1
|
Ohta Y, Nishikawa K, Hiroaki Y, Fujiyoshi Y. Electron tomographic analysis of gap junctions in lateral giant fibers of crayfish. J Struct Biol 2011; 175:49-61. [PMID: 21514388 DOI: 10.1016/j.jsb.2011.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 04/02/2011] [Accepted: 04/07/2011] [Indexed: 10/18/2022]
Abstract
Innexin-gap junctions in crayfish lateral giant fibers (LGFs) have an important role in escape behavior as a key component of rapid signal transduction. Knowledge of the structure and function of characteristic vesicles on the both sides of the gap junction, however, is limited. We used electron tomography to analyze the three-dimensional structure of crayfish gap junctions and gap junctional vesicles (GJVs). Tomographic analyses showed that some vesicles were anchored to innexons and almost all vesicles were connected by thin filaments. High densities inside the GJVs and projecting densities on the GJV membranes were observed in fixed and stained samples. Because the densities inside synaptic vesicles were dependent on the fixative conditions, different fixative conditions were used to elucidate the molecules included in the GJVs. The projecting densities on the GJVs were studied by immunoelectron microscopy with anti-vesicular monoamine transporter (anti-VMAT) and anti-vesicular nucleotide transporter (anti-VNUT) antibodies. Some of the projecting densities were labeled by anti-VNUT, but not anti-VMAT. Three-dimensional analyses of GJVs and excitatory chemical synaptic vesicles (CSVs) revealed clear differences in their sizes and central densities. Furthermore, the imaging data obtained under different fixative conditions and the immunolabeling results, in which GJVs were positively labeled for anti-VNUT but excitatory CSVs were not, support our model that GJVs contain nucleotides and excitatory CSVs do not. We propose a model in which characteristic GJVs containing nucleotides play an important role in the signal processing in gap junctions of crayfish LGFs.
Collapse
Affiliation(s)
- Yasumi Ohta
- Department of Biophysics, Faculty of Science, Kyoto University, Oiwake, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
2
|
Wolburg H, Rohlmann A. Structure--function relationships in gap junctions. INTERNATIONAL REVIEW OF CYTOLOGY 1995; 157:315-73. [PMID: 7706021 DOI: 10.1016/s0074-7696(08)62161-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Gap junctions are metabolic and electrotonic pathways between cells and provide direct cooperation within and between cellular nets. They are among the cellular structures most frequently investigated. This chapter primarily addresses aspects of the assembly of the gap junction channel, considering the insertion of the protein into the membrane, the importance of phosphorylation of the gap junction proteins for coupling modulation, and the formation of whole channels from two hemichannels. Interactions of gap junctions with the subplasmalemmal cytoplasm on the one side and with tight junctions on the other side are closely considered. Furthermore, reviewing the significance and alterations of gap junctions during development and oncogenesis, respectively, including the role of adhesion molecules, takes up a major part of the chapter. Finally, the literature on gap junctions in the central nervous system, especially between astrocytes in the brain cortex and horizontal cells in the retina, is summarized and new aspects on their structure-function relationship included.
Collapse
Affiliation(s)
- H Wolburg
- Institute of Pathology, University of Tübingen, Germany
| | | |
Collapse
|
3
|
Harris AL, Walter A, Paul D, Goodenough DA, Zimmerberg J. Ion channels in single bilayers induced by rat connexin32. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1992; 15:269-80. [PMID: 1279354 DOI: 10.1016/0169-328x(92)90118-u] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The gap junction channel mediates an important form of intercellular communication, but its detailed study is hindered by inaccessibility in situ. We show here that connexin32, the major protein composing junctional channels in rat liver, forms ion channels in single bilayer membranes. The properties of these reconstituted connexin32 channels are characterized and compared with those of gap junction channels. The demonstration that connexin32 forms channels in single membranes has implications for assembly and regulation of junctional channels, and permits detailed study of the gating, permeability and modulation of this channel-forming protein.
