1
|
Miki Y, Yoshida K, Mizuno N, Nasuda S, Sato K, Takumi S. Origin of wheat B-genome chromosomes inferred from RNA sequencing analysis of leaf transcripts from section Sitopsis species of Aegilops. DNA Res 2019; 26:171-182. [PMID: 30715317 PMCID: PMC6476730 DOI: 10.1093/dnares/dsy047] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/22/2018] [Indexed: 12/16/2022] Open
Abstract
Dramatic changes occasionally occur in intergenic regions leading to genomic alterations during speciation and will consequently obscure the ancestral species that have contributed to the formation of allopolyploid organisms. The S genome of five species of section Sitopsis of genus Aegilops is considered to be an origin of B-genome in cultivated tetraploid and hexaploid wheat species, although its actual donor is still unclear. Here, we attempted to elucidate phylogenetic relationship among Sitopsis species by performing RNA sequencing of the coding regions of each chromosome. Thus, genome-wide polymorphisms were extensively analyzed in 19 accessions of the Sitopsis species in reference to the tetraploid and hexaploid wheat B genome sequences and consequently were efficiently anchored to the B-genome chromosomes. The results of our genome-wide exon sequencing and resultant phylogenetic analysis indicate that Ae. speltoides is likely to be the direct donor of all chromosomes of the wheat B genome. Our results also indicate that the genome differentiation during wheat allopolyploidization from S to B proceeds at different speeds over the chromosomes rather than at constant rate and recombination could be a factor determining the speed. This observation is potentially generalized to genome differentiation during plant allopolyploid evolution.
Collapse
Affiliation(s)
- Yuka Miki
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Kentaro Yoshida
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Nobuyuki Mizuno
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shuhei Nasuda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
2
|
Pont C, Salse J. Wheat paleohistory created asymmetrical genomic evolution. CURRENT OPINION IN PLANT BIOLOGY 2017; 36:29-37. [PMID: 28182971 DOI: 10.1016/j.pbi.2017.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/12/2016] [Accepted: 01/04/2017] [Indexed: 05/26/2023]
Abstract
Following the triplication reported in Brassiceae ∼10million years ago, and at the basis of rosids ∼100million years ago, bias in organization and regulation, known as subgenome dominance, has been reported between the three post-polyploidy compartments referenced to as less fractionated (LF), medium fractionated (MF1) and more fractionated (MF2), that have been proposed to derive from an hexaploidization event involving ancestors of 7-14-21 chromosomes. Modern bread wheat experienced similar paleohistory during the last half million year of evolution opening a new hypothesis where the wheat genome is at the earliest stages on the road of diploidization through subgenome dominance driving asymmetry in gene content, gene expression abundance, transposable element content as dynamics and epigenetic control between the A, B and D subgenomes.
Collapse
Affiliation(s)
- Caroline Pont
- INRA/UCA UMR 1095 GDEC 'Génétique, Diversité et Ecophysiologie des Céréales', Laboratory PaleoEVO 'Paleogenomics & Evolution', 5 chemin de Beaulieu, 63100 Clermont Ferrand, France
| | - Jérôme Salse
- INRA/UCA UMR 1095 GDEC 'Génétique, Diversité et Ecophysiologie des Céréales', Laboratory PaleoEVO 'Paleogenomics & Evolution', 5 chemin de Beaulieu, 63100 Clermont Ferrand, France*.
