1
|
Hosoya M, Fujioka M, Murayama AY, Ozawa H, Okano H, Ogawa K. Neuronal development in the cochlea of a nonhuman primate model, the common marmoset. Dev Neurobiol 2021; 81:905-938. [PMID: 34545999 PMCID: PMC9298346 DOI: 10.1002/dneu.22850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/25/2021] [Accepted: 09/13/2021] [Indexed: 01/02/2023]
Abstract
Precise cochlear neuronal development is vital to hearing ability. Understanding the developmental process of the spiral ganglion is useful for studying hearing loss aimed at aging or regenerative therapy. Although interspecies differences have been reported between rodents and humans, to date, most of our knowledge about the development of cochlear neuronal development has been obtained from rodent models because of the difficulty in using human fetal samples in this field. In this study, we investigated cochlear neuronal development in a small New World monkey species, the common marmoset (Callithrix jacchus). We examined more than 25 genes involved in the neuronal development of the cochlea and described the critical developmental steps of these neurons. We also revealed similarities and differences between previously reported rodent models and this primate animal model. Our results clarified that this animal model of cochlear neuronal development is more similar to humans than rodents and is suitable as an alternative for the analysis of human cochlear development. The time course established in this report will be a useful tool for studying primate‐specific neuronal biology of the inner ear, which could eventually lead to new treatment strategies for human hearing loss.
Collapse
Affiliation(s)
- Makoto Hosoya
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masato Fujioka
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Ayako Y Murayama
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, Wako, Japan
| | - Hiroyuki Ozawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, Wako, Japan
| | - Kaoru Ogawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Liu Y, Xu R, Gong Q. Human Auditory-Frequency Tuning Is Sensitive to Tonal Language Experience. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2020; 63:4277-4288. [PMID: 33151817 DOI: 10.1044/2020_jslhr-20-00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Purpose The aim of this study is to investigate whether human auditory frequency tuning can be influenced by tonal language experience. Method Perceptual tuning measured via psychophysical tuning curves and cochlear tuning derived via stimulus-frequency otoacoustic emission suppression tuning curves in 14 native speakers of a tonal language (Mandarin) were compared to those of 14 native speakers of a nontonal language (English) at 1 and 4 kHz. Results Group comparisons of both psychophysical tuning curves (p = .046) and stimulus-frequency otoacoustic emission suppression tuning curves (p = .007) in the 4-kHz region indicated sharper frequency tuning in the Mandarin-speaking group relative to the English-speaking group. The auditory tuning was better at the higher (4 kHz) than the lower (1 kHz) probe frequencies (p < .001). Conclusions The sharper auditory tuning in the 4-kHz cochlear region is associated with long-term tonal language (i.e., Mandarin) experience. Experience-dependent plasticity of tonal language may occur before the sound signal reaches central neural stages, as peripheral as the cochlea.
Collapse
Affiliation(s)
- Yin Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Runyi Xu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Qin Gong
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
- School of Medicine, Shanghai University, China
| |
Collapse
|
3
|
Schultz JA, Zeller U, Luo ZX. Inner ear labyrinth anatomy of monotremes and implications for mammalian inner ear evolution. J Morphol 2016; 278:236-263. [DOI: 10.1002/jmor.20632] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/24/2016] [Accepted: 10/22/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Julia A. Schultz
- Department of Organismal Biology and Anatomy; University of Chicago; 1027 East 57th Street Chicago Illinois 60637
| | - Ulrich Zeller
- FG Spezielle Zoologie, Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Lebenswissenschaftliche Fakultät, Humboldt-Universität zu Berlin; Ziegelstraße 5-9 Berlin 10117 Germany
| | - Zhe-Xi Luo
- Department of Organismal Biology and Anatomy; University of Chicago; 1027 East 57th Street Chicago Illinois 60637
| |
Collapse
|
4
|
Ray B, Roy TS, Wadhwa S, Roy KK. Development of the human fetal cochlear nerve: a morphometric study. Hear Res 2005; 202:74-86. [PMID: 15811701 DOI: 10.1016/j.heares.2004.09.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2004] [Accepted: 09/30/2004] [Indexed: 10/26/2022]
Abstract
Ontogenesis of the human peripheral auditory pathway is relatively less explored. While the distal part of the auditory perception apparatus (i.e. the cochlea) received attention, studies on the neural element carrying information to the brainstem (i.e. the cochlear nerve) are scarce. In the present study, axonal differentiation, maturation and myelination of the distal end of the human cochlear nerve (CN) were assessed using light and electron microscopy. Seven human fetuses of 12, 15, 18, 20, 22, 28 and 38 weeks' gestation (WG) were analyzed. Light microscopy revealed nerve fascicles as early as 12 WG, initially arranged loosely but later compacted by 18 WG. Myelinated fibers were clearly detected at 28 WG. Ultrastructurally, at 12 WG developing Schwann cells were present between the thin unmyelinated axons. At 15 WG, the fascicular arrangement was distinct with blood vessels in the perineurium. The maximum number of axons was found at 20 WG, which subsequently reduced to reach the adult level at 22 WG. The myelinated axons in the CN were first observed on the left side at 20 WG, following which the number and proportion of myelinated axons increased until term, incorporating both small and large axons. The right CN lagged behind in maturation. Axon size also increased with age. Thus, the maturation of the human CN commences during the mid-gestation period and produces exuberant axons that are eventually pruned at a time when axons start to myelinate. During this developmental period the human CN maintains maturational asymmetry, the functional consequences of which remain to be elucidated.
