, Du Pasquier L. Conservation of an alpha 2 domain within the teleostean world, MHC class I from the rainbow trout Oncorhynchus mykiss. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 1996; 20:417-425. [PMID: 9040984 DOI: 10.1016/s0145-305x(96)00030-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A full-length cDNA clone (Onmy-UA-C32) encoding a major histocompatibility complex (MHC) class I heavy chain was isolated from a rainbow trout thymus cDNA library. Onmy-UA-C32 alpha I and III extracellular domains were most similar to other salmonids (92 and 86% at the nucleotide and amino acid level) but interestingly the alpha II domain is closer to that of the carp (74 and 73%) and zebrafish (75 and 70%). In addition, Onmy-UA-C32 displays conservation of residues known to be essential for the function and structure of MHC class Ia molecules. Northern blot hybridization with alpha 2 or 2-3 domain probes of Onmy-UA-C32 detected high expression (2.6 kb) of this gene in the spleen, thymus, kidney, heart and intestine with lower levels being observed in the brain and liver. No tissues were found to be negative indicating a ubiquitous pattern of expression for Onmy-UA-C32. Onmy-UA-C32 may therefore represent a MHC class Ia gene in trout as well as providing new insights regarding the evolution of the MHC within teleost species.
Collapse
Affiliation(s)
- J D Hansen
- Basel Institute for Immunology, Switzerland
| | | | | |
Collapse
|
36
|
Passer BJ, Chen CH, Miller NW, Cooper MD. Identification of a T lineage antigen in the catfish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 1996; 20:441-450. [PMID: 9040986 DOI: 10.1016/s0145-305x(96)00033-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A murine monoclonal antibody produced against catfish thymocytes and immunoglobulin-negative lymphocytes in the blood identified a catfish T cell antigen designated CfT1. The CfT1 antigen was found to be expressed on thymocytes, a subpopulation of the lymphoid cells in blood and other lympho-hemopoietic tissues, and a T cell line, but was not expressed by erythrocytes, thrombocytes, myeloid cells, B cells or macrophage cell lines. Stimulation of blood mononuclear cells with the T cell mitogen, concanavalin A, resulted in an increased frequency of CfT1+ cells. Conversely, lipopolysaccharide stimulation increased the number of IgM+ B cells and decreased the frequency of CfT1+ cells. The CfT1 antigen was defined as a single chain protein of M(r) 35,000 lacking N- and O-linked sugars. The CfT1 molecule thus provides a T lineage-specific marker in this bony fish representative.
Collapse
Affiliation(s)
- B J Passer
- Department of Microbiology, University of Alabama at Birmingham 35294-3300, USA
| | | | | | | |
Collapse
|
37
|
van Erp SH, Egberts E, Stet RJ. Evidence for multiple distinct major histocompatibility complex class I lineages in teleostean fish. EUROPEAN JOURNAL OF IMMUNOGENETICS : OFFICIAL JOURNAL OF THE BRITISH SOCIETY FOR HISTOCOMPATIBILITY AND IMMUNOGENETICS 1996; 23:371-81. [PMID: 8909944 DOI: 10.1111/j.1744-313x.1996.tb00010.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the context of studies on the expression of MhcCyca-Z sequences of the common carp, PCR amplifications of exon 4 were performed on cDNA obtained from pooled thymi of 20 carp F1 individuals. Five recombinant clones (Cyca-TC3, -TC13, -TC15, -TC17 and -TC18) were found to be 96% similar to the exon 4 region of Cyca-ZA1. Each of the five sequences was unique, and differed in a few positions in both the nucleotide and the derived amino acid sequences from any of the Cyca-Z sequences known to date. These data suggest that multiple Z genes per locus are present in the carp, which are transcribed in the thymus. In the course of analysing the amplified Cyca-Z sequences, serendipity yielded a clone, Cyca-TC16, containing a class I-like sequence substantially different from any other carp class I sequence. The predicted amino acid sequence of Cyca-TC16 was most similar to the class I genes (Lach-U) from the coelacanth (42-46% amino acid identity). Cyca-TC16 contains three conserved beta 2-microglobulin contact residues, and the secondary structure was predicted by computer algorithms to be similar to that of the alpha 3 domain of HLA-A2. Phylogenetic analysis shows that carp class I sequences reside in four distinct clusters: (i) Cyca-Z, Cyca-TC3, -TC13, -TC15, -TC17 and -TC18 together with Caau-Z from ginbuna crucian carp, (ii) Cyca-U with Bree-U (zebrafish) and Sasa-p30 (Atlantic salmon), (iii) Cyca-TC16 with Lach-U (coelacanth), and (iv) Cyca-C4.