| |
Collapse
|
3
|
El Baidouri M, Murat F, Veyssiere M, Molinier M, Flores R, Burlot L, Alaux M, Quesneville H, Pont C, Salse J. Reconciling the evolutionary origin of bread wheat (Triticum aestivum). THE NEW PHYTOLOGIST 2017; 213:1477-1486. [PMID: 27551821 DOI: 10.1111/nph.14113] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/18/2016] [Indexed: 05/26/2023]
Abstract
The origin of bread wheat (Triticum aestivum; AABBDD) has been a subject of controversy and of intense debate in the scientific community over the last few decades. In 2015, three articles published in New Phytologist discussed the origin of hexaploid bread wheat (AABBDD) from the diploid progenitors Triticum urartu (AA), a relative of Aegilops speltoides (BB) and Triticum tauschii (DD). Access to new genomic resources since 2013 has offered the opportunity to gain novel insights into the paleohistory of modern bread wheat, allowing characterization of its origin from its diploid progenitors at unprecedented resolution. We propose a reconciled evolutionary scenario for the modern bread wheat genome based on the complementary investigation of transposable element and mutation dynamics between diploid, tetraploid and hexaploid wheat. In this scenario, the structural asymmetry observed between the A, B and D subgenomes in hexaploid bread wheat derives from the cumulative effect of diploid progenitor divergence, the hybrid origin of the D subgenome, and subgenome partitioning following the polyploidization events.
Collapse
Affiliation(s)
- Moaine El Baidouri
- INRA/UBP UMR 1095 GDEC (Genetics, Diversity and Ecophysiology of Cereals), 5 chemin de Beaulieu, Clermont Ferrand, 63100, France
| | - Florent Murat
- INRA/UBP UMR 1095 GDEC (Genetics, Diversity and Ecophysiology of Cereals), 5 chemin de Beaulieu, Clermont Ferrand, 63100, France
| | - Maeva Veyssiere
- INRA/UBP UMR 1095 GDEC (Genetics, Diversity and Ecophysiology of Cereals), 5 chemin de Beaulieu, Clermont Ferrand, 63100, France
| | - Mélanie Molinier
- INRA/UBP UMR 1095 GDEC (Genetics, Diversity and Ecophysiology of Cereals), 5 chemin de Beaulieu, Clermont Ferrand, 63100, France
| | - Raphael Flores
- INRA UR1164 URGI (Research Unit in Genomics-Info), Université Paris-Saclay, Versailles, 78026, France
| | - Laura Burlot
- INRA UR1164 URGI (Research Unit in Genomics-Info), Université Paris-Saclay, Versailles, 78026, France
| | - Michael Alaux
- INRA UR1164 URGI (Research Unit in Genomics-Info), Université Paris-Saclay, Versailles, 78026, France
| | - Hadi Quesneville
- INRA UR1164 URGI (Research Unit in Genomics-Info), Université Paris-Saclay, Versailles, 78026, France
| | - Caroline Pont
- INRA/UBP UMR 1095 GDEC (Genetics, Diversity and Ecophysiology of Cereals), 5 chemin de Beaulieu, Clermont Ferrand, 63100, France
| | - Jérôme Salse
- INRA/UBP UMR 1095 GDEC (Genetics, Diversity and Ecophysiology of Cereals), 5 chemin de Beaulieu, Clermont Ferrand, 63100, France
| |
Collapse
|
4
|
Pont C, Murat F, Guizard S, Flores R, Foucrier S, Bidet Y, Quraishi UM, Alaux M, Doležel J, Fahima T, Budak H, Keller B, Salvi S, Maccaferri M, Steinbach D, Feuillet C, Quesneville H, Salse J. Wheat syntenome unveils new evidences of contrasted evolutionary plasticity between paleo- and neoduplicated subgenomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:1030-1044. [PMID: 24164652 DOI: 10.1111/tpj.12366] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/01/2013] [Accepted: 10/08/2013] [Indexed: 05/27/2023]
Abstract
Bread wheat derives from a grass ancestor structured in seven protochromosomes followed by a paleotetraploidization to reach a 12 chromosomes intermediate and a neohexaploidization (involving subgenomes A, B and D) event that finally shaped the 21 modern chromosomes. Insights into wheat syntenome in sequencing conserved orthologous set (COS) genes unravelled differences in genomic structure (such as gene conservation and diversity) and genetical landscape (such as recombination pattern) between ancestral as well as recent duplicated blocks. Contrasted evolutionary plasticity is observed where the B subgenome appears more sensitive (i.e. plastic) in contrast to A as dominant (i.e. stable) in response to the neotetraploidization and D subgenome as supra-dominant (i.e. pivotal) in response to the neohexaploidization event. Finally, the wheat syntenome, delivered through a public web interface PlantSyntenyViewer at http://urgi.versailles.inra.fr/synteny-wheat, can be considered as a guide for accelerated dissection of major agronomical traits in wheat.
