1
|
Jackson KJL, Kos JT, Lees W, Gibson WS, Smith ML, Peres A, Yaari G, Corcoran M, Busse CE, Ohlin M, Watson CT, Collins AM. A BALB/c IGHV Reference Set, Defined by Haplotype Analysis of Long-Read VDJ-C Sequences From F1 (BALB/c x C57BL/6) Mice. Front Immunol 2022; 13:888555. [PMID: 35720344 PMCID: PMC9205180 DOI: 10.3389/fimmu.2022.888555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
The immunoglobulin genes of inbred mouse strains that are commonly used in models of antibody-mediated human diseases are poorly characterized. This compromises data analysis. To infer the immunoglobulin genes of BALB/c mice, we used long-read SMRT sequencing to amplify VDJ-C sequences from F1 (BALB/c x C57BL/6) hybrid animals. Strain variations were identified in the Ighm and Ighg2b genes, and analysis of VDJ rearrangements led to the inference of 278 germline IGHV alleles. 169 alleles are not present in the C57BL/6 genome reference sequence. To establish a set of expressed BALB/c IGHV germline gene sequences, we computationally retrieved IGHV haplotypes from the IgM dataset. Haplotyping led to the confirmation of 162 BALB/c IGHV gene sequences. A musIGHV398 pseudogene variant also appears to be present in the BALB/cByJ substrain, while a functional musIGHV398 gene is highly expressed in the BALB/cJ substrain. Only four of the BALB/c alleles were also observed in the C57BL/6 haplotype. The full set of inferred BALB/c sequences has been used to establish a BALB/c IGHV reference set, hosted at https://ogrdb.airr-community.org. We assessed whether assemblies from the Mouse Genome Project (MGP) are suitable for the determination of the genes of the IGH loci. Only 37 (43.5%) of the 85 confirmed IMGT-named BALB/c IGHV and 33 (42.9%) of the 77 confirmed non-IMGT IGHV were found in a search of the MGP BALB/cJ genome assembly. This suggests that current MGP assemblies are unsuitable for the comprehensive documentation of germline IGHVs and more efforts will be needed to establish strain-specific reference sets.
Collapse
Affiliation(s)
| | - Justin T. Kos
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, United States
| | - William Lees
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
| | - William S. Gibson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, United States
| | - Melissa Laird Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, United States
| | - Ayelet Peres
- Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
| | - Gur Yaari
- Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christian E. Busse
- Division of B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Mats Ohlin
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Corey T. Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, United States
| | - Andrew M. Collins
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
2
|
Collins CM, Scharer CD, Murphy TJ, Boss JM, Speck SH. Murine gammaherpesvirus infection is skewed toward Igλ+ B cells expressing a specific heavy chain V-segment. PLoS Pathog 2020; 16:e1008438. [PMID: 32353066 PMCID: PMC7217478 DOI: 10.1371/journal.ppat.1008438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/12/2020] [Accepted: 02/27/2020] [Indexed: 12/24/2022] Open
Abstract
One of the defining characteristics of the B cell receptor (BCR) is the extensive diversity in the repertoire of immunoglobulin genes that make up the BCR, resulting in broad range of specificity. Gammaherpesviruses are B lymphotropic viruses that establish life-long infection in B cells, and although the B cell receptor plays a central role in B cell biology, very little is known about the immunoglobulin repertoire of gammaherpesvirus infected cells. To begin to characterize the Ig genes expressed by murine gammaherpesvirus 68 (MHV68) infected cells, we utilized single cell sorting to sequence and clone the Ig variable regions of infected germinal center (GC) B cells and plasma cells. We show that MHV68 infection is biased towards cells that express the Igλ light chain along with a single heavy chain variable gene, IGHV10-1*01. This population arises through clonal expansion but is not viral antigen specific. Furthermore, we show that class-switching in MHV68 infected cells differs from that of uninfected cells. Fewer infected GC B cells are class-switched compared to uninfected GC B cells, while more infected plasma cells are class-switched compared to uninfected plasma cells. Additionally, although they are germinal center derived, the majority of class switched plasma cells display no somatic hypermutation regardless of infection status. Taken together, these data indicate that selection of infected B cells with a specific BCR, as well as virus mediated manipulation of class switching and somatic hypermutation, are critical aspects in establishing life-long gammaherpesvirus infection.
