1
|
Barbarani G, Łabedz A, Ronchi AE. β-Hemoglobinopathies: The Test Bench for Genome Editing-Based Therapeutic Strategies. Front Genome Ed 2021; 2:571239. [PMID: 34713219 PMCID: PMC8525389 DOI: 10.3389/fgeed.2020.571239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/29/2020] [Indexed: 12/26/2022] Open
Abstract
Hemoglobin is a tetrameric protein composed of two α and two β chains, each containing a heme group that reversibly binds oxygen. The composition of hemoglobin changes during development in order to fulfill the need of the growing organism, stably maintaining a balanced production of α-like and β-like chains in a 1:1 ratio. Adult hemoglobin (HbA) is composed of two α and two β subunits (α2β2 tetramer), whereas fetal hemoglobin (HbF) is composed of two γ and two α subunits (α2γ2 tetramer). Qualitative or quantitative defects in β-globin production cause two of the most common monogenic-inherited disorders: β-thalassemia and sickle cell disease. The high frequency of these diseases and the relative accessibility of hematopoietic stem cells make them an ideal candidate for therapeutic interventions based on genome editing. These strategies move in two directions: the correction of the disease-causing mutation and the reactivation of the expression of HbF in adult cells, in the attempt to recreate the effect of hereditary persistence of fetal hemoglobin (HPFH) natural mutations, which mitigate the severity of β-hemoglobinopathies. Both lines of research rely on the knowledge gained so far on the regulatory mechanisms controlling the differential expression of globin genes during development.
Collapse
Affiliation(s)
- Gloria Barbarani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Agata Łabedz
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | | |
Collapse
|
2
|
Abstract
The rapid advances in the field of genome editing using targeted endonucleases have called considerable attention to the potential of this technology for human gene therapy. Targeted correction of disease-causing mutations could ensure lifelong, tissue-specific expression of the relevant gene, thereby alleviating or resolving a specific disease phenotype. In this review, we aim to explore the potential of this technology for the therapy of β-thalassemia. This blood disorder is caused by mutations in the gene encoding the β-globin chain of hemoglobin, leading to severe anemia in affected patients. Curative allogeneic bone marrow transplantation is available only to a small subset of patients, leaving the majority of patients dependent on regular blood transfusions and iron chelation therapy. The transfer of gene-corrected autologous hematopoietic stem cells could provide a therapeutic alternative, as recent results from gene therapy trials using a lentiviral gene addition approach have demonstrated. Genome editing has the potential to further advance this approach as it eliminates the need for semi-randomly integrating viral vectors and their associated risk of insertional mutagenesis. In the following pages we will highlight the advantages and risks of genome editing compared to standard therapy for β-thalassemia and elaborate on lessons learned from recent gene therapy trials.
Collapse
Affiliation(s)
- Astrid Glaser
- 1Murdoch Childrens Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC, 3052, Australia; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC, 3052, Australia
| | - Bradley McColl
- 1Murdoch Childrens Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC, 3052, Australia
| | - Jim Vadolas
- 1Murdoch Childrens Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC, 3052, Australia; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC, 3052, Australia
| |
Collapse
|
3
|
Vannocci T, Kurata H, Fuente J, Roberts IA, Porter ACG. Nuclease‐stimulated homologous recombination at the human β‐globin gene. J Gene Med 2014. [DOI: 10.1002/jgm.2751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Tommaso Vannocci
- Centre for Haematology, Imperial College Faculty of Medicine Hammersmith Hospital Campus London UK
