1
|
Chen K, Yin Y, Liu S, Guo Z, Zhang K, Liang Y, Zhang L, Zhao W, Chao H, Li M. Genome-wide identification and functional analysis of oleosin genes in Brassica napus L. BMC PLANT BIOLOGY 2019; 19:294. [PMID: 31272381 PMCID: PMC6610931 DOI: 10.1186/s12870-019-1891-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/18/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Rapeseed is the third largest oil seed crop in the world. The seeds of this plant store lipids in oil bodies, and oleosin is the most important structural protein in oil bodies. However, the function of oleosin in oil crops has received little attention. RESULTS In the present study, 48 oleosin sequences from the Brassica napus genome were identified and divided into four lineages (T, U, SH, SL). Synteny analysis revealed that most of the oleosin genes were conserved, and all of these genes experienced purifying selection during evolution. Three and four important oleosin genes from Arabidopsis and B. napus, respectively, were cloned and analyzed for function in Arabidopsis. Overexpression of these oleosin genes in Arabidopsis increased the seed oil content slightly, except for BnaOLE3. Further analysis revealed that the average oil body size of the transgenic seeds was slightly larger than that of the wild type (WT), except for BnaOLE1. The fatty acid profiles showed that the linoleic acid content (13.3% at most) increased and the peanut acid content (11% at most) decreased in the transgenic lines. In addition, the seed size and thousand-seed weight (TSW) also increased in the transgenic lines, which could lead to increased total lipid production. CONCLUSION We identified oleosin genes in the B. napus genome, and overexpression of oleosin in Arabidopsis seeds increased the seed weight and linoleic acid content (13.3% at most).
Collapse
Affiliation(s)
- Kang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Si Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Zhenyi Guo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Kai Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Yu Liang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Lina Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Weiguo Zhao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Hongbo Chao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, China
| |
Collapse
|
2
|
Villegente M, Marmey P, Job C, Galland M, Cueff G, Godin B, Rajjou L, Balliau T, Zivy M, Fogliani B, Sarramegna-Burtet V, Job D. A Combination of Histological, Physiological, and Proteomic Approaches Shed Light on Seed Desiccation Tolerance of the Basal Angiosperm Amborella trichopoda. Proteomes 2017; 5:E19. [PMID: 28788068 PMCID: PMC5620536 DOI: 10.3390/proteomes5030019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/22/2017] [Accepted: 07/25/2017] [Indexed: 12/13/2022] Open
Abstract
Desiccation tolerance allows plant seeds to remain viable in a dry state for years and even centuries. To reveal potential evolutionary processes of this trait, we have conducted a shotgun proteomic analysis of isolated embryo and endosperm from mature seeds of Amborella trichopoda, an understory shrub endemic to New Caledonia that is considered to be the basal extant angiosperm. The present analysis led to the characterization of 415 and 69 proteins from the isolated embryo and endosperm tissues, respectively. The role of these proteins is discussed in terms of protein evolution and physiological properties of the rudimentary, underdeveloped, Amborella embryos, notably considering that the acquisition of desiccation tolerance corresponds to the final developmental stage of mature seeds possessing large embryos.
Collapse
Affiliation(s)
- Matthieu Villegente
- Institut des Sciences Exactes et Appliquées (EA 7484), Université de Nouvelle-Calédonie, BP R4, 98851 Nouméa, Nouvelle-Calédonie.
| | - Philippe Marmey
- Institut de recherche pour le développement (IRD), UMR Diversité, Adaptation et Développement des plantes (DIADE), BP A5, 98848 Nouméa Cedex, Nouvelle-Calédonie.
| | - Claudette Job
- Centre National de la Recherche Scientifique (CNRS), CNRS-Université Claude Bernard Lyon-Institut National des Sciences Appliquées-Bayer CropScience (UMR5240), Bayer CropScience, F-69263 Lyon CEDEX 9, France.
| | - Marc Galland
- IJPB, Institut Jean-Pierre Bourgin (Institut National de la Rechercherche Agronomique(INRA), AgroParisTech, CNRS, Université Paris-Saclay) ; « Saclay Plant Sciences (SPS) » - RD10, F-78026 Versailles, France.
| | - Gwendal Cueff
- IJPB, Institut Jean-Pierre Bourgin (Institut National de la Rechercherche Agronomique(INRA), AgroParisTech, CNRS, Université Paris-Saclay) ; « Saclay Plant Sciences (SPS) » - RD10, F-78026 Versailles, France.
