1
|
Yebga Hot R, Siwiaszczyk M, Love SA, Andersson F, Calandreau L, Poupon F, Beaujoin J, Herlin B, Boumezbeur F, Mulot B, Chaillou E, Uszynski I, Poupon C. A novel male Japanese quail structural connectivity atlas using ultra-high field diffusion MRI at 11.7 T. Brain Struct Funct 2022; 227:1577-1597. [PMID: 35355136 PMCID: PMC9098543 DOI: 10.1007/s00429-022-02457-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 01/10/2022] [Indexed: 12/27/2022]
Abstract
The structural connectivity of animal brains can be revealed using post-mortem diffusion-weighted magnetic resonance imaging (MRI). Despite the existence of several structural atlases of avian brains, few of them address the bird’s structural connectivity. In this study, a novel atlas of the structural connectivity is proposed for the male Japanese quail (Coturnix japonica), aiming at investigating two lines divergent on their emotionality trait: the short tonic immobility (STI) and the long tonic immobility (LTI) lines. The STI line presents a low emotionality trait, while the LTI line expresses a high emotionality trait. 21 male Japanese quail brains from both lines were scanned post-mortem for this study, using a preclinical Bruker 11.7 T MRI scanner. Diffusion-weighted MRI was performed using a 3D segmented echo planar imaging (EPI) pulsed gradient spin-echo (PGSE) sequence with a 200 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upmu$$\end{document}μm isotropic resolution, 75 diffusion-encoding directions and a b-value fixed at 4500 s/mm2. Anatomical MRI was likewise performed using a 2D anatomical T2-weighted spin-echo (SE) sequence with a 150 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upmu$$\end{document}μm isotropic resolution. This very first anatomical connectivity atlas of the male Japanese quail reveals 34 labeled fiber tracts and the existence of structural differences between the connectivity patterns characterizing the two lines. Thus, the link between the male Japanese quail’s connectivity and its underlying anatomical structures has reached a better understanding.
Collapse
Affiliation(s)
- Raïssa Yebga Hot
- Unité BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, 91191, Gif-sur-Yvette, France
| | - Marine Siwiaszczyk
- Unité de Physiologie de la Reproduction et des Comportements (PRC), INRAE, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Scott A Love
- Unité de Physiologie de la Reproduction et des Comportements (PRC), INRAE, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | | | - Ludovic Calandreau
- Unité de Physiologie de la Reproduction et des Comportements (PRC), INRAE, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Fabrice Poupon
- Unité BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, 91191, Gif-sur-Yvette, France
| | - Justine Beaujoin
- Unité BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, 91191, Gif-sur-Yvette, France
| | - Bastien Herlin
- Unité BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, 91191, Gif-sur-Yvette, France
| | - Fawzi Boumezbeur
- Unité BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, 91191, Gif-sur-Yvette, France
| | - Baptiste Mulot
- Zooparc de Beauval & Beauval Nature, 41110, Saint-Aignan, France
| | - Elodie Chaillou
- Unité de Physiologie de la Reproduction et des Comportements (PRC), INRAE, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Ivy Uszynski
- Unité BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, 91191, Gif-sur-Yvette, France
| | - Cyril Poupon
- Unité BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, 91191, Gif-sur-Yvette, France.