Collapse
Affiliation(s)
- Caroline Pont
- INRA/UBP UMR 1095, Centre de Clermont Ferrand-Theix, 5 Chemin de Beaulieu, 63100, Clermont Ferrand, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Tsujimura M, Mori N, Yamagishi H, Terachi T. A possible breakage of linkage disequilibrium between mitochondrial and chloroplast genomes during Emmer and Dinkel wheat evolution. Genome 2013; 56:187-93. [DOI: 10.1139/gen-2012-0153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In wheat (Triticum) and Aegilops, chloroplast and mitochondrial genomes have been studied for over three decades to clarify the phylogenetic relationships among species, and most of the maternal lineages of polyploid species have been clarified. Mitochondrial genomes of Emmer (tetraploid with nuclear genome AABB) and Dinkel (hexaploid with AABBDD) wheat are classified into two different types, VIIa and VIIb, by the presence–absence of the third largest HindIII fragment (named H3) in the mitochondrial DNA. Although the mitochondrial genome in the genera often provides useful information to clarify the phylogenetic relationship among closely related species, the phylogenetic significance of this dimorphism has yet not been clarified. In this study, to facilitate analysis using a large number of accessions, a sequence characterized amplified region (SCAR) marker that distinguishes the type VIIb mitochondrial genome from type VIIa was first developed. Mitochondrial genome type was determined for each of 30 accessions of wild and cultivated Emmer wheat and 25 accessions of Dinkel wheat. The mitochondrial genome type for each accession was compared with the plastogroup that had been determined using chloroplast microsatellite markers. Unexpectedly, the distribution of mitochondrial genome type was not in accordance with that of the plastogroups, suggesting occasional paternal leakage of either the mitochondrial or chloroplast genome during speciation and differentiation of Emmer and Dinkel wheat. An alternative possibility that substoichiometric shifting is involved in the observed dimorphism of the mitochondrial genome is also discussed.
Collapse
Affiliation(s)
- Mai Tsujimura
- The 31st Laboratory, Department of Bioresources and Environmental Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Naoki Mori
- Laboratory of Plant Genetics, Department of Biological and Environmental Science, Faculty of Agriculture, Kobe University, Nada-ku, Kobe, 657-8501, Japan
| | - Hiroshi Yamagishi
- The 31st Laboratory, Department of Bioresources and Environmental Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Toru Terachi
- The 31st Laboratory, Department of Bioresources and Environmental Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| |
Collapse
|
6
|
|
7
|
Salse J, Chagué V, Bolot S, Magdelenat G, Huneau C, Pont C, Belcram H, Couloux A, Gardais S, Evrard A, Segurens B, Charles M, Ravel C, Samain S, Charmet G, Boudet N, Chalhoub B. New insights into the origin of the B genome of hexaploid wheat: evolutionary relationships at the SPA genomic region with the S genome of the diploid relative Aegilops speltoides. BMC Genomics 2008; 9:555. [PMID: 19032732 PMCID: PMC2612700 DOI: 10.1186/1471-2164-9-555] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 11/25/2008] [Indexed: 01/20/2023] Open
Abstract
Background Several studies suggested that the diploid ancestor of the B genome of tetraploid and hexaploid wheat species belongs to the Sitopsis section, having Aegilops speltoides (SS, 2n = 14) as the closest identified relative. However molecular relationships based on genomic sequence comparison, including both coding and non-coding DNA, have never been investigated. In an attempt to clarify these relationships, we compared, in this study, sequences of the Storage Protein Activator (SPA) locus region of the S genome of Ae. speltoides (2n = 14) to that of the A, B and D genomes co-resident in the hexaploid wheat species (Triticum aestivum, AABBDD, 2n = 42). Results Four BAC clones, spanning the SPA locus of respectively the A, B, D and S genomes, were isolated and sequenced. Orthologous genomic regions were identified as delimited by shared non-transposable elements and non-coding sequences surrounding the SPA gene and correspond to 35 268, 22 739, 43 397 and 53 919 bp for the A, B, D and S genomes, respectively. Sequence length discrepancies within and outside the SPA orthologous regions are the result of non-shared transposable elements (TE) insertions, all of which inserted after the progenitors of the four genomes divergence. Conclusion On the basis of conserved sequence length as well as identity of the shared non-TE regions and the SPA coding sequence, Ae speltoides appears to be more evolutionary related to the B genome of T. aestivum than the A and D genomes. However, the differential insertions of TEs, none of which are conserved between the two genomes led to the conclusion that the S genome of Ae. speltoides has diverged very early from the progenitor of the B genome which remains to be identified.