- AgroParisTech, Département « Science de la Vie et Santé », Unité de Formation-Recherche en Physiologie végétale, F-75231 Paris, France.
| | - Béatrice Godin
- IJPB, Institut Jean-Pierre Bourgin (Institut National de la Rechercherche Agronomique(INRA), AgroParisTech, CNRS, Université Paris-Saclay) ; « Saclay Plant Sciences (SPS) » - RD10, F-78026 Versailles, France.
- AgroParisTech, Département « Science de la Vie et Santé », Unité de Formation-Recherche en Physiologie végétale, F-75231 Paris, France.
| | - Loïc Rajjou
- IJPB, Institut Jean-Pierre Bourgin (Institut National de la Rechercherche Agronomique(INRA), AgroParisTech, CNRS, Université Paris-Saclay) ; « Saclay Plant Sciences (SPS) » - RD10, F-78026 Versailles, France.
- AgroParisTech, Département « Science de la Vie et Santé », Unité de Formation-Recherche en Physiologie végétale, F-75231 Paris, France.
| | - Thierry Balliau
- Plateforme d'Analyse Protéomique de Paris Sud Ouest (PAPPSO), GQE-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France.
| | - Michel Zivy
- Plateforme d'Analyse Protéomique de Paris Sud Ouest (PAPPSO), GQE-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France.
| | - Bruno Fogliani
- Institut des Sciences Exactes et Appliquées (EA 7484), Université de Nouvelle-Calédonie, BP R4, 98851 Nouméa, Nouvelle-Calédonie.
- Institut Agronomique Néo-Calédonien (IAC), Équipe ARBOREAL, Agriculture Biodiversité et Valorisation, BP 73 Port Laguerre, 98890 Païta, Nouvelle-Calédonie.
| | - Valérie Sarramegna-Burtet
- Institut des Sciences Exactes et Appliquées (EA 7484), Université de Nouvelle-Calédonie, BP R4, 98851 Nouméa, Nouvelle-Calédonie.
| | - Dominique Job
- Centre National de la Recherche Scientifique (CNRS), CNRS-Université Claude Bernard Lyon-Institut National des Sciences Appliquées-Bayer CropScience (UMR5240), Bayer CropScience, F-69263 Lyon CEDEX 9, France.
- AgroParisTech, Département « Science de la Vie et Santé », Unité de Formation-Recherche en Physiologie végétale, F-75231 Paris, France.
| |
Collapse
|
3
|
Abstract
Oleosins form a steric barrier surface on lipid droplets in cytoplasm, preventing them from contacting and coalescing with adjacent droplets. Oleosin genes have been detected in numerous plant species. However, the presence of oleosin genes in the most basally diverging lineage of land plants, liverworts, has not been reported previously. Thus we explored whether liverworts have an oleosin gene. In Marchantia polymorpha L., a thalloid liverwort, one predicted sequence was found that could encode oleosin, possessing the hallmark of oleosin, a proline knot (-PX5SPX3P-) motif. The phylogeny of the oleosin gene family in land plants was reconstructed based on both nucleotide and amino acid sequences of oleosins, from 31 representative species covering almost all the main lineages of land plants. Based on our phylogenetic trees, oleosin genes were classified into three groups: M-oleosins (defined here as a novel group distinct from the two previously known groups), low molecular weight isoform (L-oleosin), and high molecular weight isoform (H-oleosin), according to their amino-acid organization, phylogenetic relationships, expression tissues, and immunological characteristics. In liverworts, mosses, lycophytes, and gymnosperms, only M-oleosins have been described. In angiosperms, however, while this isoform remains and is highly expressed in the gametophyte pollen tube, two other isoforms also occur, L-oleosins and H-oleosins. Phylogenetic analyses suggest that the M-oleosin isoform is the precursor to the ancestor of L-oleosins and H-oleosins. The later two isoforms evolved by successive gene duplications in ancestral angiosperms. At the genomic level, most oleosins possess no introns. If introns are present, in both the L-isoform and the M-isoform a single intron inserts behind the central region, while in the H-isoform, a single intron is located at the 5'-terminus. This study fills a major gap in understanding functional gene evolution of oleosin in land plants, shedding new light on evolutionary transitions of lipid storage strategies.