| |
Collapse
|
2
|
Letzner S, Simon A, Güntürkün O. Connectivity and neurochemistry of the commissura anterior of the pigeon (Columba livia). J Comp Neurol 2015; 524:343-61. [PMID: 26179777 PMCID: PMC5049482 DOI: 10.1002/cne.23858] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 07/02/2015] [Accepted: 07/06/2015] [Indexed: 01/05/2023]
Abstract
The anterior commissure (AC) and the much smaller hippocampal commissure constitute the only interhemispheric pathways at the telencephalic level in birds. Since the degeneration study from Zeier and Karten (), no detailed description of the topographic organization of the AC has been performed. This information is not only necessary for a better understanding of interhemispheric transfer in birds, but also for a comparative analysis of the evolution of commissural systems in the vertebrate classes. We therefore examined the fiber connections of the AC by using choleratoxin subunit B (CTB) and biotinylated dextran amine (BDA). Injections into subareas of the arcopallium and posterior amygdala (PoA) demonstrated contralateral projection fields within the anterior arcopallium (AA), intermediate arcopallium (AI), PoA, lateral, caudolateral and central nidopallium, dorsal and ventral mesopallium, and medial striatum (MSt). Interestingly, only arcopallial and amygdaloid projections were reciprocally organized, and all AC projections originated within a rather small area of the arcopallium and the PoA. The commissural neurons were not GABA-positive, and thus possibly not of an inhibitory nature. In sum, our neuroanatomical study demonstrates that a small group of arcopallial and amygdaloid neurons constitute a wide range of contralateral projections to sensorimotor and limbic structures. Different from mammals, in birds the neurons that project via the AC constitute mostly heterotopically organized and unidirectional connections. In addition, the great majority of pallial areas do not participate by themselves in interhemispheric exchange in birds. Instead, commissural exchange rests on a rather small arcopallial and amygdaloid cluster of neurons.
Collapse
Affiliation(s)
- Sara Letzner
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Annika Simon
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
4
|
Chomiak T, Hu B. What is the optimal value of the g-ratio for myelinated fibers in the rat CNS? A theoretical approach. PLoS One 2009; 4:e7754. [PMID: 19915661 PMCID: PMC2771903 DOI: 10.1371/journal.pone.0007754] [Citation(s) in RCA: 296] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 10/16/2009] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The biological process underlying axonal myelination is complex and often prone to injury and disease. The ratio of the inner axonal diameter to the total outer diameter or g-ratio is widely utilized as a functional and structural index of optimal axonal myelination. Based on the speed of fiber conduction, Rushton was the first to derive a theoretical estimate of the optimal g-ratio of 0.6 [1]. This theoretical limit nicely explains the experimental data for myelinated axons obtained for some peripheral fibers but appears significantly lower than that found for CNS fibers. This is, however, hardly surprising given that in the CNS, axonal myelination must achieve multiple goals including reducing conduction delays, promoting conduction fidelity, lowering energy costs, and saving space. METHODOLOGY/PRINCIPAL FINDINGS In this study we explore the notion that a balanced set-point can be achieved at a functional level as the micro-structure of individual axons becomes optimized, particularly for the central system where axons tend to be smaller and their myelin sheath thinner. We used an intuitive yet novel theoretical approach based on the fundamental biophysical properties describing axonal structure and function to show that an optimal g-ratio can be defined for the central nervous system (approximately 0.77). Furthermore, by reducing the influence of volume constraints on structural design by about 40%, this approach can also predict the g-ratio observed in some peripheral fibers (approximately 0.6). CONCLUSIONS/SIGNIFICANCE These results support the notion of optimization theory in nervous system design and construction and may also help explain why the central and peripheral systems have evolved different g-ratios as a result of volume constraints.
Collapse
Affiliation(s)
- Taylor Chomiak
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| | | |
Collapse
|
5
|
Sargon MF, Mas N, Senan S, Ozdemir B, Celik HH, Cumhur M. Quantitative analysis of myelinated axons of commissural fibers in the rat brain. Anat Histol Embryol 2003; 32:141-4. [PMID: 12823099 DOI: 10.1046/j.1439-0264.2003.00446.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, the myelinated axons of the rostrum, genu, truncus and splenium parts of the corpus callosum and of the anterior, posterior and habenular commissures were counted in the rat brain by using a camera lucida. The numerical densities of these axons were compared with each other by means of quantitative analytical statistical methods. In parts of the corpus callosum, a statistically significant difference was found between the rostrum and genu, rostrum and truncus, rostrum and the splenium, genu and truncus, and the genu and splenium. However, no statistically significant difference was found between the truncus and splenium. When comparing the number of myelinated axons of the anterior, posterior and habenular commissures, statistically significant differences were found between the anterior and posterior commissures, and between the anterior and habenular commissures. No statistically significant difference was found between the posterior and habenular commissures. Small sized myelinated axons were present in all parts of the corpus callosum and in the anterior commissure. However, a heterogeneous distribution of myelinated axons was present in the posterior and habenular commissures.