| | - Hitoshi Kurata
- Centre for Haematology, Imperial College Faculty of Medicine Hammersmith Hospital Campus London UK
| | - Josu Fuente
- Paediatric Haematology, Imperial College Healthcare Trust St Mary's Hospital London UK
| | - Irene A. Roberts
- Centre for Haematology, Imperial College Faculty of Medicine Hammersmith Hospital Campus London UK
| | - Andrew C. G. Porter
- Centre for Haematology, Imperial College Faculty of Medicine Hammersmith Hospital Campus London UK
| |
Collapse
|
4
|
Sargent RG, Kim S, Gruenert DC. Oligo/polynucleotide-based gene modification: strategies and therapeutic potential. Oligonucleotides 2011; 21:55-75. [PMID: 21417933 DOI: 10.1089/oli.2010.0273] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oligonucleotide- and polynucleotide-based gene modification strategies were developed as an alternative to transgene-based and classical gene targeting-based gene therapy approaches for treatment of genetic disorders. Unlike the transgene-based strategies, oligo/polynucleotide gene targeting approaches maintain gene integrity and the relationship between the protein coding and gene-specific regulatory sequences. Oligo/polynucleotide-based gene modification also has several advantages over classical vector-based homologous recombination approaches. These include essentially complete homology to the target sequence and the potential to rapidly engineer patient-specific oligo/polynucleotide gene modification reagents. Several oligo/polynucleotide-based approaches have been shown to successfully mediate sequence-specific modification of genomic DNA in mammalian cells. The strategies involve the use of polynucleotide small DNA fragments, triplex-forming oligonucleotides, and single-stranded oligodeoxynucleotides to mediate homologous exchange. The primary focus of this review will be on the mechanistic aspects of the small fragment homologous replacement, triplex-forming oligonucleotide-mediated, and single-stranded oligodeoxynucleotide-mediated gene modification strategies as it relates to their therapeutic potential.
Collapse
Affiliation(s)
- R Geoffrey Sargent
- Department of Otolaryngology-Head and Neck Surgery, University of California , San Francisco, California 94115, USA
| | | | | |
Collapse
|
5
|
Site-specific integration of transgene targeting an endogenous lox-like site in early mouse embryos. J Appl Genet 2010; 52:89-94. [PMID: 21110150 DOI: 10.1007/s13353-010-0011-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 09/25/2010] [Accepted: 09/27/2010] [Indexed: 10/18/2022]
Abstract
Functional lox-like sequences have been identified within the yeast and mammalian genome. These hetero-specific lox sites also allow Cre recombinase to specifically target efficient integration of exogenous DNA into the endogenous pseudo-lox (ψlox) sequences that occur naturally in the host genome using a Cre/loxP integrative recombination system. We investigated whether the Cre/ψlox system is useful for site-specific integration of transgenes and for improving the production efficiency of transgenic animals. This is the first report on Cre-mediated integrative recombination targeting an endogenous lox-like sequence termed pseudo-loxm5 (ψloxm5) in early mouse embryos. We characterized the Cre/ψloxm5 system in embryonic environment. Cre-expressing plasmid and a transgene (CMV/LacZ gene) flanked by ψloxm5 and ψloxcorem5 sites were co-microinjected into the pronucleus of fertilized mouse oocytes. The injected eggs were transferred into foster mothers, and the recombination products were investigated. The results show that the ψloxm5 site is an active substrate for Cre-mediated recombination in the mouse embryonic environment. The transgenesis efficiency was up to 27% (6/22). The site-specific integration of the transgene into the endogenous ψloxm5 site was found in 50 % of the transgenic pups. Our findings demonstrated that the Cre/ψloxm5 integrative recombination system is an efficient and simple strategy for targeting an endogenous lox-like site in mammalian embryos.