Collapse
Affiliation(s)
- Yuan Fang
- School of Life Science, East China Normal University, Shanghai, China
- University and Jepson Herbaria, and Department of Integrative Biology, University of California, Berkeley, California, United State of America
| | - Rui-Liang Zhu
- School of Life Science, East China Normal University, Shanghai, China
| | - Brent D. Mishler
- University and Jepson Herbaria, and Department of Integrative Biology, University of California, Berkeley, California, United State of America
| |
Collapse
|
4
|
Paul LK, Rinne PLH, van der Schoot C. Refurbishing the plasmodesmal chamber: a role for lipid bodies? FRONTIERS IN PLANT SCIENCE 2014; 5:40. [PMID: 24605115 PMCID: PMC3932414 DOI: 10.3389/fpls.2014.00040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/28/2014] [Indexed: 05/04/2023]
Abstract
Lipid bodies (LBs) are universal constituents of both animal and plant cells. They are produced by specialized membrane domains at the tubular endoplasmic reticulum (ER), and consist of a core of neutral lipids and a surrounding monolayer of phospholipid with embedded amphipathic proteins. Although originally regarded as simple depots for lipids, they have recently emerged as organelles that interact with other cellular constituents, exchanging lipids, proteins and signaling molecules, and shuttling them between various intracellular destinations, including the plasmamembrane (PM). Recent data showed that in plants LBs can deliver a subset of 1,3-β-glucanases to the plasmodesmal (PD) channel. We hypothesize that this may represent a more general mechanism, which complements the delivery of glycosylphosphatidylinositol (GPI)-anchored proteins to the PD exterior via the secretory pathway. We propose that LBs may contribute to the maintenance of the PD chamber and the delivery of regulatory molecules as well as proteins destined for transport to adjacent cells. In addition, we speculate that LBs deliver their cargo through interaction with membrane domains in the cytofacial side of the PM.
Collapse
Affiliation(s)
| | | | - Christiaan van der Schoot
- *Correspondence: Christiaan van der Schoot, Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, P.O. Box 1432, Ås, Norway e-mail:
| |
Collapse
|
5
|
van der Schoot C, Paul LK, Paul SB, Rinne PLH. Plant lipid bodies and cell-cell signaling: a new role for an old organelle? PLANT SIGNALING & BEHAVIOR 2011; 6:1732-8. [PMID: 22057325 PMCID: PMC3329345 DOI: 10.4161/psb.6.11.17639] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant lipid droplets are found in seeds and in post-embryonic tissues. Lipid droplets in seeds have been intensively studied, but those in post-embryonic tissues are less well characterised. Although known by a variety of names, here we will refer to all of them as lipid bodies (LBs). LBs are unique spherical organelles which bud off from the endoplasmic reticulum, and are composed of a single phospholipid (PL) layer enclosing a core of triacylglycerides. The PL monolayer is coated with oleosin, a structural protein that stabilizes the LB, restricts its size, and prevents fusion with adjacent LBs. Oleosin is uniquely present at LBs and is regarded as a LB marker. Although initially viewed as simple stores for energy and carbon, the emerging view is that LBs also function in cytoplasmic signalling, with the minor LB proteins caleosin and steroleosin in a prominent role. Apart from seeds, a variety of vegetative and floral structures contain LBs. Recently, it was found that numerous LBs emerge in the shoot apex of perennial plants during seasonal growth arrest and bud formation. They appear to function in dormancy release by reconstituting cell-cell signalling paths in the apex. As apices and orthodox seeds proceed through comparable cycles of dormancy and dehydration, the question arises to what degree LBs in apices share functions with those in seeds. We here review what is known about LBs, particularly in seeds, and speculate about possible unique functions of LBs in post-embryonic tissues in general and in apices in particular.
Collapse
|
6
|
|
7
|
Jiang PL, Wang CS, Hsu CM, Jauh GY, Tzen JTC. Stable Oil Bodies Sheltered by a Unique Oleosin in Lily Pollen. ACTA ACUST UNITED AC 2007; 48:812-21. [PMID: 17468126 DOI: 10.1093/pcp/pcm051] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Stable oil bodies were purified from mature lily (Lilium longiflorum Thunb.) pollen. The integrity of pollen oil bodies was maintained via electronegative repulsion and steric hindrance possibly provided by their surface proteins. Immunodetection revealed that a major protein of 18 kDa was exclusively present in pollen oil bodies and massively accumulated in late stages of pollen maturation. According to mass spectrometric analyses, this oil body protein possessed a tryptic fragment of 13 residues matching that of a theoretical rice oleosin. A complete cDNA fragment encoding this putative oleosin was obtained by PCR cloning with primers derived from its known 13-residue sequence. Sequence analysis as well as immunological non-cross-reactivity suggests that this pollen oleosin represents a distinct class in comparison with oleosins found in seed oil bodies and tapetum. In pollen cells observed by electron microscopy, oil bodies were presumably surrounded by tubular membrane structures, and encapsulated in the vacuoles after germination. It seems that pollen oil bodies are mobilized via a different route from that of glyoxysomal mobilization of seed oil bodies after germination.
