1
|
Daly KC, Dacks A. The self as part of the sensory ecology: how behavior affects sensation from the inside out. CURRENT OPINION IN INSECT SCIENCE 2023; 58:101053. [PMID: 37290318 DOI: 10.1016/j.cois.2023.101053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023]
Abstract
Insects exhibit remarkable sensory and motor capabilities to successfully navigate their environment. As insects move, they activate sensory afferents. Hence, insects are inextricably part of their sensory ecology. Insects must correctly attribute self- versus external sources of sensory activation to make adaptive behavioral choices. This is achieved via corollary discharge circuits (CDCs), motor-to-sensory neuronal pathways providing predictive motor signals to sensory networks to coordinate sensory processing within the context of ongoing behavior. While CDCs provide predictive motor signals, their underlying mechanisms of action and functional consequences are diverse. Here, we describe inferred CDCs and identified corollary discharge interneurons (CDIs) in insects, highlighting their anatomical commonalities and our limited understanding of their synaptic integration into the nervous system. By using connectomics information, we demonstrate that the complexity with which identified CDIs integrate into the central nervous system (CNS) can be revealed.
Collapse
|
2
|
Mulder-Rosi J, Miller JP. ENCODING OF SMALL-SCALE AIR MOTION DYNAMICS IN THE CRICKET ACHETA DOMESTICUS. J Neurophysiol 2022; 127:1185-1197. [PMID: 35353628 PMCID: PMC9018005 DOI: 10.1152/jn.00042.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cercal sensory system of the cricket mediates the detection, localization and identification of air current signals generated by predators, mates and competitors. This mechanosensory system has been used extensively for experimental and theoretical studies of sensory coding at the cellular and system levels. It is currently thought that sensory interneurons in the terminal abdominal ganglion extract information about the direction, velocity, and acceleration of the air currents in the animal's immediate environment, and project a coarse-coded representation of those parameters to higher centers. All feature detection is thought to be carried out in higher ganglia by more complex, specialized circuits. We present results that force a substantial revision of current hypotheses. Using multiple extracellular recordings and a special sensory stimulation device, we demonstrate that four well-studied interneurons in this system respond with high sensitivity and selectivity to complex dynamic multi-directional features of air currents which have a spatial scale smaller than the physical dimensions of the cerci. The INs showed much greater sensitivity for these features than for unidirectional bulk-flow stimuli used in previous studies. Thus, in addition to participating in the ensemble encoding of bulk air flow stimulus characteristics, these interneurons are capable of operating as feature detectors for naturalistic stimuli. In this sense, these interneurons are encoding and transmitting information about different aspects of their stimulus environment: they are multiplexing information. Major aspects of the stimulus-response specificity of these interneurons can be understood from the dendritic anatomy and connectivity with the sensory afferent map.
Collapse
Affiliation(s)
- Jonas Mulder-Rosi
- Deptartment of Microbiology and Immunology, Montana State University, Bozeman Montana, United States
| | - John P Miller
- Deptartment of Microbiology and Immunology, Montana State University, Bozeman Montana, United States
| |
Collapse
|
3
|
Dalgaty T, Miller JP, Vianello E, Casas J. Bio-Inspired Architectures Substantially Reduce the Memory Requirements of Neural Network Models. Front Neurosci 2021; 15:612359. [PMID: 33708069 PMCID: PMC7940538 DOI: 10.3389/fnins.2021.612359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/02/2021] [Indexed: 11/30/2022] Open
Abstract
We propose a neural network model for the jumping escape response behavior observed in the cricket cercal sensory system. This sensory system processes low-intensity air currents in the animal's immediate environment generated by predators, competitors, and mates. Our model is inspired by decades of physiological and anatomical studies. We compare the performance of our model with a model derived through a universal approximation, or a generic deep learning, approach, and demonstrate that, to achieve the same performance, these models required between one and two orders of magnitude more parameters. Furthermore, since the architecture of the bio-inspired model is defined by a set of logical relations between neurons, we find that the model is open to interpretation and can be understood. This work demonstrates the potential of incorporating bio-inspired architectural motifs, which have evolved in animal nervous systems, into memory efficient neural network models.
