1
|
Zhu WY, Niu K, Liu P, Fan YH, Liu ZQ, Zheng YG. Identification and Characterization of an O-Succinyl-L-Homoserine Sulfhydrylase From Thioalkalivibrio sulfidiphilus. Front Chem 2021; 9:672414. [PMID: 33937207 PMCID: PMC8080516 DOI: 10.3389/fchem.2021.672414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
L-methionine is an important natural amino acid with broad application prospects. A novel gene encoding the enzyme with the ability to catalyze O-succinyl-L-homoserine (OSH) to L-methionine was screened and characterized. The recombinant O-succinyl-L-homoserine sulfhydrylase from Thioalkalivibrio sulfidiphilus (tsOSHS) exhibited maximum activity at 35°C and pH 6.5. OSHS displayed an excellent thermostability with a half-life of 21.72 h at 30°C. Furthermore, the activity of OSHS increased 115% after Fe2+ added. L-methionine was obtained with a total yield reaching 42.63 g/L under the concentration of O-succinyl-L-homoserine 400 mM (87.6 g/L). These results indicated that OSHS is a potential candidate for applying in the large-scale bioproduction of L-methionine.
Collapse
Affiliation(s)
- Wen-Yuan Zhu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Kun Niu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Peng Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Hang Fan
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
2
|
Wu Y, Zha M, Yin S, Yang H, Boutet J, Huet R, Wang C, Sun B. Novel Method for l-Methionine Production Catalyzed by the Aminotransferase ARO8 from Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6116-6122. [PMID: 29806462 DOI: 10.1021/acs.jafc.8b01451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The aminotransferase ARO8 was proved to play an efficient role in conversion of l-methionine into methionol via the Ehrlich pathway in Saccharomyces cerevisiae in our previous work. In this work, the reversible transamination activity of ARO8 for conversion of α-keto-γ-(methylthio) butyric acid (KMBA) into l-methionine was confirmed in vitro. ARO8 was cloned from S. cerevisiae S288c and overexpressed in Escherichia coli BL21. A 2-fold higher aminotransferase activity was detected in the recombinant strain ARO8-BL21, and ARO8 was detected in the supernatant of ARO8-BL21 lysate with IPTG induction by SDS-PAGE analysis. The recombinant ARO8 was then purified and used for transforming KMBA into l-methionine. An approximately 100% conversion rate of KMBA into l-methionine was achieved by optimized enzymatic reaction catalyzed by ARO8. This work fulfilled l-methionine biosynthesis catalyzed by the aminotransferase ARO8 using glutamate and KMBA, which provided a novel method for l-methionine production by enzymatic catalysis with the potential application prospect in industry.
Collapse
Affiliation(s)
- Yiping Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University , Beijing 100048 , China
- Beijing Engineering and Technology Research Center of Food Additives , Beijing Technology & Business University , Beijing 100048 , China
| | - Musu Zha
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University , Beijing 100048 , China
- Beijing Engineering and Technology Research Center of Food Additives , Beijing Technology & Business University , Beijing 100048 , China
| | - Sheng Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University , Beijing 100048 , China
- Beijing Engineering and Technology Research Center of Food Additives , Beijing Technology & Business University , Beijing 100048 , China
| | - Huaqing Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University , Beijing 100048 , China
- Beijing Engineering and Technology Research Center of Food Additives , Beijing Technology & Business University , Beijing 100048 , China
| | - Julien Boutet
- Adisseo France SAS, Antony Parc 2 , 10 Place du Général de Gaulle , F-92160 Antony , France
- Bluestar Adisseo Nanjing Co., LTD , 389 Changfenghe Road, Nanjing Chemical Industry Park , Jiangsu Province , Nanjing 210047 , China
| | - Robert Huet
- Adisseo France SAS, Antony Parc 2 , 10 Place du Général de Gaulle , F-92160 Antony , France
- Bluestar Adisseo Nanjing Co., LTD , 389 Changfenghe Road, Nanjing Chemical Industry Park , Jiangsu Province , Nanjing 210047 , China
| | - Chengtao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University , Beijing 100048 , China
- Beijing Engineering and Technology Research Center of Food Additives , Beijing Technology & Business University , Beijing 100048 , China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University , Beijing 100048 , China
- Beijing Engineering and Technology Research Center of Food Additives , Beijing Technology & Business University , Beijing 100048 , China
| |
Collapse
|
3
|
Yamaguchi S, Komeda H, Asano Y. New enzymatic method of chiral amino acid synthesis by dynamic kinetic resolution of amino acid amides: use of stereoselective amino acid amidases in the presence of alpha-amino-epsilon-caprolactam racemase. Appl Environ Microbiol 2007; 73:5370-3. [PMID: 17586677 PMCID: PMC1950992 DOI: 10.1128/aem.00807-07] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 06/09/2007] [Indexed: 11/20/2022] Open
Abstract
D- and L-amino acids were produced from L- and D-amino acid amides by D-aminopeptidase from Ochrobactrum anthropi C1-38 and L-amino acid amidase from Pseudomonas azotoformans IAM 1603, respectively, in the presence of alpha-amino-epsilon-caprolactam racemase from Achromobacter obae as the catalyst by dynamic kinetic resolution of amino acid amides.
Collapse
Affiliation(s)
- Shigenori Yamaguchi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | | | | |
Collapse
|