Collapse
Affiliation(s)
- Bappaditya Ray
- Department of Anatomy, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | | | | | | |
Collapse
|
5
|
Abstract
This paper is a comparative study of auditory-nerve morphology in birds. The chicken (Gallus gallus), the emu (Dromaius novaehollandiae) and the starling (Sturnus vulgaris) were chosen as unspecialised birds that have already been used in auditory research. The data are discussed in comparison to a similar earlier study on the barn owl, a bird with highly specialised hearing, in an attempt to separate general avian patterns from species specialisations. Average numbers of afferent fibres from 8775 (starling) to 12¿ omitted¿406 (chicken) were counted, excluding fibres to the lagenar macula. The number of fibres representing different frequency ranges showed broad maxima in the chicken and emu, corresponding to hearing ranges of best sensitivity and/or particular behavioural relevance. Mean axon diameters were around 2 microm in the chicken and starling, and around 3 microm in the emu. Virtually all auditory afferents were myelinated. The mean thickness of the myelin sheaths was between 0.33 microm (starling) and 0.4 microm (emu). There was a consistent pattern in the diameters of axons deriving from different regions. Axons from very basal, i.e. highest-frequency, parts of the basilar papilla were always the smallest. In the emu and the chicken, axons from the middle papillar regions were, in addition, larger than axons innervating apical regions.
Collapse
Affiliation(s)
- C Köppl
- Institut für Zoologie, Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany.
| | | | | | | |
Collapse
|
6
|
Morlet T, Goforth L, Hood LJ, Ferber C, Duclaux R, Berlin CI. Development of human cochlear active mechanism asymmetry: involvement of the medial olivocochlear system? Hear Res 1999; 134:153-62. [PMID: 10452385 DOI: 10.1016/s0378-5955(99)00078-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To study the functional development of the medial olivocochlear system, transient-evoked otoacoustic emission suppression experiments were conducted in 73 ears of 38 pre-term and 11 full-term neonates. The continuous contralateral stimulation was a broad band white noise, presented at 70 dB SPL. Efferent suppression was determined by subtracting the without-contralateral stimulation condition from the with-contralateral stimulation condition. Across this population, a mean suppression effect of contralateral stimulation on transient-evoked otoacoustic emissions was found, with most of the suppression effect observed after 8 ms. The amount of suppression is linearly, positively correlated with the conceptional age. In the subgroup of bilaterally tested neonates, the suppression of transient-evoked otoacoustic emissions is similar in the right ear and the left ear in subjects whose conceptional age is less than 36 weeks and significantly higher in the right ear than in the left ear in older neonates. This last observation was seen at frequencies where transient-evoked otoacoustic emission amplitudes became higher in the right ear than in the left ear as the conceptional age increased, a finding already reported in adults. This study shows that the functional adult pattern of the medial efferent system, probably involved in the detection of signals in noise such as speech sounds, seems to appear gradually in neonates and represents one of the several arguments in favor of functional auditory lateralization in humans, with a right ear advantage.
Collapse
Affiliation(s)
- T Morlet
- Kresge Hearing Research Laboratory of the South, LSU Medical Center, New Orleans, LA 70112, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Campo P, Lataye R, Cossec B, Placidi V. Toluene-induced hearing loss: a mid-frequency location of the cochlear lesions. Neurotoxicol Teratol 1997; 19:129-40. [PMID: 9136129 DOI: 10.1016/s0892-0362(96)00214-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Inhaled toluene (from 1000 to 2000 ppm, 6 h/day, 5 days/week, 4 weeks) is anototoxic solvent that severely damaged the cochlea in adult Long-Evans rats. Auditory function was tested by recording near field potentials from the inferior colliculus. Surprisingly, the electrophysiologic results did not reflect all the cochlear damage observed by histology. Loss of outer hair cells of the organ of Corti occurred in all toluene-treated rats in middle and mid-apical turns, whereas the basal turn of the cochlea was fairly well preserved. The third row of outer hair cells was more injured than the second row, which itself was more injured than the first row. The locations of the cochlear lesions are reported in the present study with regard to the toluene dose.
Collapse
Affiliation(s)
- P Campo
- Institut National de Recherche et de Sécurité (I.N.R.S.), Vandoeuvre, France.
| | | | | | | |
Collapse
|
8
|
Abstract
Using a combination of freeze-fracture and thin sections, this study examines the maturation of the membrane specialisations of the gerbil outer hair cells (OHC) between 2 and 16 days after birth (DAB). The apical membrane, the junctional region around the neck of the cell, and the lateral and basal membranes are described. The results suggest a sequential development of the different components of the lateral wall. Intramembrane protein particles (IMP), the putative OHC motor elements, were found to be present at low density at 2 DAB and increased in density from 2200 IMP/microns 2 at 2 DAB to 4131/ microns 2 at 8 DAB. OHCs have been reported as showing electromotility from 8 DAB onward. IMPs continue to increase in density until mature values are attained at 16 DAB. Sub-surface cisternae did not appear until 8 DAB, with a single layer being complete by 10 DAB. Pillar structures, proposed to be related to the cytoskeletal lattice, first appear at 10 DAB. The apical membrane of the immature hair cell is characterised by the presence of pits related to the endocytosis of vesicles, and tip-links between stereocilia, thought to be associated with sites of ion channel opening, are present at 2 DAB. The junctional region comprises two areas which mature at differing rates: an apical-most region which attains an adult-like appearance by 8 DAB and a basal-ward region which continues to increase in complexity until mature at 16 DAB. The functional significance of the results are discussed in relation to the possible roles of the junctional regions and the proposed sites of the OHC motor elements.
Collapse
Affiliation(s)
- M Souter
- Institute of Laryngology and Otology, University College London Medical School, UK
| | | | | |
Collapse
|