Collapse
Affiliation(s)
| | - John P Miller
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | | | - Jérôme Casas
- Insect Biology Research Institute IRBI, UMR CNRS 7261, Université de Tours, Tours, France
| |
Collapse
|
4
|
Schöneich S, Hedwig B. Corollary discharge inhibition of wind-sensitive cercal giant interneurons in the singing field cricket. J Neurophysiol 2014; 113:390-9. [PMID: 25318763 PMCID: PMC4294572 DOI: 10.1152/jn.00520.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Crickets carry wind-sensitive mechanoreceptors on their cerci, which, in response to the airflow produced by approaching predators, triggers escape reactions via ascending giant interneurons (GIs). Males also activate their cercal system by air currents generated due to the wing movements underlying sound production. Singing males still respond to external wind stimulation, but are not startled by the self-generated airflow. To investigate how the nervous system discriminates sensory responses to self-generated and external airflow, we intracellularly recorded wind-sensitive afferents and ventral GIs of the cercal escape pathway in fictively singing crickets, a situation lacking any self-stimulation. GI spiking was reduced whenever cercal wind stimulation coincided with singing motor activity. The axonal terminals of cercal afferents showed no indication of presynaptic inhibition during singing. In two ventral GIs, however, a corollary discharge inhibition occurred strictly in phase with the singing motor pattern. Paired intracellular recordings revealed that this inhibition was not mediated by the activity of the previously identified corollary discharge interneuron (CDI) that rhythmically inhibits the auditory pathway during singing. Cercal wind stimulation, however, reduced the spike activity of this CDI by postsynaptic inhibition. Our study reveals how precisely timed corollary discharge inhibition of ventral GIs can prevent self-generated airflow from triggering inadvertent escape responses in singing crickets. The results indicate that the responsiveness of the auditory and wind-sensitive pathway is modulated by distinct CDIs in singing crickets and that the corollary discharge inhibition in the auditory pathway can be attenuated by cercal wind stimulation.
Collapse
Affiliation(s)
- Stefan Schöneich
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Berthold Hedwig
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Characterizing the fine structure of a neural sensory code through information distortion. J Comput Neurosci 2010; 30:163-79. [PMID: 20730481 DOI: 10.1007/s10827-010-0261-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 07/03/2010] [Accepted: 07/20/2010] [Indexed: 10/19/2022]
Abstract
We present an application of the information distortion approach to neural coding. The approach allows the discovery of neural symbols and the corresponding stimulus space of a neuron or neural ensemble simultaneously and quantitatively, making few assumptions about the nature of either code or relevant features. The neural codebook is derived by quantitizing sensory stimuli and neural responses into small reproduction sets, and optimizing the quantization to minimize the information distortion function. The application of this approach to the analysis of coding in sensory interneurons involved a further restriction of the space of allowed quantitizers to a smaller family of parametric distributions. We show that, for some cells in this system, a significant amount of information is encoded in patterns of spikes that would not be discovered through analyses based on linear stimulus-response measures.
Collapse
|
6
|
Livneh Y, Mizrahi A. A time for atlases and atlases for time. Front Syst Neurosci 2010; 3:17. [PMID: 20204142 PMCID: PMC2831630 DOI: 10.3389/neuro.06.017.2009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Accepted: 11/23/2009] [Indexed: 01/23/2023] Open
Abstract
Advances in neuroanatomy and computational power are leading to the construction of new digital brain atlases. Atlases are rising as indispensable tools for comparing anatomical data as well as being stimulators of new hypotheses and experimental designs. Brain atlases describe nervous systems which are inherently plastic and variable. Thus, the levels of brain plasticity and stereotypy would be important to evaluate as limiting factors in the context of static brain atlases. In this review, we discuss the extent of structural changes which neurons undergo over time, and how these changes would impact the static nature of atlases. We describe the anatomical stereotypy between neurons of the same type, highlighting the differences between invertebrates and vertebrates. We review some recent experimental advances in our understanding of anatomical dynamics in adult neural circuits, and how these are modulated by the organism's experience. In this respect, we discuss some analogies between brain atlases and the sequenced genome and the emerging epigenome. We argue that variability and plasticity of neurons are substantially high, and should thus be considered as integral features of high-resolution digital brain atlases.