Collapse
Affiliation(s)
- S H van Erp
- Department of Experimental Animal Morphology and Cell Biology, Wageningen Agricultural University, The Netherlands
| | | | | |
Collapse
|
38
|
Kasahara M, Kandil E, Salter-Cid L, Flajnik MF. Origin and evolution of the class I gene family: why are some of the mammalian class I genes encoded outside the major histocompatibility complex? RESEARCH IN IMMUNOLOGY 1996; 147:278-84; discussion 284-5. [PMID: 8876055 DOI: 10.1016/0923-2494(96)89640-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- M Kasahara
- Department of Biochemistry, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | |
Collapse
|
39
|
van Erp SH, Egberts E, Stet RJ. Characterization of class II A and B genes in a gynogenetic carp clone. Immunogenetics 1996; 44:192-202. [PMID: 8662086 DOI: 10.1007/bf02602585] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A prerequisite for carrying out functional studies on major histocompatibility complex (Mhc) molecules of fish is the availability of genetically well-defined homozygous strains. Previously we have applied gynogenetic reproduction to generate isogenic carp, denoted clone A410. This clone has recently been demonstrated to express a single class I gene, Cyca-UA1(*)01, and in the present study two class II B and two class II A transcripts were obtained. The two class II B transcripts, Cyca-D(CB3)B and Cyca-D(CB4)B, as well as the class II A transcripts, Cyca-D(10A)A and Cyca-D(15A)A, appear to be bona fide class II transcripts, based on the presence of conserved protein characteristics of the inferred class II molecules. With the isolation of class II A sequences, representatives of all major classes of Mhc genes have been identified in the carp. To assess the relationship between the different class II genes, segregation studies, comparison of cDNA and intron 1 sequence data, and phylogenetic analyses were undertaken. These showed that the class II B transcripts, Cyca-D(CB3)B and Cyca-D(CB4)B, are derived from related, closely linked loci. In addition, these studies indicated that the previously described Cyca-DAB*01 and Cyca-DAB*02 are also closely linked, but that this linked pair segregates independently from the Cyca-D(CB3)B and Cyca-D(CB4)B loci. The class II A transcripts are most likely derived from separate loci and do not represent alleles, as they were found not to segregate in the individuals of the clone which was generated by meiogenetic gynogenesis.
Collapse
Affiliation(s)
- S H van Erp
- Department of Experimental Animal Morphology and Cell Biology, Wageningen Agricultural University, PO Box 338, 6700 AH Wageningen, The Netherlands
| | | | | |
Collapse
|
40
|
Shum BP, Azumi K, Zhang S, Kehrer SR, Raison RL, Detrich HW, Parham P. Unexpected beta2-microglobulin sequence diversity in individual rainbow trout. Proc Natl Acad Sci U S A 1996; 93:2779-84. [PMID: 8610117 PMCID: PMC39709 DOI: 10.1073/pnas.93.7.2779] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
For mammals beta2-microglobulin (beta2m), the light chain of major histocompatibility complex (MHC) class I molecules, is invariant (or highly conserved) and is encoded by a single gene unlinked to the MHC. We find that beta2m of a salmonid fish, the rainbow trout (Oncorhynchus mykiss), does not conform to the mammalian paradigm. Ten of 12 randomly selected beta2m cDNA clones from an individual fish have different nucleotide sequences. A complex restriction fragment length polymorphism pattern is observed with rainbow trout, suggesting multiple beta2m genes in the genome, in excess of the two genes expected from the ancestral salmonid tetraploidy. Additional duplication and diversification of the beta2m genes might have occurred subsequently. Variation in the beta2m cDNA sequences is mainly at sites that do not perturb the structure of the mature beta2m protein, showing that the observed diversity of the trout beta2m genes is not primarily a result of pathogen selection.
Collapse
Affiliation(s)
- B P Shum
- Department of Structural Biology, Standford University, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Seeger A, Mayer WE, Klein J. A complement factor B-like cDNA clone from the zebrafish (Brachydanio rerio). Mol Immunol 1996; 33:511-20. [PMID: 8700167 DOI: 10.1016/0161-5890(96)00002-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An important molecule in the activation of the complement system in vertebrates is factor B, a serine protease with a molecular mass of 95,000. Factor B and the complement component C2 are thought to have arisen by gene duplication. In mammals and in Xenopus the factor B gene is linked to the major histocompatibility complex (MHC), whereas in domestic fowl it segregates independently of the MHC. Here we describe the isolation of a cDNA clone coding for factor B in the zebrafish, Brachydanio rerio. The deduced protein sequence exhibits a characteristic mosaic structure consisting of the short consensus repeat (SCR), the von Willebrand factor, and the serine protease domains. The estimated time of factor B and C2 divergence (approximately 350 million years ago), combined with the fact that C2 has thus far been found only in mammals, suggest that the factor B-C2 gene duplication occurred after the divergence of mammal-like reptiles from other reptiles and hence also birds. After the duplication, the C2 component evolved significantly faster than factor B.