Collapse
|
6
|
Chen JZ, Ji CN, Xu GL, Pang RY, Yao JH, Zhu HZ, Xue JL, Jia W. DAXX interacts with phage PhiC31 integrase and inhibits recombination. Nucleic Acids Res 2006; 34:6298-304. [PMID: 17098929 PMCID: PMC1669754 DOI: 10.1093/nar/gkl890] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Phage ΦC31 integrase has potential as a means of inserting therapeutic genes into specific sites in the human genome. However, the possible interactions between ΦC31 integrase and cellular proteins have never been investigated. Using pLexA-ΦC31 integrase as bait, we screened a pB42AD-human fetal brain cDNA library for potential interacting cellular proteins. Among 61 positives isolated from 106 independent clones, 51 contained DAXX C-terminal fragments. The strong interaction between DAXX and ΦC31 was further confirmed by co-immunoprecipitation. Deletion analysis revealed that the fas-binding domain of DAXX is also the region for ΦC31 binding. Hybridization between a ΦC31 integrase peptide array and an HEK293 cell extract revealed that a tetramer, 451RFGK454, in the C-terminus of ΦC31 is responsible for the interaction with DAXX. This tetramer is also necessary for ΦC31 integrase activity as removal of this tetramer resulted in a complete loss of integrase activity. Co-expression of DAXX with ΦC31 integrase in a HEK293-derived ΦC31 integrase activity reporter cell line significantly reduced the ΦC31-mediated recombination rate. Knocking down DAXX with a DAXX-specific duplex RNA resulted in increased recombination efficiency. Therefore, endogenous DAXX may interact with ΦC31 causing a mild inhibition in the integration efficiency. This is the first time that ΦC31 was shown to interact with an important cellular protein and the potential effect of this interaction should be further studied.
Collapse
Affiliation(s)
- Jin-zhong Chen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan UniversityChina
| | - Chao-neng Ji
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan UniversityChina
| | - Guan-lan Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan UniversityChina
| | - Rong-yan Pang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan UniversityChina
| | - Ji-hua Yao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan UniversityChina
| | - Huan-zhang Zhu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan UniversityChina
| | - Jing-lun Xue
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan UniversityChina
- To whom correspondence should be addressed. Tel/Fax: +86 21 65649899;
| | - William Jia
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan UniversityChina
- Department of Surgery, University of British ColumbiaVancouver, Canada
| |
Collapse
|
7
|
Kaminski JM, Huber MR, Summers JB, Ward MB. Design of a nonviral vector for site-selective, efficient integration into the human genome. FASEB J 2002; 16:1242-7. [PMID: 12153992 DOI: 10.1096/fj.02-0127hyp] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Gene therapy in eukaryotes has met many obstacles. Research into the design of suitable nonviral vectors has been slow. To our knowledge, no nonviral vector has been proposed that allows for the possibility of highly efficient, site-selective integration into the genome of mammalian cells. On the basis of prior studies investigating the components necessary for transposon, retrovirus-like retrotransposon, and retroviral integration, we propose a nonviral system that would potentially allow for site-selective, efficient integration into the mammalian genome. Transposons have been developed that can transform a variety of cell lines. For example, the Sleeping Beauty transposon (SB) can transform a wide range of vertebrate cells from fish to human, and it mediates stable integration and long-term transgene expression in mice. However, the efficiency of transposition varies significantly among cell lines, suggesting the possible involvement of host factors in SB transposition. Here, we propose the use of a chimeric transposase (i.e., transposase-host DNA binding domain) to bypass the potential requirement of a host DNA-directing factor (or factors) for efficient, site-selective integration. We also discuss another potential method of docking the transposon-based vector adjacent to the host DNA, utilizing repetitive sequences for homologous recombination to promote efficient site-selective integration, as well as other site-selective nonviral approaches.
Collapse
Affiliation(s)
- Joseph M Kaminski
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA.
| | | | | | | |
Collapse
|
8
|
Thyagarajan B, Olivares EC, Hollis RP, Ginsburg DS, Calos MP. Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol Cell Biol 2001; 21:3926-34. [PMID: 11359900 PMCID: PMC87055 DOI: 10.1128/mcb.21.12.3926-3934.2001] [Citation(s) in RCA: 301] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We previously established that the phage phiC31 integrase, a site-specific recombinase, mediates efficient integration in the human cell environment at attB and attP phage attachment sites on extrachromosomal vectors. We show here that phage attP sites inserted at various locations in human and mouse chromosomes serve as efficient targets for precise site-specific integration. Moreover, we characterize native "pseudo" attP sites in the human and mouse genomes that also mediate efficient integrase-mediated integration. These sites have partial sequence identity to attP. Such sites form naturally occurring targets for integration. This phage integrase-mediated reaction represents an effective site-specific integration system for higher cells and may be of value in gene therapy and other chromosome engineering strategies.