Collapse
Affiliation(s)
- Jérome Salse
- UMR INRA 1165 - CNRS 8114 UEVE - Unité de Recherche en Génomique Végétale, 2, rue Gaston Crémieux, CP5708, 91057 Evry cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Salse J, Chagué V, Bolot S, Magdelenat G, Huneau C, Pont C, Belcram H, Couloux A, Gardais S, Evrard A, Segurens B, Charles M, Ravel C, Samain S, Charmet G, Boudet N, Chalhoub B. New insights into the origin of the B genome of hexaploid wheat: evolutionary relationships at the SPA genomic region with the S genome of the diploid relative Aegilops speltoides. BMC Genomics 2008. [PMID: 19032732 DOI: 10.1186/1471‐2164‐9‐555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several studies suggested that the diploid ancestor of the B genome of tetraploid and hexaploid wheat species belongs to the Sitopsis section, having Aegilops speltoides (SS, 2n = 14) as the closest identified relative. However molecular relationships based on genomic sequence comparison, including both coding and non-coding DNA, have never been investigated. In an attempt to clarify these relationships, we compared, in this study, sequences of the Storage Protein Activator (SPA) locus region of the S genome of Ae. speltoides (2n = 14) to that of the A, B and D genomes co-resident in the hexaploid wheat species (Triticum aestivum, AABBDD, 2n = 42). RESULTS Four BAC clones, spanning the SPA locus of respectively the A, B, D and S genomes, were isolated and sequenced. Orthologous genomic regions were identified as delimited by shared non-transposable elements and non-coding sequences surrounding the SPA gene and correspond to 35,268, 22,739, 43,397 and 53,919 bp for the A, B, D and S genomes, respectively. Sequence length discrepancies within and outside the SPA orthologous regions are the result of non-shared transposable elements (TE) insertions, all of which inserted after the progenitors of the four genomes divergence. CONCLUSION On the basis of conserved sequence length as well as identity of the shared non-TE regions and the SPA coding sequence, Ae speltoides appears to be more evolutionary related to the B genome of T. aestivum than the A and D genomes. However, the differential insertions of TEs, none of which are conserved between the two genomes led to the conclusion that the S genome of Ae. speltoides has diverged very early from the progenitor of the B genome which remains to be identified.
