1
|
Wang Q, He R, Chen L, Zhang Q, Shan J, Wang P, Wang X, Zhao Y. MIG-23 is involved in sperm migration by modulating extracellular ATP levels in Ascaris suum. Development 2022; 149:275964. [DOI: 10.1242/dev.200478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/24/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
In nematodes, spermiogenesis is a process of sperm activation in which nonmotile spermatids are transformed into crawling spermatozoa. Sperm motility acquisition during this process is essential for successful fertilization, but the underlying mechanisms remain to be clarified. Herein, we have found that extracellular adenosine-5′-triphosphate (ATP) level regulation by MIG-23, which is a homolog of human ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase), was required for major sperm protein (MSP) filament dynamics and sperm motility in the nematode Ascaris suum. During sperm activation, a large amount of ATP was produced in mitochondria and was stored in refringent granules (RGs). Some of the produced ATP was released to the extracellular space through innexin channels. MIG-23 was localized in the sperm plasma membrane and contributed to the ecto-ATPase activity of spermatozoa. Blocking MIG-23 activity resulted in a decrease in the ATP hydrolysis activity of spermatozoa and an increase in the depolymerization rate of MSP filaments in pseudopodia, which eventually affected sperm migration. Overall, our data suggest that MIG-23, which contributes to the ecto-ATPase activity of spermatozoa, regulates sperm migration by modulating extracellular ATP levels.
Collapse
Affiliation(s)
- Qiushi Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences 1 , Beijing 100101 , China
| | - Ruijun He
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences 1 , Beijing 100101 , China
| | - Lianwan Chen
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences 1 , Beijing 100101 , China
| | - Qi Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences 1 , Beijing 100101 , China
- University of Chinese Academy of Sciences 2 , Beijing 100049 , China
| | - Jin Shan
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences 1 , Beijing 100101 , China
- University of Chinese Academy of Sciences 2 , Beijing 100049 , China
| | - Peng Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences 1 , Beijing 100101 , China
- University of Chinese Academy of Sciences 2 , Beijing 100049 , China
| | - Xia Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences 1 , Beijing 100101 , China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences 3 , Beijing 100101 , China
| | - Yanmei Zhao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences 1 , Beijing 100101 , China
| |
Collapse
|
2
|
Role of posttranslational modifications in C. elegans and ascaris spermatogenesis and sperm function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:215-39. [PMID: 25030766 DOI: 10.1007/978-1-4939-0817-2_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Generally, spermatogenesis and sperm function involve widespread posttranslational modification of regulatory proteins in many different species. Nematode spermatogenesis has been studied in detail, mostly by genetic/molecular genetic techniques in the free-living Caenorhabditis elegans and by biochemistry/cell biology in the pig parasite Ascaris suum. Like other nematodes, both of these species produce sperm that use a form of amoeboid motility termed crawling, and many aspects of spermatogenesis are likely to be similar in both species. Consequently, work in these two nematode species has been largely complementary. Work in C. elegans has identified a number of spermatogenesis-defective genes and, so far, 12 encode enzymes that are implicated as catalysts of posttranslational protein modification. Crawling motility involves extension of a single pseudopod and this process is powered by a unique cytoskeleton composed of Major Sperm Protein (MSP) and accessory proteins, instead of the more widely observed actin. In Ascaris, pseudopod extension and crawling motility can be reconstituted in vitro, and biochemical studies have begun to reveal how posttranslational protein modifications, including phosphorylation, dephosphorylation and proteolysis, participate in these processes.
Collapse
|
3
|
Abbas MK, Cain GD. Amino acid and lipid composition of refringent granules from the ameboid sperm of Ascaris suum (Nematoda). HISTOCHEMISTRY 1984; 81:59-65. [PMID: 6469722 DOI: 10.1007/bf00495402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Transformation of the spermatozoon of Ascaris suum from a spheroidal to an ameboid cell is associated with the formation of a motile pseudopodium and coalescence of the intracellular refringent granules. The pseudopodia of the ameboid spermatozoa contain filaments organized into dense patches, bundles, web-like or lace-like networks, as observed by electron microscopy. The morphology and chemistry of the refringent granules were investigated in subcellular fractions enriched for these structures. Isolated refringent granules were heterogeneous in size measuring from 0.5 X 0.6 to 2.3 X 3.5 microns. Each granule is surrounded by a 110 A thick layer. During fusion, the surfaces of the refringent granules form small extensions resembling micropodia. The process of fusion occurs at many sites on a given granule and simultaneous fusion of several granules was commonly observed. Amino acid analyses of the refringent granule proteins (RGP's) indicated: they are rich in aspartic acid or asparagine (48%), leucine (10%), serine (19%) and aromatic amino acids (11%). Gas-liquid chromatographic analyses of alditol acetate derivatives of monosaccharides released by mild acid hydrolysis showed the predominant sugars to be glucose (7.3 micrograms/mg protein), galactose (9.2 micrograms/mg) and N-acetylglucosamine (5.5 micrograms/mg). Lipid analyses indicated a complex mixture of glycerides, ascarosides and waxes, together with a major component that resembled free fatty acid in mobility on TLC.
Collapse
|