Collapse
Affiliation(s)
- Christopher M. Collins
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Christopher D. Scharer
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Thomas J. Murphy
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jeremy M. Boss
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Samuel H. Speck
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
3
|
Development of Mouse Model Systems of Germinal Center Lymphomas. Methods Mol Biol 2017. [PMID: 28589360 DOI: 10.1007/978-1-4939-7095-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Germinal centers (GC) are the predominant origin of human B cell lymphomagenesis. Transgenic mice in which gene expression is altered specifically in GC B cells have broadened our knowledge about the mechanisms of malignant transformation. However, extensive resources are needed due to the genetic complexity of these mouse models. Thus, bone marrow (BM)-derived chimerism is an attractive approach to study GC B cell derived lymphomagenesis, as it allows for an efficient allocation of resources and reduces the number of animals used.
Collapse
|
4
|
Koh EM, Kim J, Kim TG, Moon JH, Oh JH, Lee JY, Jang YS. Cloning and characterization of heavy and light chain genes encoding the FimA-specific monoclonal antibodies that inhibit Porphyromonas gingivalis adhesion. Microbiol Immunol 2011; 55:199-210. [PMID: 21223367 DOI: 10.1111/j.1348-0421.2011.00305.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
FimA of Porphyromonas gingivalis, a major pathogen in periodontitis, is known to be closely related to the virulence of these bacteria and has been suggested as a candidate for development of a vaccine against periodontal disease. In order to develop a passive immunization method for inhibiting the establishment of periodontal disease, B hybridoma clones 123-123-10 and 256-265-9, which produce monoclonal antibodies (Mabs) specific to purified fimbriae, were established. Both mAbs reacted with the conformational epitopes displayed by partially dissociated oligomers of FimA, but not with the 43 kDa FimA monomer. Gene sequence analyses of full-length cDNAs encoding heavy and light chain immunoglobulins enabled classification of the genes of mAb 123-123-10 as members of the mVh II (A) and mVκ I subgroups, and those of mAb 256-265-9 as members of the mVh III (D) and mVκ I subgroups. More importantly, 50 ng/mL of antibodies purified from the culture supernatant of antibody gene-transfected CHO cells inhibited, by approximately 50%, binding of P. gingivalis to saliva-coated hydroxyapatite bead surfaces. It is expected that these mAbs could be used as a basis for passive immunization against P. gingivalis-mediated periodontitis.
Collapse
Affiliation(s)
- Eun-Mi Koh
- Department of Molecular Biology, Chonbuk National University, Jeonju, Korea
| | | | | | | | | | | | | |
Collapse
|
5
|
Neutralizing monoclonal antibody to edema toxin and its effect on murine anthrax. Infect Immun 2010; 78:2890-8. [PMID: 20385755 DOI: 10.1128/iai.01101-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Edema factor (EF) is a component of an anthrax toxin that functions as an adenylate cyclase. Numerous monoclonal antibodies (MAbs) have been reported for the other Bacillus anthracis toxin components, but relatively few to EF have been studied. We report the generation of six murine hybridoma lines producing two IgM and four IgG1 MAbs to EF. Of the six MAbs, only one IgM neutralized EF, as assayed by an increase in cyclic AMP (cAMP) production by Chinese hamster ovary (CHO) cells. Analysis of the variable gene elements revealed that the single neutralizing MAb had a different binding site than the others. There was no competition between the neutralizing IgM and the nonneutralizing IgG MAbs indicative of different specificity. MAb-based capture enzyme-linked immunosorbent assay (ELISA) detected EF in liver lysates from mice infected with B. anthracis Sterne 34F2. Administration of the neutralizing IgM MAb to A/JCr mice lethally infected with B. anthracis strain Sterne had no significant effect on median time to death, but mice treated with the MAb were more likely to survive infection. Combining the neutralizing IgM to EF with a subprotective dose of a neutralizing MAb to protective antigen (PA) prolonged mean time to death of infected mice, suggesting that neutralization of EF and PA could produce synergistic beneficial effects. In summary, the results from our study and literature observations suggest that the majority of Abs to EF are nonneutralizing, but the toxin has some epitopes that can be targeted by the humoral response to generate useful Abs that may contribute to defense against anthrax.