Collapse
Affiliation(s)
- B Thyagarajan
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120
| | | | | | | | | |
Collapse
|
9
|
Groth AC, Olivares EC, Thyagarajan B, Calos MP. A phage integrase directs efficient site-specific integration in human cells. Proc Natl Acad Sci U S A 2000; 97:5995-6000. [PMID: 10801973 PMCID: PMC18547 DOI: 10.1073/pnas.090527097] [Citation(s) in RCA: 366] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The integrase from the Streptomyces phage phiC31 carries out efficient recombination between the attP site in the phage genome and the attB site in the host bacterial chromosome. In this paper, we show that the enzyme also functions in human cells. A plasmid assay system was constructed that measured intramolecular integration of attP into attB. This assay was used to demonstrate that in the presence of the phiC31 integrase, precise unidirectional integration occurs with an efficiency of 100% in Escherichia coli and >50% in human cells. This assay system was also used to define the minimal sizes of attB and attP at 34 bp and 39 bp, respectively. Furthermore, precise and efficient intermolecular integration of an incoming plasmid bearing attP into an established Epstein-Barr virus plasmid bearing attB was documented in human cells. This work is a demonstration of efficient, site-specific, unidirectional integration in mammalian cells. These observations form the basis for site-specific integration strategies potentially useful in a broad range of genetic engineering applications.
Collapse
Affiliation(s)
- A C Groth
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5120, USA
| | | | | | | |
Collapse
|
10
|
Abstract
Recombinases derived from microorganisms mediate efficient site-specific recombination. For example, the Cre recombinase from bacteriophage P1 efficiently carries out recombination at its loxP target sites. While this enzyme can function in mammalian cells, the 34bp loxP site is expected to be absent from mammalian genomes. We have discovered that sequences from the human and mouse genomes surprisingly divergent from loxP can support Cre-mediated recombination at up to 100% of the efficiency of the native loxP site in bacterial assays. Transient assays in human cells demonstrate that such pseudo-lox sites also support Cre-mediated integration and excision in the human cell environment. Pseudo sites for Cre and other recombinases may be useful for site-specific insertion of exogenous genes into mammalian genomes during gene therapy and other genetic engineering processes.
Collapse
Affiliation(s)
- B Thyagarajan
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 9405-5120, USA
| | | | | | | |
Collapse
|
11
|
Phillips JE, Thyagarajan B, Calos MP. Epstein-Barr virus plasmid model system for analyzing recombination in human cells. Plasmid 1999; 41:198-206. [PMID: 10366525 DOI: 10.1006/plas.1999.1395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Homologous recombination stimulated by a double-strand break at a desired target site offers a method to achieve site-specific integration useful for gene therapy and other genetic engineering. To test parameters needed for this strategy, we developed an Epstein-Barr virus shuttle vector model system as a genetic tool. This extrachromosomal plasmid assay system has several advantages over a chromosomal assay. The system detects all classes of recombination events without selection and allows rapid analysis of the frequency and nature of recombination events. We found that a double-strand break at the target site stimulated a large increase in recombination frequency. The resulting recombinants included one-sided insertion events, as well as two-sided or gene conversion events. A circular donor substrate was more effective in recombination than linearized donor DNA.