Collapse
Affiliation(s)
- Yoav Livneh
- Department of Neurobiology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem Jerusalem, Israel
| | | |
Collapse
|
7
|
Jacobs GA, Miller JP, Aldworth Z. Computational mechanisms of mechanosensory processing in the cricket. J Exp Biol 2008; 211:1819-28. [DOI: 10.1242/jeb.016402] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Crickets and many other orthopteran insects face the challenge of gathering sensory information from the environment from a set of multi-modal sensory organs and transforming these stimuli into patterns of neural activity that can encode behaviorally relevant stimuli. The cercal mechanosensory system transduces low frequency air movements near the animal's body and is involved in many behaviors including escape from predators, orientation with respect to gravity, flight steering, aggression and mating behaviors. Three populations of neurons are sensitive to both the direction and dynamics of air currents:an array of mechanoreceptor-coupled sensory neurons, identified local interneurons and identified projection interneurons. The sensory neurons form a functional map of air current direction within the central nervous system that represents the direction of air currents as three-dimensional spatio-temporal activity patterns. These dynamic activity patterns provide excitatory input to interneurons whose sensitivity and spiking output depend on the location of the neuronal arbors within the sensory map and the biophysical and electronic properties of the cell structure. Sets of bilaterally symmetric interneurons can encode the direction of an air current stimulus by their ensemble activity patterns, functioning much like a Cartesian coordinate system. These interneurons are capable of responding to specific dynamic stimuli with precise temporal patterns of action potentials that may encode these stimuli using temporal encoding schemes. Thus, a relatively simple mechanosensory system employs a variety of complex computational mechanisms to provide the animal with relevant information about its environment.
Collapse
Affiliation(s)
- Gwen A. Jacobs
- Center for Computational Biology, 1 Lewis Hall, Montana State University,Bozeman, MT 59717, USA
| | - John P. Miller
- Center for Computational Biology, 1 Lewis Hall, Montana State University,Bozeman, MT 59717, USA
| | - Zane Aldworth
- Center for Computational Biology, 1 Lewis Hall, Montana State University,Bozeman, MT 59717, USA
| |
Collapse
|
8
|
Schrader S, Horseman G, Cokl A. Directional sensitivity of wind-sensitive giant interneurons in the cave cricket Troglophilus neglectus. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2002; 292:73-81. [PMID: 11754023 DOI: 10.1002/jez.1143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Unlike the situation in most cockroach and cricket species studied so far, the wind-sensitive cerci of the cave cricket Troglophilus neglectus Krauss (Rhaphidophoridae, Orthoptera) are not oriented parallel to the body axis but perpendicular to it. The effects of this difference on the morphology, and directional sensitivity of cercal giant interneurons (GIs), were investigated. In order to test the hypothesis that the 90 degrees change in cercal orientation causes a corresponding shift in directional sensitivity of GIs, their responses in both the horizontal and vertical planes were tested. One ventral and four dorsal GIs (corresponding to GIs 9-1a and 9-2a, 9-3a, 10-2a, 10-3a of gryllid crickets) were identified. The ventral GI 9-1a of Troglophilus differed somewhat from its cricket homologue in its dendritic arborisation and its directional sensitivity in the horizontal plane. The morphology and horizontal directionality of the dorsal GIs closely resembled that of their counterparts in gryllids. In the vertical plane, the directionality of all GIs tested was similar. They were all excited mainly by wind puffs from the axon-ipsilateral quadrant. The results suggest that directional sensitivity to air currents in the horizontal plane is maintained despite the altered orientation of the cerci. This is presumably due to compensatory modifications in the directional pReferences of the filiform hairs.