Collapse
Affiliation(s)
- Pei-Luen Jiang
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan
| | | | | | | | | |
Collapse
|
8
|
Giannoulia K, Banilas G, Hatzopoulos P. Oleosin gene expression in olive. JOURNAL OF PLANT PHYSIOLOGY 2007; 164:104-7. [PMID: 16762452 DOI: 10.1016/j.jplph.2006.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2005] [Accepted: 03/24/2006] [Indexed: 05/10/2023]
Abstract
To study the spatial and temporal regulation of oleosin gene expression during olive drupe development, a cDNA (OeOLE) was isolated from embryos. The deduced amino acid sequence of 165 amino acid residues exhibits a long central hydrophobic stretch, including the conserved "proline knot" motif. Phylogenetic analysis grouped OeOLE into the class of high (H) molecular weight oleosins. Southern blotting indicated that the gene is represented by 1-2 copies in the olive genome. Transcript analysis revealed that OeOLE is expressed solely in seeds. A similar bell-shaped pattern of expression was observed in both embryos and endosperms. Transcript accumulation starts at late heart embryo stage, reaches maximum levels at mid-torpedo stage and thereafter declines, coinciding the stages of most oil accumulation in those tissues.
Collapse
Affiliation(s)
- Katerina Giannoulia
- Department of Agricultural Biotechnology, Laboratory of Molecular Biology, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | | | | |
Collapse
|
9
|
Zweytick D, Athenstaedt K, Daum G. Intracellular lipid particles of eukaryotic cells. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1469:101-20. [PMID: 10998572 DOI: 10.1016/s0005-2736(00)00294-7] [Citation(s) in RCA: 260] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this review article we describe characterization of intracellular lipid particles of three different eukaryotic species, namely mammalian cells, plants and yeast. Lipid particles of all types of cells share a general structure. A hydrophobic core of neutral lipids is surrounded by a membrane monolayer of phospholipids which contains a minor amount of proteins. Whereas lipid particles from mammalian cells and plants harbor specific classes of polypeptides, mainly perilipins and oleosins, respectively, yeast lipid particles contain a more complex set of enzymes which are involved in lipid biosynthesis. Function of lipid particles as storage compartment and metabolic organelle, and their interaction with other subcellular fractions are discussed. Furthermore, models for the biogenesis of lipid particles are presented and compared among the different species.
Collapse
Affiliation(s)
- D Zweytick
- Institut für Biochemie und Lebensmittelchemie, Technische Universität, Petersgasse 12/II, A-8010, Graz, Austria
| | | | | |
Collapse
|
10
|
Weselake RJ, Taylor DC. The study of storage lipid biosynthesis using microspore-derived cultures of oil seed rape. Prog Lipid Res 1999; 38:401-60. [PMID: 10793890 DOI: 10.1016/s0163-7827(99)00011-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- R J Weselake
- Department of Chemistry and Biochemistry, University of Lethbridge, Alberta, Canada.
| | | |
Collapse
|
11
|
Affiliation(s)
- J E Thompson
- Department of Biology, University of Waterloo, Ontario, Canada
| | | | | | | | | |
Collapse
|
12
|
Aalen RB. The transcripts encoding two oleosin isoforms are both present in the aleurone and in the embryo of barley (Hordeum vulgare L.) seeds. PLANT MOLECULAR BIOLOGY 1995; 28:583-8. [PMID: 7632926 DOI: 10.1007/bf00020404] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two transcripts (Ole-1 and Ole-2) encoding two oleosin isoforms homologous to the 18 and 16 kDa oleosins of maize, respectively, have been isolated from developing barley embryos and aleurone layers where lipid bodies are highly abundant organelles. For each of the isoforms the aleurone and embryo transcripts are identical, indicating that the same genes are expressed in both tissues. The temporal accumulation of the two transcripts during seed development is similar. At a low frequency, lipid bodies are found also in starchy endosperm cells of barley. Accordingly, a low transcript level is observed for both oleosins during starchy endosperm development.
Collapse
Affiliation(s)
- R B Aalen
- Division of General Genetics, University of Oslo, Norway
| |
Collapse
|
13
|
|