Collapse
|
6
|
Cloning and expression of murine Ig genes from single B cells. J Immunol Methods 2009; 350:183-93. [DOI: 10.1016/j.jim.2009.08.009] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Accepted: 08/19/2009] [Indexed: 01/03/2023]
|
7
|
Banus S, Vandebriel RJ, Pennings JLA, Gremmer ER, Wester PW, van Kranen HJ, Breit TM, Demant P, Mooi FR, Hoebee B, Kimman TG. Comparative gene expression profiling in two congenic mouse strains following Bordetella pertussis infection. BMC Microbiol 2007; 7:88. [PMID: 17935610 PMCID: PMC2174938 DOI: 10.1186/1471-2180-7-88] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 10/12/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Susceptibility to Bordetella pertussis infection varies widely. These differences can partly be explained by genetic host factors. HcB-28 mice are more resistant to B. pertussis infection than C3H mice, which could partially be ascribed to the B. pertussis susceptibility locus-1 (Bps1) on chromosome 12. The presence of C57BL/10 genome on this locus instead of C3H genome resulted in a decreased number of bacteria in the lung. To further elucidate the role of host genetic factors, in particular in the Bps1 locus, in B. pertussis infection, and to identify candidate genes within in this region, we compared expression profiles in the lungs of the C3H and HcB-28 mouse strains following B. pertussis inoculation. Twelve and a half percent of the genomes of these mice are from a different genetic background. RESULTS Upon B. pertussis inoculation 2,353 genes were differentially expressed in the lungs of both mouse strains. Two hundred and six genes were differentially expressed between the two mouse strains, but, remarkably, none of these were up- or down-regulated upon B. pertussis infection. Of these 206 genes, 17 were located in the Bps1 region. Eight of these genes, which showed a strong difference in gene expression between the two mouse strains, map to the immunoglobulin heavy chain complex (Igh). CONCLUSION Gene expression changes upon B. pertussis infection are highly identical between the two mouse strains despite the differences in the course of B. pertussis infection. Because the genes that were differentially regulated between the mouse strains only showed differences in expression before infection, it appears likely that such intrinsic differences in gene regulation are involved in determining differences in susceptibility to B. pertussis infection. Alternatively, such genetic differences in susceptibility may be explained by genes that are not differentially regulated between these two mouse strains. Genes in the Igh complex, among which Igh-1a/b, are likely candidates to explain differences in susceptibility to B. pertussis. Thus, by microarray analysis we significantly reduced the number of candidate susceptibility genes within the Bps1 locus. Further work should establish the role of the Igh complex in B. pertussis infection.