Collapse
Affiliation(s)
- S Schrader
- National Institute of Biology, Vec4na pot 111, 1001 Ljubljana, Slovenia.
| | | | | |
Collapse
|
9
|
Kanou M. Directionality of Cricket Giant Interneurons to Escape Eliciting Unidirectional Air-Current. Zoolog Sci 1996. [DOI: 10.2108/zsj.13.35] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Tautz J, Plummer MR. Comparison of directional selectivity in identified spiking and nonspiking mechanosensory neurons in the crayfish Orconectes limosus. Proc Natl Acad Sci U S A 1994; 91:5853-7. [PMID: 7517037 PMCID: PMC44095 DOI: 10.1073/pnas.91.13.5853] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have recorded electrical activity from two identified synaptically coupled mechanosensory interneurons in the abdominal nervous system of the crayfish Orconectes limosus and have studied their responses to constant-velocity water-jet stimuli presented from different directions. The two neurons, the ascending caudal photoreceptor (CPR) and the local directionally selective neuron, responded preferentially to stimuli delivered ipsilaterally to their dendritic input regions. Both neurons featured responses consisting of a phasic excitatory "on" response and a tonic depolarizing plateau. The different response components showed various degrees of directional selectivity: The initial "on" peak of the response was the least sensitive and the plateau was the most sensitive to stimulus direction. The CPR showed a sharp cut-off in responsiveness to contralateral stimuli, whereas the local directionally selective neuron showed a more gradual decrease in its directional responsiveness. This difference is a consequence of the feed-forward lateral inhibition that the local directionally selective neuron exerts on the CPR and of the threshold for initiation of action potentials in the CPR. A comparison of the spiking response of the CPR with its generator potential shows that the number and frequency of action potentials are a more sensitive indicator of directional preference than the generator potential response. The directional characteristic of the CPR is discussed as a filter matched to a specific spatial aspect of biologically relevant water movements.
Collapse
Affiliation(s)
- J Tautz
- Theodor-Boveri Institut für Biowissenschaften, Lehrstuhl für Verhaltensphysiologie und Soziobiologie, Universität Am Hubland, Federal Republic of Germany
| | | |
Collapse
|
11
|
Bodnar DA. Excitatory influence of wind-sensitive local interneurons on an ascending interneuron in the cricket cercal sensory system. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1993; 172:641-51. [PMID: 8331608 DOI: 10.1007/bf00213686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This study examined the effects of a set of identified wind-sensitive local interneurons (9DL interneurons) on the wind-evoked spike output and directional sensitivity of an ascending interneuron (10-3) in the cricket (Acheta domesticus) cercal sensory system. Comparison of the directional sensitivities of the 9DL interneurons and 10-3 revealed that 3 of the 9DL interneurons have a large degree of overlap in their excitatory receptive fields with that of 10-3. Photoinactivation of any one of these 3 9DL interneurons resulted in a significant decrease in the spike output of 10-3 at its optimal excitatory wind stimulus positions. However, the overall directional sensitivity of 10-3 remained essentially unchanged. Photoinactivation of the one 9DL interneuron which had no overlap in its excitatory receptive field with 10-3 did not affect 10-3's responsiveness to wind stimuli. Results from simultaneous intracellular recordings of 10-3 and one of the 9DL interneurons which had an excitatory influence on 10-3 showed that depolarization of the local interneuron produced an epsp in 10-3, and could elicit several action potentials. Comparison of the morphologies of the 9DL interneurons and 10-3 revealed that the 3 9DL interneurons which had an excitatory influence on 10-3 all had regions of dendritic overlap with this ascending interneuron.
Collapse
Affiliation(s)
- D A Bodnar
- Department of Molecular and Cell Biology, University of California, Berkeley
| |
Collapse
|