Collapse
Affiliation(s)
- Jérome Salse
- UMR INRA 1165 - CNRS 8114 UEVE - Unité de Recherche en Génomique Végétale, 2, rue Gaston Crémieux, CP5708, 91057 Evry cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Goldman DH, Jansen RK, van den Berg C, Leitch IJ, Fay MF, Chase MW. Molecular and cytological examination of Calopogon (Orchidaceae, Epidendroideae): circumscription, phylogeny, polyploidy, and possible hybrid speciation. AMERICAN JOURNAL OF BOTANY 2004; 91:707-723. [PMID: 21653426 DOI: 10.3732/ajb.91.5.707] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The orchid genus Calopogon R.Br. (Orchidaceae), native to eastern North America and the northern Caribbean, currently contains five species and up to three varieties. Using nuclear internal transcribed spacer (ITS) ribosomal DNA sequences, amplified fragment length polymorphisms (AFLPs), chloroplast DNA restriction fragments, and chromosome counts, we present a phylogenetic and taxonomic study of the genus. Calopogon multiflorus and C. pallidus are consistently sister species, but the relationships of C. barbatus, C. oklahomensis, and C. tuberosus are not as clear. In the ITS analysis C. oklahomensis is sister to C. barbatus, whereas it is sister to C. tuberosus in the plastid restriction fragment analysis. Furthermore, all species were found to have chromosome numbers of 2n = 38 and 40, with the exception of the putatively hybrid-derived C. oklahomensis with 2n = 114 and 120. The hexaploidy of the latter, plus the discrepancy in its position between the ITS and plastid restriction fragment trees, could suggest that it is of hybrid origin. However, the presence of unique morphological and molecular characters might indicate that it is either an ancient hybrid or not of hybrid derivation at all. Finally, using these molecular methods all taxa appear to generally be discrete groups, with the exception of C. tuberosus vars. latifolius and tuberosus, the former of which is best combined with the latter.
Collapse
Affiliation(s)
- Douglas H Goldman
- Section of Integrative Biology and Plant Resources Center, University of Texas, Austin, Texas 78712 USA
| | | | | | | | | | | |
Collapse
|
10
|
Provan J, Wolters P, Caldwell KH, Powell W. High-resolution organellar genome analysis of Triticum and Aegilops sheds new light on cytoplasm evolution in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 108:1182-90. [PMID: 15067406 DOI: 10.1007/s00122-003-1538-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2003] [Accepted: 11/10/2003] [Indexed: 05/05/2023]
Abstract
We have utilised polymorphic chloroplast microsatellites to analyse cytoplasmic relationships between accessions in the genera Triticum and Aegilops. Sequencing of PCR products revealed point mutations and insertions/deletions in addition to the standard repeat length expansion/contraction which most likely represent ancient synapomorphies. Phylogenetic analyses revealed three distinct groups of accessions. One of these contained all the non- Aegilops speltoides S-type cytoplasm species, another comprised almost exclusively A, C, D, M, N, T and U cytoplasm-type accessions and the third contained the polyploid Triticum species and all the Ae. speltoides accessions, further confirming that Ae. speltoides or a closely related but now extinct species was the original B-genome donor of cultivated polyploid wheat. Successive decreases in levels of genetic diversity due to domestication were also observed. Finally, we highlight the importance of elucidating longer-term evolutionary processes operating at microsatellite repeat loci.
Collapse
Affiliation(s)
- J Provan
- School of Biology and Biochemistry, The Queen's University of Belfast, 97 Lisburn Road, BT9 7BL, Belfast, Northern Ireland.
| | | | | | | |
Collapse
|
11
|
Gülbitti-Onarici S, Sümer S, Aytekin M. Restriction Site Variation of the Intergenic Spacer Region in Chloroplast Genome of Some Wild Wheat Species in Turkey. BIOTECHNOL BIOTEC EQ 2003. [DOI: 10.1080/13102818.2003.10817075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
12
|
Raskina O, Belyayev A, Nevo E. Repetitive DNas of wild emmer wheat (Triticum dicoccoides) and their relation to S-genome species: molecular cytogenetic analysis. Genome 2002; 45:391-401. [PMID: 11962636 DOI: 10.1139/g01-142] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have analyzed the chromosomal GISH molecular banding patterns of three populations of the wild allopolyploid wheat Triticum dicoccoides in an attempt to unravel the evolutionary relationships between highly repetitive DNA fractions of T. dicoccoides and proposed diploid progenitors of the B genome. Aegilops speltoides showed almost complete affinity of its repetitive DNA to C-heterochromatin of T. dicoccoides, whereas other S-genome species demonstrated relatedness only to distal heterochromatin. This substantiates the priority of Ae. speltoides as the most similar to the wheat B-genome donor in comparison with other Sitopsis species. Using molecular banding technique with DNA of different Aegilops species as a probe permits tracing of the origin of each heterochromatin cluster. Molecular banding analysis reveals polymorphism between three wild emmer wheat populations. Comparison of molecular banding patterns with chromosomal distribution of the Ty1-copia retrotransposons, which constitute a large share of T. dicoccoides genome, makes it possible to propose that the activity of transposable elements may lie in the background of observed intraspecific polymorphism.