Collapse
Affiliation(s)
- M F Sargon
- Department of Anatomy, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| | | | | | | | | | | |
Collapse
|
6
|
Marg A, Sirim P, Spaltmann F, Plagge A, Kauselmann G, Buck F, Rathjen FG, Brümmendorf T. Neurotractin, a novel neurite outgrowth-promoting Ig-like protein that interacts with CEPU-1 and LAMP. J Cell Biol 1999; 145:865-76. [PMID: 10330412 PMCID: PMC2133198 DOI: 10.1083/jcb.145.4.865] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/1998] [Revised: 04/07/1999] [Indexed: 11/22/2022] Open
Abstract
The formation of axon tracts in nervous system histogenesis is the result of selective axon fasciculation and specific growth cone guidance in embryonic development. One group of proteins implicated in neurite outgrowth, fasciculation, and guidance is the neural members of the Ig superfamily (IgSF). In an attempt to identify and characterize new proteins of this superfamily in the developing nervous system, we used a PCR-based strategy with degenerated primers that represent conserved sequences around the characteristic cysteine residues of Ig-like domains. Using this approach, we identified a novel neural IgSF member, termed neurotractin. This GPI-linked cell surface glycoprotein is composed of three Ig-like domains and belongs to the IgLON subgroup of neural IgSF members. It is expressed in two isoforms with apparent molecular masses of 50 and 37 kD, termed L-form and S-form, respectively. Monoclonal antibodies were used to analyze its biochemical features and histological distribution. Neurotractin is restricted to subsets of developing commissural and longitudinal axon tracts in the chick central nervous system. Recombinant neurotractin promotes neurite outgrowth of telencephalic neurons and interacts with the IgSF members CEPU-1 (KD = 3 x 10(-8) M) and LAMP. Our data suggest that neurotractin participates in the regulation of neurite outgrowth in the developing brain.
Collapse
Affiliation(s)
- A Marg
- Max-Delbrück-Center for Molecular Medicine, D-13092 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Ehrlich D, Zappia JV, Saleh CN. Development of the supraoptic decussation in the chick (Gallus gallus). ANATOMY AND EMBRYOLOGY 1988; 177:361-70. [PMID: 3354852 DOI: 10.1007/bf00315845] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The developing supraoptic decussation (SOD), a major interhemispheric tract in birds, has been implicated in both transfer of visual information and in the modulation of brain asymmetry. Moreover little is known of its morphology during development. We have examined the development of the chick SOD, which consists of three subregions; dorsal, ventral and subventral SOD. In the dorsal SOD the total number of fibres reach 968,000 on the 19th day of incubation (E-19), falling to 570,000 by the 8th day after hatching (P-8). In the ventral SOD, the number of fibres at E-19 reach 660,000, followed by a gradual reduction in their number to about 490,000 at P-22. In the subventral SOD the number of fibres estimated was 87,000 at E-15 falling to about 36,000 P-1. Compared with adult levels, there is, respectively, a drop in the number of fibres of 44%, 25% and 69% in the dorsal, ventral and subventral SOD during development. At E-19 in both the dorsal and ventral SOD there is qualitative evidence of axonal loss; disrupted axonal profiles, increased extracellular space and cells containing lysosomal cytoplasmic inclusions indicative of macrophages. Differences were also observed in the pattern of myelination, the dorsal, ventral and subventral SOD were shown to myelinate at different rates. Thus, in a single named tract, the SOD, there are major differences in the onset, rate and extent of fibre loss and myelogenesis within its three subregions. The functional implications of these differences are considered.
Collapse
Affiliation(s)
- D Ehrlich
- Department of Anatomy, Monash University, Clayton, Victoria, Australia
| | | | | |
Collapse
|