Collapse
Affiliation(s)
- A L Harris
- Thomas C. Jenkins Department of Biophyscis, Johns Hopkins University, Baltimore, MD 21218
| | | | | | | | | |
Collapse
|
4
|
Abstract
This article reviews studies providing information on the ultrastructure of electrical synapses. Although the review focuses on electron-microscopic investigations, its aim is to examine how the structure of an electrical synapse relates to its function. It begins by presenting a historical overview of the early studies which were responsible for the recognition of electrical synapses. The structure of gap junctions which are the morphological correlates of electrical synapses is illustrated and the ultrastructure and function of the two types of electrical synapse, rectifying and non-rectifying, described. Recent papers investigating the ultrastructure of electrical and mixed electrical-chemical synapses in invertebrates and vertebrates are reviewed. For earlier references, the reader is directed to previous reviews on the subject. Much new information, however, on the structure and formation of electrical synapses has been obtained from work on cultured neurons and from electron-microscopic, immunocytochemical, conformational and molecular studies. This article reviews those studies and in light of their findings, re-examines the relationships of the structure of electrical synapses with their function.
Collapse
Affiliation(s)
- B Leitch
- Department of Zoology, University of Cambridge, U.K
| |
Collapse
|
5
|
Zampighi G, Kreman M, Ramón F, Moreno AL, Simon SA. Structural characteristics of gap junctions. I. Channel number in coupled and uncoupled conditions. J Biophys Biochem Cytol 1988; 106:1667-78. [PMID: 3372591 PMCID: PMC2115033 DOI: 10.1083/jcb.106.5.1667] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Gap junctions between crayfish lateral axons were studied by combining anatomical and electrophysiological measurements to determine structural changes associated during uncoupling by axoplasmic acidification. In basal conditions, the junctional resistance, Rj, was approximately 60-80 k omega and the synapses appeared as two adhering membranes; 18-20-nm overall thickness, containing transverse densities (channels) spanning both membranes and the narrow extracellular gap (4-6 nm). In freeze-fracture replicas, the synapses contained greater than 3 X 10(3) gap junction plaques having a total of approximately 3.5 X 10(5) intramembrane particles. "Single" gap junction particles represented approximately 10% of the total number of gap junction particles present in the synapse. Therefore, in basal conditions, most of the gap junction particles were organized in plaques. Moreover, correlations of the total number of gap junction particles with Rj suggested that most of the junctional particles in plaques corresponded to conducting channels. Upon acidification of the axoplasm to pH 6.7-6.8, the junctional resistance increased to approximately 300 k omega and action potentials failed to propagate across the septum. Morphological measurements showed that the total number of gap junction particles in plaques decreased approximately 11-fold to 3.1 X 10(4) whereas the number of single particles dispersed in the axolemmae increased significantly. Thin sections of these synapses showed that the width of the extracellular gap increased from 4-6 nm in basal conditions to 10-20 nm under conditions where axoplasmic pH was 6.7-6.8. These observations suggest that single gap junction particles dispersed in the synapse most likely represent hemi-channels produced by the dissasembly of channels previously arranged in plaques.
Collapse
Affiliation(s)
- G Zampighi
- Department of Anatomy, Jerry Lewis Neuromuscular Research Center, UCLA School of Medicine 90024
| | | | | | | | | |
Collapse
|
6
|
Kurz-Isler G, Wolburg H. Light-dependent dynamics of gap junctions between horizontal cells in the retina of the crucian carp. Cell Tissue Res 1988; 251:641-9. [PMID: 3365755 DOI: 10.1007/bf00214013] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The dynamics of gap junctions between outer horizontal cells or their axon terminals in the retina of the crucian carp were investigated during light and dark adaptation by use of ultrathin-section and freeze-fracture electron microscopy. Light adaptation was induced by red light, while dark adaptation took place under ambient dark conditions. The two principal findings were: (1) The density of connexons within an observed gap junction is high in dark-adapted retina, and low in light-adapted retina. This, respectively, may reflect the coupled and uncoupled state of the gap junction. (2) The size of individual gap junctions is larger in light- than in dark-adapted retinae. Whereas the overall area occupied by gap junctions is reduced with dark adaptation, the percentage of small and very small gap junctions increases dramatically. A lateral shift of connexons in the gap junctional membrane is strongly suggested by these reversible processes of densification and dispersion. Two additional possibilities of gap junction modulation are discussed: (1) the de novo formation of very small gap junctions outside the large ones in the first few minutes of dark adaptation, and (2) the rearrangement of a portion of the very large gap junctions. The idea that the cytoskeleton is involved in such modulatory processes is corroborated by thin-section observations.