Collapse
Affiliation(s)
- Sander Banus
- Laboratory for Infectious Diseases and Screening, National Institute of Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands
- Laboratory of Toxicology, Pathology, and Genetics, National Institute of Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands
| | - Rob J Vandebriel
- Laboratory of Toxicology, Pathology, and Genetics, National Institute of Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands
| | - Jeroen LA Pennings
- Laboratory of Toxicology, Pathology, and Genetics, National Institute of Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands
| | - Eric R Gremmer
- Laboratory of Toxicology, Pathology, and Genetics, National Institute of Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands
| | - Piet W Wester
- Laboratory of Toxicology, Pathology, and Genetics, National Institute of Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands
| | - Henk J van Kranen
- Laboratory of Toxicology, Pathology, and Genetics, National Institute of Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands
| | - Timo M Breit
- Microarray Department (MAD), Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, The Netherlands
| | - Peter Demant
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | - Frits R Mooi
- Laboratory for Infectious Diseases and Screening, National Institute of Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands
| | - Barbara Hoebee
- Laboratory of Toxicology, Pathology, and Genetics, National Institute of Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands
| | - Tjeerd G Kimman
- Laboratory for Infectious Diseases and Screening, National Institute of Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands
| |
Collapse
|
8
|
Wu HY, Tuomikoski T, Eray M, Mattila P, Knuutila S, Kaartinen M. Somatic hypermutations in the immunoglobulin genes of two new human lymphoma lines of lymphatic follicle origin. Scand J Immunol 1994; 39:295-300. [PMID: 8128189 DOI: 10.1111/j.1365-3083.1994.tb03374.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Variable immunoglobulin heavy-chain regions (VDJ) of two newly established human lymphoma cell lines (HF-1 and HF-4) were sequenced. The most homologous germline VH gene found for both the HF-1 and HF-4 sequences was VH26 of the VH3a (V gene) family (82% and 91% homologies, respectively). The JH region of the HF-4 heavy-chain sequence contained two nucleotide differences compared to the published germline JH3 gene. The DHJH region of the HF-1 gene had a record high number (20%) of somatic mutations. The numerous hypermutations found in the HF-1 cell line support the hypothesis that in some human follicular lymphomas, mutations continue to accumulate in immunoglobulin genes during the malignant growth. Follicular lymphoma cell lines, which have an active mutational machinery, in future may help to solve the molecular events behind the somatic hypermutations modifying immunoglobulin genes of B lymphocytes.
Collapse
Affiliation(s)
- H Y Wu
- Department of Bacteriology and Immunology, University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
9
|
Giusti AM, Manser T. Somatic generation of hybrid antibody H chain genes in transgenic mice via interchromosomal gene conversion. J Exp Med 1994; 179:235-48. [PMID: 8270869 PMCID: PMC2191318 DOI: 10.1084/jem.179.1.235] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have constructed lines of mice with transgenes containing an antibody heavy (H) chain variable region (VHDJH) gene and various amounts of natural immunoglobulin (Ig) and plasmid flanking DNA. In these lines, recombination of the transgene and the endogenous Igh locus takes place in B cells, leading to the expression of functional H chains partially encoded by the transgenic VHDJH gene. Here, we demonstrate that the transgenic VHDJH gene, and various amounts of flanking sequence are recombined with Igh locus DNA via interchromosomal gene conversion. The structures of the resulting "hybrid" transgene-Igh H chain loci are consistent with the 3' end of the conversion occurring in regions of sequence identity, and the 5' end taking place between regions of little or no homology. This mode of antibody transgene recombination with the Igh locus is fundamentally different from the previously reported "trans H chain class switching" that results in reciprocal translocations. In contrast, this recombination resembles events previously observed in mammalian tissue culture cells between adjacent homologous chromosomal sequences, or transfected DNA and a homologous chromosomal target. Our data indicate that this recombination takes place at a low frequency, and that the frequency is influenced by both the length and extent of homology between the transgene and the Igh locus, but is not greatly affected by transgene copy number. This recombination pathway provides a novel approach for the subtle alteration of the clonal composition of the mouse B cell compartment in vivo using VH genes with defined structures and functions.
Collapse
Affiliation(s)
- A M Giusti
- Department of Microbiology and Immunology, Jefferson Cancer Institute, Thomas Jefferson Medical College, Philadelphia, Pennsylvania 19107
| | | |
Collapse
|
10
|
New nucleotide sequence data on the EMBL File Server. Nucleic Acids Res 1992; 20:6119-40. [PMID: 1461752 PMCID: PMC334492 DOI: 10.1093/nar/20.22.6119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|