Collapse
Affiliation(s)
- Olga Raskina
- Institute of Evolution, Haifa University, Mt. Carmel, Israel
| | | | | |
Collapse
|
13
|
Martínez M, Naranjo T, Cuadrado C, Romero C. The synaptic behaviour of the wild forms of Triticum turgidum and T. timopheevii. Genome 2001; 44:517-22. [PMID: 11550884 DOI: 10.1139/g01-031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Different wild allopolyploid species of Triticeae show extensive bivalent formation at zygotene while a considerable number of multivalents is present in cultivated polyploid wheats. To study the chromosome behaviour at early meiotic stages in wild forms of tetraploid wheats Triticum turgidum and T timopheevii (2n = 4x = 28) we have analysed the synaptic pattern in fully traced spread nuclei at mid- and late zygotene and at pachytene of wild accessions of these species. The mean number of synaptonemal complex (SC) bivalents at mid-zygotene ranged from 12.22 to 13.14 among the accessions studied indicating a strong restriction of synapsis initiation to homologous chromosomes. The mean of bivalents increased at pachytene because of the transformation of multivalents into bivalents. Ring bivalents observed at metaphase I support that SC bivalents were formed by homologous chromosomes. The average values of SC bivalents at mid-zygotene in the wild forms are much higher than the average values observed in the cultivated tetraploid wheats but similar to that of a mutant line of T turgidum with a duplication that includes Ph1, the major homoeologous pairing suppressor locus. These results suggest that the efficiency of the mechanism operating in the homologous recognition for synapsis is higher in wild wheat populations than in cultivated varieties. Apparently, a relatively detrimental modification of the pairing regulating genetic system accompanied the domestication of the wild wheat forms.
Collapse
Affiliation(s)
- M Martínez
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad Complutense, Madrid, Spain
| | | | | | | |
Collapse
|
14
|
Rodríguez S, Perera E, Maestra B, Díez M, Naranjo T. Chromosome structure of Triticum timopheevii relative to T. turgidum. Genome 2000. [DOI: 10.1139/g00-062] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The chromosome structure of four different wild populations and a cultivated line of Triticum timopheevii (2n = 28, AtAtGG) relative to Triticum turgidum (2n = 28, AABB) was studied, using genomic in situ hybridisation (GISH) and C-banding analysis of meiotic configurations in interspecific hybrids. Two wild accessions and the cultivated line showed the standard C-banding karyotype. The other two accessions are homozygous for translocation 5At/3G and translocations 1G/2G and 5G/6G. GISH analysis revealed that all the T. timopheevii accessions carry intergenome translocations 6At/1G and 1G/4G and identified the position of the breakpoint in translocation 5At/3G. C-banding analysis of pairing at metaphase I in the hybrids with T. turgidum provides evidence that four species-specific translocations (6AtS/1GS, 1GS/4GS, 4GS/4AtL, and 4AtL/3AtL) exist in T. timopheevii, and that T. timopheevii and T. turgidum differ in the pericentric inversion of chromosome 4A. Bridge plus acentric fragment configurations involving 4AL and 4AtL were identified in cells at anaphase I. This result suggests that the paracentric inversion of 4AL from T. turgidum does not exist in T. timopheevii. Both tetraploid species have undergone independent and distinct evolutionary chromosomal rearrangements. The position, intercalary or subdistal, of the breakpoints in species-specific translocations and inversions contrasts with the position, at or close to the centromere, of intraspecific translocations. Different mechanisms for intraspecific and species-specific chromosome rearrangements are suggested.Key words: Triticum timopheevii, chromosome pairing, translocation, evolution, C-banding, GISH.