Collapse
Affiliation(s)
- G Kurz-Isler
- Institute of Pathology, University of Tübingen, Federal Republic of Germany
| | | |
Collapse
|
7
|
Schellens JP, Blangé T, de Groot K. Gap junction ultrastructure in rat liver parenchymal cells after in vivo ischemia. VIRCHOWS ARCHIV. B, CELL PATHOLOGY INCLUDING MOLECULAR PATHOLOGY 1987; 53:347-52. [PMID: 2891218 DOI: 10.1007/bf02890262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The ultrastructure of gap junctions between rat liver parenchymal cells has been studied after in vivo ischemia, with and without subsequent blood reflow. Freeze fracture replicas were analysed by electron microscopic observation, optical diffraction and morphometric analysis. In control specimens gap junction connexons were widely dispersed and arranged in nearly random fashion over nearly the whole junctional area, with only minute spots of hexagonal connexon arrangement. An ischemic period of 30 min, from which the vast majority of cells are capable of recovery after restoration of the blood supply, usually entails only a slight enlargement of the areas of hexagonally arranged connexons. After 120 min of ischemia without reflow, which results in necrosis of most parenchymal cells, all gap junctions showed a completely hexagonal arrangement of connexons. The numerical density of connexons after 30 and 120 min of ischemia without reflow was significantly higher than in controls, whereas after 30 min of ischemia followed by 2 h of reflow the numerical density had returned to control levels. A fully hexagonal arrangement of gap junction connexons, as occurs after longer periods of ischemia, seems to be related to irreversible cell damage and presumably to metabolic uncoupling of cells. This was preceded by an increase in the numerical density of connexons, which is probably a reversible phenomenon.
Collapse
Affiliation(s)
- J P Schellens
- Laboratory of Histology and Cell Biology, University of Amsterdam, Academic Medical Centre, The Netherlands
| | | | | |
Collapse
|
8
|
Abstract
In serial ultrathin sections of the frog spinal cord, profiles of dendritic appearance were identified that contained myelin fragment inclusions and received synaptic contacts. In a number of cases it could be established that the inclusions were derived from adjacent myelin sheaths. It is suggested that the phenomenon may refer to a turnover of the myelin sheath in which the detached myelin fragments are eliminated by dendrites.
Collapse
|
9
|
Campos de Carvalho A, Ramon F, Spray DC. Effects of protein reagents on electrotonic coupling in crayfish septate axon. Am J Physiol Cell Physiol 1986; 251:C99-103. [PMID: 3014886 DOI: 10.1152/ajpcell.1986.251.1.c99] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The lateral giant axons of the crayfish nerve cord are composed of segments contributed by each ganglion, which are electrotonically coupled by way of gap junctions. We have investigated the involvement of protein residues in regulating the resistance of crayfish junctional channels by determining effects of group-specific protein reagents. When applied to well-coupled axons, the sulfhydryl group reagents N-ethylmaleimide (NEM) and diamide uncoupled the segments; junctional resistance (Rj) was increased without changing membrane resistance or axoplasmic pH (pHi). The uncoupling produced by NEM could be reversed by alkalinization of the cytoplasm (addition of ammonium chloride to the external medium). Another sulfhydryl reagent (p-chloromercuribenzoic acid) increased Rj to a lesser extent. A disulfide reagent and three amino and three carboxyl group reagents had no effect on the Rj of these axons. The effect of group-specific reagents on partially uncoupled axons was tested by applying the drugs to axons previously exposed to weak acids. N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline recoupled partially uncoupled axons by decreasing Rj and prevented subsequent uncoupling of the junction by low pHi. Another carboxyl group reagent, as well as sulfhydryl and amino group reagents, either had no effect or uncoupled the axons further by increasing Rj. These experimental results suggest that amino acid residues, possibly containing carboxyl and sulfhydryl groups, control the opening and closing of junctional channels and may thus be associated with the channels' active sites.