Collapse
Affiliation(s)
- A Seeger
- Max-Planck-Institute fur Biologie, Abteilung Immungenetik, Tubingen, Germany
| | | | | |
Collapse
|
42
|
Graser RT, Malnar-Dragojevic D, Vincek V. Cloning and characterization of a 70 kd heat shock cognate (hsc70) gene from the zebrafish (Danio rerio). Genetica 1996; 98:273-6. [PMID: 9204550 DOI: 10.1007/bf00057591] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The heat shock 70 family of proteins is one of the most highly conserved among all species. The genes encoding these proteins have been cloned and sequenced from bacterial species to humans with a high degree of homology preserved throughout evolution. Here we describe the cloning and characterization of a cDNA encoding a 70 kd heat shock cognate (hsc70) gene from the zebrafish (Danio rerio). A high degree of conservation is observed among hsc70 genes of other species as shown by phylogenetic analysis. The characterization of a hsc70 gene in the zebrafish provides a marker for studying the role of a constitutively expressed member of the hsp70 family in an important developmental and evolutionary model system.
Collapse
Affiliation(s)
- R T Graser
- University of Miami School of Medicine, Department of Microbiology and Immunology, Florida 33101, USA
| | | | | |
Collapse
|
43
|
van Erp SH, Dixon B, Figueroa F, Egberts E, Stet RJ. Identification and characterization of a new major histocompatibility complex class I gene in carp (Cyprinus carpio L.). Immunogenetics 1996; 44:49-61. [PMID: 8613142 DOI: 10.1007/bf02602656] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this study we report the finding of three representatives of a new group of major histocompatibility complex class I sequences in carp: Cyca-12 (Cyca-UA1*01), a full-length cDNA; Cyca-SP1 (Cyca-UAW1), a polymerase chain reaction (PCR) fragment from cDNA; and Cyca-G11 (Cyca-UA1*02), a partial genomic clone. Comparison of the amino acid sequences of Cyca-12, Cyca-SP1, and Cyca-G11 with classical and non-classical class I sequences from other species shows considerable conservation in regions that have been shown to be involved in maintaining the structure and function of class I molecules. The genomic organization of Cyca-12 has been elucidated by analysis of a partial genomic clone (Cyca-G11, in combination with PCR amplifications on genomic DNA of a homozygous individual. Although the genomic organization is similar to that found in class I genes from other species, the 3' untranslated region contains an intron which is unprecedented in class I genes, and intron 2 is exceptionally large (+/-14 kilobases). Southern blot analysis indicates the presence of multiple related sequences. In phylogenetic analyses, the Cyca-UA sequences cluster with class I genes from zebrafish and Atlantic salmon, indicating that the ancestral gene arose before the salmonid/cyprinid split, approximately 120-150 million years ago. The previously reported class I Cyca-Z genes from carp and Caau-Z genes from goldfish cluster as a completely separate lineage. A polyclonal antiserum (anti-Cyca12) was raised against a recombinant fusion protein containing most of the extracellular domains of Cyca-12. The antibodies showed substantial reactivity to the recombinant protein and an Mr 45000 protein in membrane lysates of spleen and muscle, as well as to determinants present on leucocytes in fluorescence-activated cell sorter analyses. Erythrocytes and thrombocytes were found to be negative.
Collapse
Affiliation(s)
- S H van Erp
- Department of Experimental Animal Morphology and Cell Biology, Wageningen Agricultural University, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
44
|
|
45
|
Sato A, Figueroa F, O'hUigin C, Reznick DN, Klein J. Identification of major histocompatibility complex genes in the guppy, Poecilia reticulata. Immunogenetics 1995; 43:38-49. [PMID: 8537120 DOI: 10.1007/bf00186602] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The guppy, Poecilia reticulata, a teleostean fish of the order Cyprinodontiformes, has been used extensively in studies of host-parasite interactions, courtship behavior, and mating preference, as well as in ecological and evolutionary genetics. A related species was among the first poikilotherm vertebrates to be used in the study of histocompatibility genes. All these studies could benefit from the identification and characterization of the guppy major histocompatibility complex (Mhc) genes. Here, both class I and class II genes of the guppy are described. The number of expressed loci, as determined by representation of clones in a cDNA library, sequencing, and Southern blot analysis, may be low in both Mhc classes: combined evidence suggests that there may be one expressed class II locus only and one or two expressed class I loci. The variability of aquaristic guppy stocks is very low: only three and two genes have been detected at the class I and class II loci, respectively, in the stocks examined. This genetic paucity is most likely the consequence of breeding practices employed by aquarists and commercial establishments. Limited sampling of wild guppy populations revealed extensive Mhc polymorphism at loci of both classes in nature. Comparison of guppy Mhc sequences with those of other vertebrates has revealed the existence of a set of insertions/deletions which can be used as characters in cladistic analysis to infer phylogenetic relationships among vertebrate taxa and the Mhc genes themselves. These indels are particularly frequent in the regions coding for the loops of alpha 1 and alpha 2 domains of class I proteins.
Collapse
Affiliation(s)
- A Sato
- Max-Planck-Institut für Biologie, Abteilung Immungenetik, Tübingen, Germany
| | | | | | | | | |
Collapse
|