Collapse
|
15
|
Rodríguez S, Maestra B, Perera E, Díez M, Naranjo T. Pairing affinities of the B- and G-genome chromosomes of polyploid wheats with those of Aegilops speltoides. Genome 2000; 43:814-9. [PMID: 11081971 DOI: 10.1139/g00-055] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chromosome pairing at metaphase I was studied in different interspecific hybrids involving Aegilops speltoides (SS) and polyploid wheats Triticum timopheevii (AtAtGG), T. turgidum (AABB), and T. aestivum (AABBDD) to study the relationships between the S, G, and B genomes. Individual chromosomes and their arms were identified by means of C-banding. Pairing between chromosomes of the G and S genomes in T. timopheevii x Ae. speltoides (AtGS) hybrids reached a frequency much higher than pairing between chromosomes of the B and S genomes in T. turgidum x Ae. speltoides (ABS) hybrids and T. aestivum x Ae. speltoides (ABDS) hybrids, and pairing between B- and G-genome chromosomes in T. turgidum x T. timopheevii (AAtBG) hybrids or T. aestivum x T. timopheevii (AAtBGD) hybrids. These results support a higher degree of closeness of the G and S genomes to each other than to the B genome. Such relationships are consistent with independent origins of tetraploid wheats T. turgidum and T. timopheevii and with a more recent formation of the timopheevi lineage.
Collapse
Affiliation(s)
- S Rodríguez
- Departamento de Genética, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | | | | | | | | |
Collapse
|
16
|
Mori N, Moriguchi T, Nakamura C. RFLP analysis of nuclear DNA for study of phylogeny and domestication of tetraploid wheat. Genes Genet Syst 1997. [DOI: 10.1266/ggs.72.153] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Naoki Mori
- Laboratory of Plant Genetics, Faculty of Agriculture, Kobe University
| | | | - Chiharu Nakamura
- Laboratory of Plant Genetics, Faculty of Agriculture, Kobe University
| |
Collapse
|
17
|
Ohsako T, Wang GZ, Miyashita NT. Polymerase chain reaction-single strand conformational polymorphism analysis of intra- and interspecific variations in organellar DNA regions of Aegilops mutica and related species. Genes Genet Syst 1996; 71:281-92. [PMID: 9037775 DOI: 10.1266/ggs.71.281] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In order to study the phylogeny of Aegilops mutica in the genera of Triticum and Aegilops, variations in chloroplast and mitochondrial DNA regions were investigated by polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) analysis. Nine lines, each of Ae. mutica and Ae. speltoides, were studied together with nine other Triticum and Aegilops species, including T. aestivum. By analyzing 9.7-kb chloroplast and 13.1-kb mitochondrial DNA regions, a total of 268 bands were detected, of which 176 (65.7%) showed variation within and/or between species. The level of intraspecific variation of Ae. mutica was lower than that of Ae. speltoides. The low level of the intraspecific variation of Ae. mutica was contrary to the expectation from previous studies on morphological and cytolo-gical characters. In the phylogenetic trees based on SSCP, Ae. mutica, Ae. speltoides and the other four species of the section Sitopsis (the subsection Emarginata) were separated into three different clusters. In addition, T. aestivum was included in the cluster of Ae. speltoides in the phylogenetic trees. This result suggests that Ae. speltoides is the cytoplasmic donor of common wheat.