Collapse
|
10
|
Délèze J, Hervé JC. Quantitative gap junction alterations in mammalian heart cells quickly frozen or chemically fixed after electrical uncoupling. J Membr Biol 1986; 93:11-21. [PMID: 3795259 DOI: 10.1007/bf01871014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The gap junction morphology was quantified in freeze-fracture replicas prepared from rat auricles that had been either quickly frozen at 6 K or chemically fixed by glutaraldehyde, in a state of normal cell-to-cell conduction or in a state of electrical uncoupling. The general appearance of the gap junctions was similar after both preparative procedures. A quantitative analysis of three gap junctional dimensions provided the following measurements in the quickly frozen conducting auricles (mean +/- SD): P-face particles' diameter 8.27 +/- 0.74 nm (n = 5709), P-face particles' center-to-center distance 10.78 +/- 2.12 nm (n = 4800), and E-face pits' distance 9.99 +/- 2.19 nm (n = 1600). Corresponding values obtained from chemically fixed tissues were decreased by about 3% for the particle's diameter and about 5% for the particles' and pits' distances. Electrical uncoupling by the action of either 1 mM 2-4-dinitrophenol (DNP), or 3.5 mM n-Heptan-1-ol (heptanol), induced a decrease of the particle's diameter, which amounted to -0.69 +/- 0.01 nm (mean +/- SE) in the quickly frozen preparations and -0.71 +/- 0.01 nm in the chemically fixed ones. The particles' distance was decreased by -0.96 +/- 0.04 nm in the quickly frozen samples and by -0.90 +/- 0.03 nm in the chemically fixed ones and the E-face pits' distance was similarly reduced. All differences were statistically significant (P less than 0.001 for all dimensions). Electrical recoupling after the heptanol effect promoted a return of these gap junctional dimensions towards normal values, which was about 50% complete within 20 min. It is concluded that very similar morphological alterations of the gap junctional structure are induced in the mammalian heart by different treatments promoting electrical uncoupling and that these conformational changes appear independently of the preparative procedure. The suggestion that the observed decrease of the particles' diameter is genuinely related to the closing mechanism of the unit cell-to-cell channel set in their centers is thus confirmed.
Collapse
|
11
|
FitzGerald PG. The Main Intrinsic Polypeptide and Intercellular Communication in the Ocular Lens. ACTA ACUST UNITED AC 1986. [DOI: 10.1007/978-1-4612-4914-6_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
12
|
Affiliation(s)
- J P Revel
- Division of Biology, California Institute of Technology, Pasadena 91125
| |
Collapse
|
13
|
Miller TM, Goodenough DA. Gap junction structures after experimental alteration of junctional channel conductance. J Cell Biol 1985; 101:1741-8. [PMID: 2414303 PMCID: PMC2113972 DOI: 10.1083/jcb.101.5.1741] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gap junctions are known to present a variety of different morphologies in electron micrographs and x-ray diffraction patterns. This variation in structure is not only seen between gap junctions in different tissues and organisms, but also within a given tissue. In an attempt to understand the physiological meaning of some aspects of this variability, gap junction structure was studied following experimental manipulation of junctional channel conductance. Both physiological and morphological experiments were performed on gap junctions joining stage 20-23 chick embryo lens epithelial cells. Channel conductance was experimentally altered by using five different experimental manipulations, and assayed for conductance changes by observing the intercellular diffusion of Lucifer Yellow CH. All structural measurements were made on electron micrographs of freeze-fracture replicas after quick-freezing of specimens from the living state; for comparison, aldehyde-fixed specimens were measured as well. Analysis of the data generated as a result of this study revealed no common statistically significant changes in the intrajunctional packing of connexons in the membrane plane as a result of experimental alteration of junctional channel conductance, although some of the experimental manipulations used to alter junctional conductance did produce significant structural changes. Aldehyde fixation caused a dramatic condensation of connexon packing, a result not observed with any of the five experimental uncoupling conditions over the 40-min time course of the experiments.
Collapse
|
14
|
|
15
|
Campos de Carvalho A, Spray DC, Bennett MV. pH dependence of transmission at electrotonic synapses of the crayfish septate axon. Brain Res 1984; 321:279-86. [PMID: 6093934 DOI: 10.1016/0006-8993(84)90180-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Gap junctions between segments of the crayfish septate axon mediate electrotonic transmission of impulses propagating along the length of the nerve cord. We simultaneously measured intracellular pH (pHi) and gap junctional conductance (gj) while axons were exposed to saline equilibrated with CO2, weak acids, and the weak base ammonium chloride. Normal pHi is about 7.1. When pHi is elevated, gj is unaffected. When pHi is reduced, gj declines with an apparent pK of about 6.7 and a Hill coefficient of about 2.7. We also measured effects of pHi on non-junctional conductance (gnj) and on the coupling coefficient, k. Over the pHi range 6.2-8, gnj increases approximately linearly with pHi. Since k is a function of gj and gnj, it reached a maximum at about pHi 7.1, decreasing at higher and lower pHi. The pHi dependence of gj in crayfish septate axon is less steep and has a lower apparent pK than the gj-pHi relation in two vertebrate embryos previously examined. This finding illustrates a difference in gating among analogous and possibly homologous membrane channels.
Collapse
|