Collapse
Affiliation(s)
- J E Phillips
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120, USA
| | | | | |
Collapse
|
12
|
Affiliation(s)
- A C Porter
- Gene Targeting Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, London, England
| | | |
Collapse
|
13
|
Henderson G, Simons JP. Processing of DNA prior to illegitimate recombination in mouse cells. Mol Cell Biol 1997; 17:3779-85. [PMID: 9199311 PMCID: PMC232229 DOI: 10.1128/mcb.17.7.3779] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In mammalian cells, the predominant pathway of chromosomal integration of exogenous DNA is random or illegitimate recombination; integration by homologous recombination is infrequent. Homologous recombination is initiated at double-strand DNA breaks which have been acted on by single-strand exonuclease. To further characterize the relationship between illegitimate and homologous recombination, we have investigated whether illegitimate recombination is also preceded by exonuclease digestion. Heteroduplex DNAs which included strand-specific restriction markers at each of four positions were generated. These DNAs were introduced into mouse embryonic stem cells, and stably transformed clones were isolated and analyzed to determine whether there was any strand bias in the retention of restriction markers with respect to their positions. Some of the mismatches appear to have been resolved by mismatch repair. Very significant strand bias was observed in the retention of restriction markers, and there was polarity of marker retention between adjacent positions. We conclude that DNA is frequently subjected to 5'-->3' exonuclease digestion prior to integration by illegitimate recombination and that the length of DNA removed by exonuclease digestion can be extensive. We also provide evidence which suggests that frequent but less extensive 3'-->5' exonuclease processing also occurs.
Collapse
Affiliation(s)
- G Henderson
- Department of Anatomy and Developmental Biology, Royal Free Hospital School of Medicine, London, United Kingdom
| | | |
Collapse
|
14
|
Abstract
Persistence of DNA vectors in target cells is advantageous in most applications of gene therapy. Particularly when target cells are undergoing proliferation, vector longevity will depend on either the integration of the vector into the chromosomes or the ability of the vector to replicate and be retained extrachromosomally. Vectors that efficiently integrate in a nonrandom fashion are currently unavailable, and those that can replicate extrachromosomally provide a major alternative strategy. Several classes of such vectors are under development, carrying mechanisms for prolonging DNA retention in mammalian nuclei that extend vector lifetime in non-proliferating cells as well. The vectors utilize either chromosomal or viral elements to mediate replication and retention, and have a large size capacity for insertion of genes of interest. I discuss the state of the art for these vectors, including the assets and limitations of their future use in gene therapy.
Collapse
Affiliation(s)
- M P Calos
- Department of Genetics, Stanford University School of Medicine, CA 94305, USA.
| |
Collapse
|
15
|
Brierley CH, Burchell B. Human UDP-glucuronosyl transferases: chemical defence, jaundice and gene therapy. Bioessays 1993; 15:749-54. [PMID: 8292005 DOI: 10.1002/bies.950151108] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Human UDP-glucuronosyltransferases (UDPGTs) are a family of enzymes which detoxify many hundreds of compounds by their conjugation to glucuronic acid, rendering them both harmless and more water soluble, hence, excretable. The level of expression of each UDPGT isoform in the body is the result of interplay between temporal, tissue-specific and environmental regulators. This complexity contributes to the difficulty in predicting the metabolic fate of compounds. Genetic defects and polymorphisms affecting individual isoform activities have deleterious and potentially lethal effects, as exemplified by the severe hyperbilirubinaemia observed in Crigler-Najjar Syndrome. Such severe genetic defects in bilirubin glucuronidation are obvious candidates for antenatal screening and gene therapy.
Collapse
Affiliation(s)
- C H Brierley
- University of Dundee, Department of Biochemical Medicine, Ninewells Hospital, Scotland
| | | |
Collapse
|
16
|
Hoeben RC, Valerio D, van der Eb AJ, van Ormondt H. Gene therapy for human inherited disorders: techniques and status. Crit Rev Oncol Hematol 1992; 13:33-54. [PMID: 1333218 DOI: 10.1016/1040-8428(92)90015-i] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- R C Hoeben
- Department of Medical Biochemistry, University of Leiden, The Netherlands
| | | | | | | |
Collapse
|
17
|
Vega MA. Adenosine deaminase deficiency: a model system for human somatic cell gene correction therapy. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1138:253-60. [PMID: 1562612 DOI: 10.1016/0925-4439(92)90001-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- M A Vega
- Institut für Virologie und Immunbiologie, Universität Würzburg, Germany
| |
Collapse
|