Collapse
Affiliation(s)
- T Ohsako
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Japan
| | | | | |
Collapse
|
18
|
Laser B, Kück U. The mitochondrial atpA/atp9 co-transcript in wheat and triticale: RNA processing depends on the nuclear genotype. Curr Genet 1995; 29:50-7. [PMID: 8595658 DOI: 10.1007/bf00313193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The gene region coding for subunits alpha and 9 of the mitochondrial ATP synthase exhibit an identical DNA sequence in wheat, rye, and the intergeneric hybrid triticale (xTriticosecale Wittmack). However, co-transcripts containing both genes show different sizes depending on the nuclear genotype. To investigate nuclear-mitochondrial interactions leading to this variation, we performed a comparative transcript analysis with various lines carrying defined nuclear and cytoplasmic genotypes. Northern analyses showed that all wheat lines investigated possess a single atpA/atp9 mRNA of 2.6kb, whereas in rye and five independent triticale lines an additional transcript of 2.35kb appeared. Primer-extension and RNase-protection analyses indicate that the co-transcripts of this gene have staggered 5' termini in some lines, whereas the 3' termini seem to be similar in wheat, rye, and triticale. Transcription is initiated at position -338/-339 upstream of the atpA gene in all lines investigated, giving rise to a 2.6-kb mRNA. In rye and triticale, staggered 5' termini were observed closer to the translational start. The DNA sequences upstream of these termini exhibit homology to plant mitochondrial-processing sites, therefore the proximal 5' ends are most probably generated by RNA processing. As the processing event occurs more frequently in triticale carrying the Triticum timopheevi cytoplasm, trans-acting factors from rye are likely to interact with other cytoplasmic factors resulting in the observed RNA modification. Most interestingly, the T. timopheevi cytoplasm inducing male sterility in alloplasmic wheat, fails to generate the CMS phenotype in triticale. The data support our hypothesis that nuclear factors affect mitochondrial gene expression and thus control sexual fertility in wheat and triticale.
Collapse
Affiliation(s)
- B Laser
- Lehrstuhl für Allgemeine Botanik, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | |
Collapse
|
19
|
Shu G, Muthukrishnan S, Liang GH, Paulsen GM. Restriction fragment patterns of chloroplast and mitochondrial DNA of Dasypyvum villosum (L.) candargy and wheats. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1993; 87:44-48. [PMID: 24190190 DOI: 10.1007/bf00223742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/1992] [Accepted: 03/01/1993] [Indexed: 06/02/2023]
Abstract
To elucidate the phylogenetic relationships and cytoplasmic types, restriction endonuclease fragment patterns of chloroplast (cp) and mitochondrial (mt) DNAs isolated from two different accessions of Dasypyrum villosum (L.) candargy were compared with those of tetraploid wheat (Triticum durum Desf., PI265007), hexaploid wheat (Triticum aestivum L., cv Chinese Spring), Aegilops longissimum (S. and M., in Muschli) Bowden and Hordeum vulgare L. T. aestivum and T. durum had identical restriction patterns for their cp and mtDNAs in digestions with four different enzymes. Likewise, no differences were found between the restriction fragment patterns of two accessions of D. villosum. But, there were distinct differences in chloroplast and mitochondrial DNA restriction fragment patterns between D. villosum and tetraploid and hexaploid wheats. A. longissimum (G609) showed a similar pattern to those wheats for PstI digestion of cpDNA. Organellar DNA from Hordeum vulgare (cv Himalaya) showed a distinctly different restriction pattern from those of wheat and D. villosum. These results suggest that D. villosum is unlikely to be the donor of cytoplasm to wheats, and its cytoplasmic organelles were also different from those of A. longissimum.
Collapse
Affiliation(s)
- G Shu
- Genetics Program, Kansas State University, 66506-5501, Manhattan, KS, USA
| | | | | | | |
Collapse
|
20
|
|
21
|
TSUNEWAKI K, YAMADA S, MORI N. Genetical studies on a Tibetan semi-wild wheat, Triticum aestivum ssp. tibetanum. ACTA ACUST UNITED AC 1990. [DOI: 10.1266/jjg.65.353] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | - Shinji YAMADA
- Laboratory of Genetics, Faculty of Agriculture, Kyoto University
| | - Naoki MORI
- Laboratory of Genetics, Faculty of Agriculture, Kyoto University
| |
Collapse
|